Computational Modelling of Atomic-Scale Defect Phenomena in Compound Semiconductors

  • R. M. Nieminen
  • T. Mattila
  • S. Pöykkö
Conference paper

Abstract

This article summarizes recent work of first-principles simulation of atomic-scale defects in compound semiconductors. The calculations are based on the pseudopotential-plane wave techniques for density-functional theory. We discuss the structural and electronic properties of various point defects and their complexes. In particular, we focus on defect-induced metastabilities and compensation mechanisms due to defect-dopant pairing. The materials discussed in detail are GaAs, GaN, A1N and ZnSe.

Keywords

Zinc Entropy Arsenic Selenium GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review of defect-related phenomena in semiconductors, see, for example, Deep Centers in Semiconductors, edited by S. T. Pantelides, (Gordon and Breach Science Publishers, New York, 1986) orGoogle Scholar
  2. Imperfections in III/V Materials, edited by E. R. Weber (Academic Press, New York, 1993).Google Scholar
  3. 2.
    J. Dabrowski and M. Scheffler, Phys. Rev. Lett. 60, 2183 (1988).ADSCrossRefGoogle Scholar
  4. 3.
    D. J. Chadi and K. J. Chang, Phys. Rev. Lett. 60, 2187 (1988).ADSCrossRefGoogle Scholar
  5. 4.
    D. J. Chadi and K. J. Chang, Phys. Rev. Lett. 61, 873 (1988).ADSCrossRefGoogle Scholar
  6. 5.
    H. Hellmann, Einfuhrung in die Quantimchemie, (Deuticke, Leipzig, 1937)Google Scholar
  7. R. P. Feynman, Phys. Rev. 56, 340 (1939).ADSMATHCrossRefGoogle Scholar
  8. 6.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).ADSCrossRefGoogle Scholar
  9. 7.
    For a recent approach see J. P. Perdew, in Electronic Structure of Solids ’91, edited by P. Ziesche and H. Eschrig (Akademie-Verlag, Berlin, 1991).Google Scholar
  10. 8.
    L. Hedin, Phys. Rev. 139, A796 (1965).ADSCrossRefGoogle Scholar
  11. 9.
    M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).ADSCrossRefGoogle Scholar
  12. 10.
    G. E. Engel and W. E. Pickett, Phys. Rev. B 54, 8420 (1996).ADSCrossRefGoogle Scholar
  13. 11.
    A. Seidl et al, Phys. Rev. B 53, 3764 (1996).ADSCrossRefGoogle Scholar
  14. 12.
    T. Grabo, E. K. U. Gross, and M. Lüders, Orbital Functionals in Density Functional Theoory: The Optimized Effective Potential Method, HCM Newsletter of the Ψ k Network, Number 16, August 1996.Google Scholar
  15. 13.
    D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)ADSCrossRefGoogle Scholar
  16. K. Laasonen et alPhys. Rev. B 47, 10142 (1993).ADSCrossRefGoogle Scholar
  17. 14.
    F. Gygi, Phys. Rev. B 48, 11 692 (1993).Google Scholar
  18. 15.
    For a review of the pseudopotential method, see W. E. Pickett, Comput. Phys. Rep. 9, 115 (1989).ADSCrossRefGoogle Scholar
  19. 16.
    D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 4199 (1982).Google Scholar
  20. 17.
    G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199 (1982).ADSCrossRefGoogle Scholar
  21. 18.
    M. Teter, Phys. Rev. B 48, 5031 (1993).ADSCrossRefGoogle Scholar
  22. 19.
    D. R. Hamann, Bull. Am. Phys. Soc. 33, 803 (1988)Google Scholar
  23. D. R. Hamann, Phys. Rev. B 40, 2980 (1989).ADSCrossRefGoogle Scholar
  24. The pseudopotentials are verified to be ghost-free using the method by X. Gonze, R. Stumpf and M. Scheffler, Phys. Rev. B 44, 8503 (1991).Google Scholar
  25. 20.
    S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).ADSCrossRefGoogle Scholar
  26. 21.
    H. Ibach and H. Lüth, Solid-State Physics ( Springer, Berlin, 1991 ).Google Scholar
  27. 22.
    S. Pöykkö, M. J. Puska, M. Alatalo, and R. M. Nieminen, Phys. Rev. B 54, 7909 (1996).ADSCrossRefGoogle Scholar
  28. 23.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).MathSciNetADSCrossRefGoogle Scholar
  29. 24.
    A. Garcia and J. E. Northrup, Phys. Rev. Lett. 74, 1131 (1995).ADSCrossRefGoogle Scholar
  30. 25.
    S. Pöykkö, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 53, 3813 (1996).ADSCrossRefGoogle Scholar
  31. 26.
    K. W. Kwak, D. Vanderbilt, and R. D. King-Smith, Phys. Rev. B 52, 11912 (1995).ADSCrossRefGoogle Scholar
  32. 27.
    D. J. Chadi, and K. J. Chang, Phys. Rev. B 39, 10 063 (1989).Google Scholar
  33. 28.
    A. Pillukat, P. Ehrhart, Appi. Phys. Lett. 60, 2794 (1992);ADSCrossRefGoogle Scholar
  34. 29.
    A. Goltzene, B. Meyer and C. Schwab, Appi. Phys. Lett. 54, 907 (1989);ADSCrossRefGoogle Scholar
  35. 30.
    P. Omling, E. R. Weber and L. Samuelson, Phys. Rev. B 33, 5880 (1986);ADSCrossRefGoogle Scholar
  36. 31.
    M. Hesse, F. K. Koschnick, K. Krambrock, J.-M. Spaeth, Solid State Commun. 92, 207 (1994).ADSCrossRefGoogle Scholar
  37. 32.
    K. Krambrock and J.-M. Spaeth, Phys. Rev. B 47, 3987 (1993).ADSCrossRefGoogle Scholar
  38. 33.
    K. Saarinen, S. Kuisma, J. Mäkinen, P. Hautojärvi, M. Törnqvist and C. Corbel, Phys. Rev. B 51, 14 152 (1995).Google Scholar
  39. 34.
    S. Kuisma, K. Saarinen, P. Hautojärvi and C. Corbel, Phys. Rev. B 53, 7588 (1996).ADSCrossRefGoogle Scholar
  40. 35.
    S. Pöykkö, M. J. Puska, and R. M. Nieminen, Phys. Rev. B 55, 6914 (1997).ADSCrossRefGoogle Scholar
  41. 36.
    M. Baj, P. Dreszer, and A. Babinski, Phys. Rev. B 43, 2070 (1991);ADSCrossRefGoogle Scholar
  42. P. Dreszer, M. Baj, and K. Korzeniewski, Mater. Sci. Forum 83–87, 875 (1992);CrossRefGoogle Scholar
  43. T. W. Steiner, M. K. Nissen, S. M. Wilson, Y. Lacroix, and M. L. W. Thewalt, Phys. Rev. B 47, 1265 (1993).ADSCrossRefGoogle Scholar
  44. 37.
    C. Ziegler, U. Scherz, and M. Scheffler, Phys. Rev. B 47, 16624 (1993).ADSCrossRefGoogle Scholar
  45. 38.
    P. Rigby, Nature 384, 610 (1996).ADSCrossRefGoogle Scholar
  46. 39.
    T. Mattila, A. P. Seitsonen and R. M. Nieminen, Phys. Rev. B 54, 1474 (1996).ADSCrossRefGoogle Scholar
  47. 40.
    T. L. Tansley and R. J. Egan, Phys. Rev. B 45. 10942 (1992).CrossRefGoogle Scholar
  48. 41.
    J. Neugebauer and C. G. Van de Walle, Phys. Rev. B 50, 8067 (1994).ADSCrossRefGoogle Scholar
  49. 42.
    J. Neugebauer and C. G. Van de Walle, in Diamond, SiC and Nitride Wide- Bandgap Semiconductors, edited by C. H. Carter Jr., G. Gildenblat, S. Nakamura, and R. J. Nemanich, MRS Symposia Proceedings No. 339 (Materials Research Society, Pittsburgh, 1994), p. 687.Google Scholar
  50. 43.
    J. Neugebauer and C. G. Van de Walle, in Proceedings of the 22nd International Conference on the Physics of Semiconductors, edited by D. J. Lockwood (World Scientific, Singapore, 1994), Vol. Ill, p. 2327.Google Scholar
  51. 44.
    T. Mattila and R. M. Nieminen, Phys. Rev. B 54, 16676 (1996).ADSCrossRefGoogle Scholar
  52. 45.
    T. Mattila and R. M. Nieminen, Phys. Rev. B, in press.Google Scholar
  53. 46.
    W. Götz et al., Appl. Phys. Lett. 68, 3144 (1996).ADSCrossRefGoogle Scholar
  54. 47.
    T. Suski, private communication.Google Scholar
  55. 48.
    C. Wetzel et al., phys. stat. sol. (b) 198, 243 (1996).ADSCrossRefGoogle Scholar
  56. 49.
    R. A. Youngman and J. H. Harris, J. Am. Ceram. Soc. 73, 3238 (1990) and references therein.CrossRefGoogle Scholar
  57. 50.
    Physics of DX Centers in GaAs Alloys, edited by J. C. Bourgoin (Sci-Tech, Lake Isabella, 1990).Google Scholar
  58. 51.
    J. Neugebauer and C. G. Van de Walle, Appl. Phys. Lett. 69, 503 (1996).ADSCrossRefGoogle Scholar
  59. 52.
    K. Saarinen et al., submitted to Phys. Rev. Lett.Google Scholar
  60. 53.
    S. Kim et al., Appi. Phys. Lett. 67, 380 (1995).ADSCrossRefGoogle Scholar
  61. 54.
    E. R. Glaser et al, Phys. Rev. B 51, 13 326 (1995).Google Scholar
  62. 55.
    T. Suski et al., Appi. Phys. Lett. 67, 2188 (1995).ADSCrossRefGoogle Scholar
  63. 56.
    D. M. Hofmann et al., Phys. Rev. B 52, 16702 (1995).ADSCrossRefGoogle Scholar
  64. 57.
    R. M. Park, M. B. Troffer, J. M. DePuydt, and M. A. Haase, Appl. Phys. Lett. 57, 2127 (1990).ADSCrossRefGoogle Scholar
  65. 58.
    K. Ohkawa, T. Karasawa, and T. J. Mitsuyo, Cryst. Growth 111, 797 (1991).CrossRefGoogle Scholar
  66. 59.
    D. B. Laks, C. G. Van de Walle, G. F. Neumark, and S. T. Pantelides, Phys. Rev. Lett. 66, 648 (1991).ADSCrossRefGoogle Scholar
  67. 60.
    D.B. Laks, C.G. Van de Walle, G.F. Neumark, P.E. Blöchl, and S.T. Pantelides, Phys. Rev. B 45, 10 965 (1992).Google Scholar
  68. 61.
    Z. Zhu, G. Horsburgh, P. J. Thompson, G. D. Brownlie, S. Y. Wang, K. A. Prior and B. C. Cavenett, Appl. Phys. Lett. 67, 3927 (1995).ADSCrossRefGoogle Scholar
  69. 62.
    D. J. Chadi, and K. J. Chang, Appl. Phys. Lett. 55, 575 (1989).ADSCrossRefGoogle Scholar
  70. 63.
    D. J. Chadi, Appl. Phys. Lett. 59, 3589 (1991).ADSCrossRefGoogle Scholar
  71. 64.
    D. J. Chadi, and N. J. Troullier, Physica B 185, 128 (1993).ADSCrossRefGoogle Scholar
  72. 65.
    D. J. Chadi, Phys. Rev. Lett. 72, 534 (1994).ADSCrossRefGoogle Scholar
  73. 66.
    C. H. Park, and D. J. Chadi, Phys. Rev. Lett. 75, 1134 (1995).ADSCrossRefGoogle Scholar
  74. 67.
    Byoung-Ho Cheong, C. H. Park, K. J. Chang, Phys. Rev. B 51, 10 610 (1995).Google Scholar
  75. 68.
    I. S. Hauksson, J. Simpson, S. Y. Wang, K. A. Prior, and B. C. Cavenett, Appl. Phys. Lett. 61, 2208, (1992).ADSCrossRefGoogle Scholar
  76. 69.
    K. Saarinen, T. Laine, K. Skog, J. Mäkinen, P. Hautojär vi, K. Rakennus, P. Uusimaa, A. Salokatve and M. Pessa, Phys. Rev. Lett. 77, 3407, (1996).ADSCrossRefGoogle Scholar
  77. 70.
    S. Pöykkö, M. J. Puska, T. Korhonen and R. M. Nieminen, Mat. Sci. Eng. B (1996).Google Scholar
  78. 71.
    S. Pöykkö, M. J. Puska, and R. M. Nieminen, to be published.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. M. Nieminen
    • 1
  • T. Mattila
    • 1
  • S. Pöykkö
    • 1
  1. 1.Laboratory of PhysicsHelsinki University of TechnologyEspooFinland

Personalised recommendations