Skip to main content

Thermochemical Modeling of Ternary Alloys from Binary Systems

  • Conference paper
  • 348 Accesses

Abstract

Integral excess free energy for a ternary system can be estimated from the constituting binary excess by applying geometrical formalisms. Generalized expressions for mass balance is derived relating a ternary composition to its limiting binary compositions. It is found that the geometrical formalisms do not satisfy the mass balance constraint. Comparison of results obtained using geometrical formalisms with available experimental data revealed interesting correlation among various formalisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Meijering, Acta Metallurgica 5(1957).

    Google Scholar 

  2. K. C. Chou and Y. A. Chang, Ber. Bunsenges. Phys. Chem., 93, 735 (1989).

    Google Scholar 

  3. F. Kohler, Monatsh. Chem. 91, 738 (1960).

    Article  Google Scholar 

  4. C. Colinet, D.E.S., Fac. Sci.,Univ. Grenoble, France(1967).

    Google Scholar 

  5. Y. M. Muggianu, M. Gambino and J. P. Bros, J. Chim. Phys. (Paris), 72, 83 (1975).

    Google Scholar 

  6. K. T. Jacob and K. Fitzner, Thermochimica Acta, 18, 197 (1977).

    Google Scholar 

  7. K. C. Chou, CALPHAD, 11, 293 (1987).

    Google Scholar 

  8. D. V. Malakhov and M. Tokuda, Materials Transactions, JIM, 36, 757 (1995).

    Google Scholar 

  9. G. W. Toop, Trans. AIME, 233, 850 (1965).

    Google Scholar 

  10. M.Hillert, CALPHAD, 4, 1 (1980).

    Google Scholar 

  11. R. Q. Li, CALPHAD, 13, 67 (1989).

    Google Scholar 

  12. K. C. Chou, CALPHAD, 19, 315 (1995).

    Google Scholar 

  13. T. Gnanasekaran and H. Ipser, Met. and Materials Trans. B, 25B, 67 (1994).

    ADS  Google Scholar 

  14. C. A. Coughanowt, I. Ansara, R. Luoma, M. Hamalainen and H. L. Lukas, Z. Metallkd., 82, 574 (1991).

    Google Scholar 

  15. S. AnMey, Z. Metallkd., 78, 502 (1987).

    Google Scholar 

  16. A. A. Nayeb-Hashemi and J. B. Clark, Bull. Alloy Phase Diagrams, 6, 238 (1985).

    Article  Google Scholar 

  17. Z. Moser, L. Zabdyr and A. Pelton, Can. Metallurgical Quarterly, 14(1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ganesan, R., Vana Varamban, S. (1998). Thermochemical Modeling of Ternary Alloys from Binary Systems. In: Kumar, V., Sengupta, S., Raj, B. (eds) Frontiers in Materials Modelling and Design. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80478-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80478-6_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80480-9

  • Online ISBN: 978-3-642-80478-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics