Skip to main content

The Function of Modulators in Proteasome MHC Class I Antigen Processing Activity

  • Conference paper
Symposium in Immunology VII
  • 52 Accesses

Abstract

In eukaryotes the major non-lysosmal proteolytic system is characterized by a high-molecular-mass ATP-dependent 26S protease (for review see Coux et al. 1996). This complex is composed of the 20S proteasome, forming the proteolytic core, and the 19S regulator PA700, rendering ATP dependence and binding sites for ubiquitinated protein substrates (Rivett 1993; Hochstrasser 1995). The essential 26S enzyme complex is, in collaboration with the ubiquitin signalling pathway, responsible for the selective turnover of cytosolic and nuclear proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ahn JY, Tanahashi N, Akiyama KY, Hisamatsu H, Noda C, Tanaka K, Chung C, Shimbara N, Willy PJ, Mott JD, Slaughter CA, Demartino GN (1995) Primary structures of two homologous subunits of PA28, a gamma interferon inducible protein activator of the 20S proteasome. Febs Lett 366:37–42

    Article  PubMed  CAS  Google Scholar 

  • Ahn K, Erlander M, Leturcq D, Peterson PA, Früh K, Yang Y (1996) In vivo characterization of the proteasome regulator PA28. J Biol Chem 271:18237–18242

    Article  PubMed  CAS  Google Scholar 

  • Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel PM (1994) Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 179:901–909

    Article  PubMed  CAS  Google Scholar 

  • Chu-Ping MS, Laughter CA, DeMartino GN (1992) Purification and characterization of a protein inhibitor of the 20S proteasome (macropain). Biochim Biophys Acta 1119:303–311

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • DeMartino GN, Slaughter CA (1993) Regulatory proteins of the proteasome. Enzyme Protein 47:314–324

    PubMed  CAS  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner MA (1994) 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    PubMed  CAS  Google Scholar 

  • Dick LR, Aldrich C, Jameson SC, Moomaw CR, Pramanik BC, Doyle CK, DeMartino GN, Bevan MJ, Forman JM, Slaughter CA (1994) Proteolytic processing of ovalbumin and beta-galactosidase by the proteasome to yield antigenic peptides. J Immunol 15:23884–23894

    Google Scholar 

  • Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanovic S, Schild H, Rammensee HG (1996) Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253–262

    Article  PubMed  CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11S regulator of the multicatalytic proteinase. J Biol Chem 267:22369–22377

    PubMed  CAS  Google Scholar 

  • Eggers M, Boes-Fabian B, Ruppert T, Kloetzel PM, Koszinowski UH (1995) The cleavage preference of the proteasome governs the yield of antigenic peptides. J Exp Med 182:1865–1870

    Article  PubMed  CAS  Google Scholar 

  • Fehling HJ, Swat W, Laplace C, Kiihn R, Rajewsky K, Miiller U, von Boehmer H (1994) MHC class I expression in mice lacking the proteasome subunit LMP-7. Science 265:1234–1237

    Article  PubMed  CAS  Google Scholar 

  • Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activity and subunit specific amino terminal modification of lactacystin. Science 268:726–731

    Article  PubMed  CAS  Google Scholar 

  • Grant EP, Michalek MT, Goldberg AL, Rock KL (1995) Rate of antigen degradation by the ubiquitin proteasome pathway influences MHC class 1 presentation. J Immunol 155:3750–3758

    PubMed  CAS  Google Scholar 

  • Gray CW, Slaughter CA, DeMartino GN (1994) PA28 activator protein forms regulatory caps on proteasome stacked rings. J Mol Biol 236:7–15

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski U, Kloetzel PM (1995) The interferon-gamma-inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20 S proteasome in vitro. J Biol Chem 270:23808–23815

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Eggers M, Kuehn L, Dick TP, Schild H, Rammensee HG, Koszinowski UH, Kloetzel PM (1996a) A role for the proteasome regulator PA28CC in antigen presentation. Nature 381:166–168

    Article  PubMed  CAS  Google Scholar 

  • Groettrup M, Soza A, Kuckelkorn U, Kloetzel PM (1996b) Peptide antigen production by the proteasome: complexity provides efficiency. Immunol Today 17:429–435

    Article  PubMed  CAS  Google Scholar 

  • Heinemeyer W, Simeon A, Hirsch HH, Schiffer HH, Teichert U, Wolf DH (1991) Lysosomal and non-lysosomal proteolysis in the eukaryotic cell: studies on yeast. Biochem Soc Trans 19:724–725

    PubMed  CAS  Google Scholar 

  • Hershko A (1996) Mechanisms and regulation of ubiquitin-mediated cyclin degradation. Adv Exp Med Biol 389:221–227

    Article  PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21 196–102

    CAS  Google Scholar 

  • Hilt W, Enenkel C, Gruhler A, Singer T, Wolf DH (1993) The PRE4 gene codes for a subunit of the yeast proteasome necessary for peptidylglutamyl-peptide-hydroly- zing activity. Mutations link the proteasome to stress- and ubiquitin-dependent proteolysis. J Biol Chem 268:3479–3486

    PubMed  CAS  Google Scholar 

  • Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, Takahashi E, Tanahashi N, Tamura T, Ichihara A, Tanaka K (1996) Newly identified pair of proteasomal subunits regulated reciprocally by interferon gamma. J Exp Med 183:1807–1816

    Article  PubMed  CAS  Google Scholar 

  • Hochstrasser M (1995) Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr Opin Cell Biol 7:215–223

    Article  PubMed  CAS  Google Scholar 

  • Kania MA, DeMartino GN, Baumeister W, Goldberg AL (1996) The proteasome sub- unit, C2, contains an important site for binding of the PA28 (11S) activator. Eur J Biochem 236:510–516

    Article  PubMed  CAS  Google Scholar 

  • Kopp F, Dahlmann B, Hendil KB (1993) Evidence indicating that the human proteasome is a complex dimer. J Mol Biol 229:14–19

    Article  PubMed  CAS  Google Scholar 

  • Kopp F, Kristensen P, Hendil KB, Johnsen A, Sobeck A, Dahlmann B (1995) The human proteasome subunit HsN3 is located in the inner rings of the complex dimer. I Mol Biol 248:264–272

    CAS  Google Scholar 

  • Kuckelkorn U, Frentzel S, Kraft R, Kostka S, Groettrup M, Kloetzel PM (1995) Incorporation of major histocompatibility complex-encoded subunits LMP2 and LMP7 change the quality of the 20S proteasome polypeptide processing products independent of interferon-gamma. Eur J Immunol 25:2605–2611

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1996) Reconstitution of proteasome activator PA28 from isolated subunits. Febs Lett 394:183–186

    Article  PubMed  CAS  Google Scholar 

  • Lowe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 A resolution. Science 268:533–539

    Article  PubMed  CAS  Google Scholar 

  • Mott JD, Pramanik BC, Moomaw CR, Afendis SJ, DeMartino GN, Slaughter CA (1994) PA28, an activator of the 20 S proteasome, is composed of two nonidentical but homologous subunits. J Biol Chem 269:31466–31471

    PubMed  CAS  Google Scholar 

  • Niedermann G, Butz S, Ihlenfeldt HG, Grimm R, Lucchiari M, Hoschutzky H, Jung G, Maier B, Eichmann K (1995) Contribution of proteasome-mediated proteolysis to the hierarchy of epitopes presented by major histocompatibility complex class I molecules. Immunity 2:289–299

    Article  PubMed  CAS  Google Scholar 

  • Niedermann G, King G, Butz S, Birsner U, Grimm R, Shabanowitz J, Hunt DF, Eichmann K (1996) The proteolytic fragments generated by vertebrate proteasomes: class I banding peptides. Proc Natl Acad Sci USA 93:8572–8577

    Article  PubMed  CAS  Google Scholar 

  • Orlowski M, Cardozo C, Michaud C (1993) Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Ossendorp F, Eggers M, Neisig A, Ruppert T, Groettrup M, Sijts A, Mengede E, Kloetzel PM, Neefjes J, Koszinowski U, Melief CA (1996) A single residue exchange within a viral CTL epitope alters proteasome mediated degradation resulting in lack of antigen presentation. Immunity 5:115–124

    Article  PubMed  CAS  Google Scholar 

  • Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappaBi precursor protein and the activation of NF-kappaB. Cell 78:773–785

    Article  PubMed  CAS  Google Scholar 

  • Peters JM, Cejka Z, Harris JR, Kleinschmidt JA, Baumeister W (1993) Structural features of the 26 S proteasome complex. J Mol Biol 234:932–937

    Article  PubMed  CAS  Google Scholar 

  • Piihler G, Weinkauf S, Bachmann L, Miiller S, Engel A, Hegerl R, Baumeister W (1992) Subunit stoichiometry and three-dimensional arrangement in proteasomes from Thermoplasma acidophilum. Embo J 11:1607–1616

    Google Scholar 

  • Rivett AJ (1993) Proteasomes: multicatalytic proteinase complexes. Biochem J 291:1–10

    PubMed  CAS  Google Scholar 

  • Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771

    Article  PubMed  CAS  Google Scholar 

  • Rotem-Yehudar R, Groettrup M, Soza AS, Kloetzel P-M, Ehrlich R (1996) LMP-asso- ciated proteolytic activities and TAP-dependent peptide transport for class I MHC molecules are suppressed in cell lines transformed by the highly oncogenic adenovirus 12. J Exp Med 183:499–514

    Article  PubMed  CAS  Google Scholar 

  • Schmidtke G, Kraft R, Kostka S, Henklein P, Frommel C, Lowe J, Huber R, Kloetzel PM, Schmidt M (1996) Analysis of mammalian 20S proteasome biogenesis: the maturation of beta-subunits is an ordered two-step mechanism involving autoca- talysis. Embo J 15:6887–6898

    PubMed  CAS  Google Scholar 

  • Seeger M, Ferrell K, Frank R, Dubiel W (1997) HIV Tat inhibits the 20S proteasome and its 11S regulator mediated activation. J Biol Chem (in press)

    Google Scholar 

  • Seemiiller E, Lupas A, Stock D, Lowe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum: a threonine protease. Science 268:579–582

    Article  Google Scholar 

  • Stein RL, Melandri F, Dick L (1996) Kinetic characterization of the chymotryptic activity of the 20S proteasome. Biochemistry 35:3899–3908

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, Demot R, Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5:766–774

    Article  PubMed  CAS  Google Scholar 

  • Ustrell V, Pratt G, Rechsteiner M (1995) Effects of interferon-gamma on major histocompatibility complex encoded subunits on peptidase activities of human multi- catalytic proteases. Proc Natl Acad Sci USA 92:584–588

    Article  PubMed  CAS  Google Scholar 

  • Van Kaer L, Ashton-Rickardt P, Geichelberger M, Gaczynska M, Nagashima K, Rock KL, Goldberg AL, Doherty PC, Tonegawa S (1994) Altered peptidase and viral specific T cell response in LMP2 mutant mice. Immunity 1:533–541

    Article  PubMed  Google Scholar 

  • Yang Y, Friih K, Ahn K, Peterson PA (1995) In vivo assembly of the proteasomal complexes, implications for antigen processing. J Biol Chem 270:27687–27694

    Article  PubMed  CAS  Google Scholar 

  • Zwickl P, Grziwa A, Pùhler G, Dahlmann B, Lottspeich F, Baumeister W (1992) Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase. Biochemistry 3:1964–1972

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kloetzel, PM. (1998). The Function of Modulators in Proteasome MHC Class I Antigen Processing Activity. In: Eibl, M.M., Huber, C., Peter, H.H., Wahn, U. (eds) Symposium in Immunology VII. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80466-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80466-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63360-0

  • Online ISBN: 978-3-642-80466-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics