Skip to main content

Processing and Selection of Antigens by the Major Histocompatibility Complex Encoded Peptide Transporter TAP

  • Conference paper
Symposium in Immunology VII
  • 49 Accesses

Abstract

Cytotoxic T lymphocytes (CTL) recognize peptides derived from endogenous proteins in association with HLA class I molecules (reviewed by Townsend and Bodmer 1989). A reliable method to predict which peptide from a given protein of interest could elicit a CTL response would thus be of great practical utility. A large body of data on molecular details of the peptide-HLA class I interaction has accumulated. By means of pool sequencing of naturally processed peptides, allele-specific patterns of highly conserved residues have been discovered at particular positions of these peptides, termed ‘anchor residues’ (reviewed by Rammensee et al. 1995), and have been confirmed by the solution of the three-dimensional structure of the peptide-HLA class I complex (Madden et al. 1991). However, when studies with cell lines defective in class I surface expression led to the discovery of genes for a putative peptide transporter (reviewed by Parham 1990), the latter shown to be located in the membrane of the endoplasmic reticulum (ER), and for subunits of the proteasome complex involved in protein degradation, the generation of antigenic peptides for presentation on HLA class I molecules turned out to be a complex mechanism (Fig. 1; reviewed by Yewdell and Bennink 1992; Howard 1995; Koopmann et al. 1997; Tampé et al. 1997). The function of the peptide transporter, termed TAP (for ‘transporter associated with antigen processing’) has since been confirmed in transfection experiments with these defective cell lines (Spies and DeMars 1991; Powis et al. 1991) and in direct transport experiments that take advantage of trapping of peptides in the ER lumen via glycosylation or binding to major histocompatibility (MHC) molecules using these transfectants (Neefjes et al. 1993; Shepherd et al. 1993; Androlewicz et al. 1993) or using heterologously expressed TAP in insect cells or yeast (Meyer et al. 1994; Urlinger et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Androlewicz MJ, Anderson KS, Cresswell P (1993) Evidence that transporter associated with antigen processing translocate a major histocompatibility complex class I-binding peptide into the endoplasmic reticulum in an ATP-dependent manner. Proc Nat Acad Sci USA 90:9130–9134

    Article  PubMed  CAS  Google Scholar 

  • Boes B, Hengel H, Ruppert T, Multhaup G, Koszinowski UH, Kloetzel PM (1994) Interferon gamma stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. J Exp Med 179:901–909

    Article  PubMed  CAS  Google Scholar 

  • Brock R, Wiesmüller KH, Jung G, Waiden P (1996) Molecular basis for the recognition of two structurally different major histocompatibility complex/peptide complexes by a single T-cell receptor. Proc Nat Acad Sci USA 93:13108–13113

    Article  PubMed  CAS  Google Scholar 

  • Driscoll J, Brown MG, Finley D, Monaco JJ (1993) MHC-linked LMP gene products specifically alter peptidase activities of the proteasome. Nature 365:262–264

    Article  PubMed  CAS  Google Scholar 

  • Ehring B, Meyer TH, Eckerskorn C, Lottspeich F, Tampé R (1996) Effects of majorhistocompatibility-complex-encoded subunits on the peptidase and proteolytic activities of human 20S proteasomes - cleavage of proteins and antigenic peptides. Eur J Biochem 235:404–415

    Article  PubMed  CAS  Google Scholar 

  • Fleckenstein B, Kaibacher H, Müller CP, Stoll D, Halder T, Jung G, Wiesmüller KH (1996) New ligands binding to the human leukocyte antigen class II molecule DRBi *0101 based on the activity pattern of an undecapeptide library. Eur J Biochem 240:71–77

    Article  PubMed  CAS  Google Scholar 

  • Gaczynska M, Rock KL, Goldberg AL (1993) Gamma-interferon and expression of MHC genes regulate peptide hydrolysis by proteasomes. Nature 365:264–267

    Article  PubMed  CAS  Google Scholar 

  • Garboczi DN, Ghosh P, Utz U, Fan QR, Biddison WE, Wiley DC (1996) Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384:134–141

    Article  PubMed  CAS  Google Scholar 

  • Garcia KC, Degano M, Stanfield RL, Brunmark A, Jackson MR, Peterson PA, Teyton L, Wilson IA (1996) An alpha-beta-T-cell receptor structure at 2.5 angstrom and its orientation in the TCR-MHC complex. Science 274:209–219

    Article  PubMed  CAS  Google Scholar 

  • Heemels MT, Schumacher TNM, Wonigeit K, Ploegh HL (1993) Peptide translocation by variants of the transporter associated with antigen processing. Science 262:2059–2063

    Article  PubMed  CAS  Google Scholar 

  • Howard JC (1995) Supply and transport of peptides presented by class-I MHC molecules. Curr Opin Immunol 7:69–76

    Article  PubMed  CAS  Google Scholar 

  • Koopmann JO, Post M, Neefjes JJ, Hämmerling GJ, Momburg F (1996) Translocation of long peptides by transporters associated with antigen - of processing (TAP). Eur J Immunol 26:1720–1728

    Article  PubMed  CAS  Google Scholar 

  • Koopmann JO, Hämmerling GJ, Momburg F (1997) Generation, intracellular-transport and loading of peptides associated with MHC class-I molecules. Curr Opin Immunol 9:80–88

    Article  PubMed  CAS  Google Scholar 

  • Madden DR, Gorga JC, Strominger JL, Wiley DC (1991) The structure of B27 reveals nonamer peptides bound in an extended conformation. Nature 353:321–325

    Article  PubMed  CAS  Google Scholar 

  • Meyer TH, van Endert PM, Uebel S, Ehring B, Tampé R (1994) Functional expression and purification of the ABC transporter complex associated with antigen-processing (TAP) in insect cells. FEBS Lett 351:443–447

    Article  PubMed  CAS  Google Scholar 

  • Momburg F, Roelse J, Hämmerling GJ, Neefjes JJ (1994a) Peptide size selection by the major histocompatibility complex-encoded peptide transporter. J Exp Med 179:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Momburg F, Roelse J, Howard JC, Butcher GW, Hämmerling GJ, Neefjes JJ (1994b) Selectivity of MHC-encoded peptide transporters from human, mouse and rat. Nature 367:648–651

    Article  PubMed  CAS  Google Scholar 

  • Neefjes JJ, Momburg F, Hämmerling GJ (1993) Selective and ATP-dependent translocation of peptides by the MHC-encoded transporter. Science 261:769–771

    Article  PubMed  CAS  Google Scholar 

  • Neisig A, Roelse J, Sijts AJA, Ossendorp F, Feltkamp MCW, Kast WM, Melief CJM, Neefjes JJ (1995) Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J Immunol 154:1273–1279

    PubMed  CAS  Google Scholar 

  • Obst R, Armandola EA, Nijenhuis M, Momburg F, Hämmerling GJ (1995) TAP polymorphism does not influence transport of peptide variants in mice and humans. Eur J Immunol 25:2170–2176

    Article  PubMed  CAS  Google Scholar 

  • Parham P (1990) Transporters of delight. Nature 348:674, 675

    Article  PubMed  CAS  Google Scholar 

  • Powis SJ, Townsend ARM, Deverson EV, Bastin J, Butcher GW, Howard JC (1991) Restoration of antigen presentation to the mutant cell line RMA-S by an MHC-linked transporter. Nature 354:528–531

    Article  PubMed  CAS  Google Scholar 

  • Powis SJ, Deverson EV, Coadwell WJ, Ciruela A, Huskisson NS, Smith H, Butcher GW, Howard JC (1992) Effect of polymorphism of an MHC-linked transporter on the peptides assembled in a class I molecule. Nature 357:211–215

    Article  PubMed  CAS  Google Scholar 

  • Rammensee H-G, Friede T, Stevanovic S (1995) MHC ligands and peptide motifs: first listing. Immunogenetics 41:178–228

    Article  PubMed  CAS  Google Scholar 

  • Schumacher TN, Kantesaria DV, Heemels MT, Ashton-Rickardt PG, Shepherd JC, Früh K, Yang Y, Peterson PA, Tonegawa S, Ploegh HL (1994a) Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med 179:533–540

    Article  PubMed  CAS  Google Scholar 

  • Schumacher TNM, Kantesaria DV, Serreze DV, Roopenian DC, Ploegh HL (1994b) Transporters from H-2(b), H-2(d), H-2(s), H-2(k), and H-2(g7) (NOD/lt) haplotype translocate similar sets of peptides. Proc Natl Acad Sci USA 91:13004–13008

    Article  PubMed  CAS  Google Scholar 

  • Shepherd JC, Schumacher TN, Ashton-Rickardt PG, Imaeda S, Ploegh HL, Janeway CAJ, Tonegawa S (1993) TAP1-dependent peptide translocation in vitro is ATP dependent and peptide selective. Cell 74:577–584

    Article  PubMed  CAS  Google Scholar 

  • Spies T, DeMars R (1991) Restored expression of major histocompatibility class I molecules by gene transfer of a putative peptide transporter. Nature 351:323–324

    Article  PubMed  CAS  Google Scholar 

  • Tampé R, Urlinger S, Pawlitschko K, Uebel S (1997) The transporters associated with antigen processing (TAP). In: Kuchler K, Rubartelli A, Holland B (eds) Unusual secretory pathways: from bacteria to man. Landes, Austin, pp. 115–136

    Google Scholar 

  • Townsend A, Bodmer H (1989) Antigen recognition by class I-resticed T lymphocytes. Annu Rev Immunol 7:601–624

    Article  PubMed  CAS  Google Scholar 

  • Udaka K, Wiesmüller H-H, Kienle S, Jung G, Waiden P (1995) Decrypting the structure of major histocompatibility complex class I-restricted cytotoxic T lymphocyte epitopes with complex peptide libraries. J Exp Med 181:2097–2108

    Article  PubMed  CAS  Google Scholar 

  • Uebel S, Meyer TH, Kraas W, Kienle S, Jung G, Wiesmüller KH, Tampé R (1995) Requirements for peptide binding to the human transporter associated with antigen-processing revealed by peptide scans and complex peptide libraries. J Biol Chem 270:18512–18516

    Article  PubMed  CAS  Google Scholar 

  • Uebel S, Kraas W, Kienle S, Wiesmüller K-H, Jung G, Tampé R (1997) Recognition principle of the TAP-transporter disclosed by combinatorial peptide libraries. Proc Natl Acad Sci USA 94:8976–8981

    Article  PubMed  CAS  Google Scholar 

  • Urlinger S, Kuchler K, Meyer TH, Uebel S, Tampé R (1997) Intracellular location, complex formation, and function of the transporter associated with antigen processing in yeast. Eur J Biochem 245:266–272

    Article  PubMed  CAS  Google Scholar 

  • van Endert PM, Tampé R, Meyer TH, Tisch R, Bach JF, Mevitt HO (1994) A sequential model for peptide binding and transport by the transporters associated with antigen processing. Immunity 1:491–500

    Article  PubMed  Google Scholar 

  • van Endert PM, Riganelli D, Greco G, Fleischhauer K, Sidney J, Sette A, Bach JF (1995) The peptide-binding motif for the human transporter associated with antigen-processing. J Exp Med 182:1883–1895

    Article  PubMed  Google Scholar 

  • Yewdell JW, Bennink JR (1992) Cell biology of antigen-processing and presentation to major histocompatibility complex class-I molecule-restricted T-lymphocytes. Adv Immunol 52:1–123

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uebel, S., Tampé, R. (1998). Processing and Selection of Antigens by the Major Histocompatibility Complex Encoded Peptide Transporter TAP. In: Eibl, M.M., Huber, C., Peter, H.H., Wahn, U. (eds) Symposium in Immunology VII. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80466-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80466-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63360-0

  • Online ISBN: 978-3-642-80466-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics