Skip to main content

Identification of Virulence Determinants in Pathogenic Mycobacteria

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 225))

Abstract

Few infectious organisms have wreaked so much suffering upon the human race as members of the genus Mycobacterium. From ancient times, the major pathogenic mycobacterial species, M. tuberculosis and M. leprae; have afflicted humans, causing not only overt disease, but also immeasurable fear and distress. Lesions suggestive of spinal tuberculosis have been found in the skeleton of a neolithic man (c. 4000 B.C.) and in Egyptian mummies dating from 3700–1000 B.C.(Morse et al. 1964; Grange 1989). Ancient medical writings from China (c. 250 B.C.) and India (between 600 and 400 B.C.) describe skin diseases characterized by nodulation, hair loss, disturbed pigmentation, anesthesia, and ulceration that are suggestive of leprosy (Grange 1989; Wong and Wu 1932; K.N.N.S. Gupta 1909), although skeletal lesions characteristic of leprosy have not been identified in skeletons earlier than one dating from 350 A.D. (Grange 1989). Grange (1989) pointed out that the term “lepra” or “lepros” used in the Talmud and Old and New Testaments was different from the words used to describe leprosy in biblical times; “lepra” or “lepros” referred to specific scaling skin diseases such as psoriasis. However, the context in which the words “lepra” or “lepros” were used in biblical times served to link these words with defilement in general and led to the association of repugnance that remains associated with leprosy even today and has contributed to untold stress and psychological suffering among the victims of this disease (Grange 1989).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldovani A, Husson RN, Young RA (1993) The uraA locus and homologous recombination in Mycobacterium bovis BCG. J Bacteriol 175:7282–7289

    Google Scholar 

  • Armstrong JA, D’Arcy Hart P (1971) Response of cultured macrophages to Mycobacterium tuberculosis, with observations on fusions of lysosomes with phagosomes. J Exp Med 134:713–740

    Article  PubMed  CAS  Google Scholar 

  • Arruda S, Bonfim G, Knights R, Huima-Byron T, Riley LW (1993) Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261:1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Balasubramanian V, Pavelka MS Jr, Bardarov SS, Martin J, Weisbrod TR, McAdam RA, Bloom BR, Jacobs WR Jr (1996) Allelic exchange in Mycobacterium tuberculosis with long linear substrates. J Bacteriol 178:273–279

    PubMed  CAS  Google Scholar 

  • Bange FC, Brown AM, Jacobs WR Jr (1996) Leucine auxotrophy restricts growth of Mycobacterium bovis BCG in macrophages. Infect Immun 64:1794–1799

    PubMed  CAS  Google Scholar 

  • Barclay R, Wheeler PR (1988) Metabolism of mycobacteria in tissues. In: Ratledge C, Stanford J, Grange JM (eds) The biology of the mycobacteria, vol 3. Academic, New York, pp 37–106

    Google Scholar 

  • Barletta RG, Kim DD, Snapper SB, Bloom BR, Jacobs WR Jr (1991) Identification of expression signals of the mycobacteriophages Bxbl, LI and TM4 using the Escherichia-Mycobacterium shuttle plasmids pYUB75 and pYUB76 designed to create translational fusions to the lacZ gene. J Gen Microbiol 138:23–30

    Google Scholar 

  • Barnes PF, Bloch AB, Davidson PT, Snider D Jr (1991) Tuberculosis in patients with human immunodeficiency virus infection. New Engl J Med 326:703–705

    Google Scholar 

  • Barnes PF, Modlin RL, Ellner JJ (1994) T cell responses and cytokines. In: Bloom BR (ed) Tuberculosis: pathogenesis, prevention, and control. ASM Press, Washington, pp 417–435

    Google Scholar 

  • Baulard A, Kremer L, Locht C (1996) Efficient homologous recombination in fast-growing and slow-growing mycobacteria. J Bacteriol 178:3091–3098

    PubMed  CAS  Google Scholar 

  • Beggs ML, Crawford JT, Eisenach KD (1995) Isolation and sequencing of the replication region of Mycobacterium avium plasmid pLR7. J Bacteriol 177:4836–4840

    PubMed  CAS  Google Scholar 

  • Bermudez LE, Young LS (1989) Mycobacterium avium complex adherence to mucosal cells: a possible mechanism of virulence. Program Abstracts of 29th Interscientic Conference on Antimicrobial Agents and Chemotherapy, American Society for Microbiolgy, Washington, p. 142 (abstr no. 247)

    Google Scholar 

  • Bermudez LE, Young LS, Enkel H (1991) Interaction of Mycobacterium avium complex with human macrophages: roles of membrane receptors and serum proteins. Infect Immun 59:1697–1702

    PubMed  CAS  Google Scholar 

  • Birkness KA, Swisher BL, White EH, Long EG, Ewing EP Jr, Quinn FD (1995) A tissue culture bilayer model to study the passage of Neisseria meningitidis. Infect Immun 63:402–409

    PubMed  CAS  Google Scholar 

  • Bloom BR, Murray CJ (1992) Tuberculosis: commentary on a reemergent killer. Science 257:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Boom WH (1996) The roll of T cell subsets in Mycobacterium tuberculosis infection. Infect Agents Dis 5:73–81

    PubMed  CAS  Google Scholar 

  • Calmette A (1927) La vaccination preventiv contra la tuberculosis. Masson et Cie, Paris

    Google Scholar 

  • Centers for Disease Contol and Prevention (1993) Tuberculosis morbidity — United States, 1992. Morbid Mortal Weekly Rep 42:696–704

    Google Scholar 

  • Chuang S, Daniels DL, Blattner FR (1993) Global regulation of gene expression in Escherichia coli. J Bacteriol 175:2026–2036

    PubMed  CAS  Google Scholar 

  • Cirillo JD, Barletta RG, Bloom BR, Jacobs WR Jr (1991) A novel transposon trap for mycobacteria: isolation and characterization of IS 1096. J Bacteriol 173:7772–7780

    PubMed  CAS  Google Scholar 

  • Clark-Curtiss JE (1988) Benefits of recombinant DNA technology for the study of Mycobacterium leprae. Curr Top Microbiol Immunol 138:61–79

    PubMed  CAS  Google Scholar 

  • Clemens DL, Horwitz MA (1995) Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 181:257–270

    Article  PubMed  CAS  Google Scholar 

  • Collins DM, Kawakami RP, deLisle GW, Pascopella L, Bloom BR, Jacobs WR Jr (1995) Mutation of the principal sigma factor causes loss of virulence in a strain of the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 92:8036–8040

    Article  PubMed  CAS  Google Scholar 

  • Collins FM (1989) Mycobacterial disease, immunosuppression and acquired immunodeficiency syndrome. Clin Microbiol Rev 2:360–377

    PubMed  CAS  Google Scholar 

  • Crowle AJ, Poche P (1989) Inhibition by normal human serum of Mycobacterium avium multiplication in cultured human macrophages. Infect Immun 57:1332–1335

    PubMed  CAS  Google Scholar 

  • Curcic R, Dhandayuthapani S, Deretic V (1994) Gene expression in mycobacteria: transcriptional fusions based on xylE and analysis of the promoter region of the response regulator mtrA from Mycobacterium tuberculosis. Mol Microbiol 13:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Dannenberg AM Jr, Rook GAW (1994) Pathogenesis of pulmonary tuberculosis: an interplay of tissue-damaging and macrophage-activating immune responses — dual mechanisms that control bacillary multiplication, In: Bloom BR (ed) Tuberculosis: pathogenesis, protection and control. ASM Press, Washington, pp 459–483

    Google Scholar 

  • Dhandayuthapani S, Via LE, Thomas CA, Horowitz PM, Deretic D, Deretic V (1995) Green fluorescent protein as a marker for gene expression and cell biology of mycobacterial interactions with macrophages. Mol Microbiol 17:901–912

    Article  PubMed  CAS  Google Scholar 

  • Dolin PJ, Raviglione MC, Kochi K (1994) Global tuberculosis incidence and mortality. Bull WHO 75:213–220

    Google Scholar 

  • Duguid JR, Dinauer JC (1989) Library subtraction in in vitro cDNA libraries to identify differentially expressed genes in scrapie infection. Nucleic Acids Res 18:2789–2792

    Article  Google Scholar 

  • Falcone V, Bassey F, Jacobs WR Jr, Collins FM (1995) Immunogenicity of recombinant Mycobacterium smegmatis bearing BCG genes. Microbiology 141:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Falkinham JO III (1996) Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 9:177–215

    PubMed  Google Scholar 

  • Falkow ST (1988) Molecular Koch’s postulates applied to microbial pathogenicity. Rev Infect Dis 10:S274–S276

    PubMed  Google Scholar 

  • Foley-Thomas EM, Whipple DL, Bermudez LE, Barletta RG (1995) Phage infection, transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology 141:1173–1181

    Article  PubMed  CAS  Google Scholar 

  • Garbe T, Jones C, Charles I, Dougan G, Young D (1990) Cloning and characterization of the aroA gene from Mycobacterium tuberculosis. J Bacteriol 172:6774–6782

    PubMed  CAS  Google Scholar 

  • Gercken J, Pryjma J, Ernst M, Flad H-D (1994) Defective antigen presentation by Mycobacterium tuberculosis-infected monocytes. Infect Immun 62:4272–3478

    Google Scholar 

  • Grange JM (1989) Mycobacterial disease in the world. In: Ratledge C, Stanford J, Grange JM (eds) The biology of the mycobacteria, vol 3. Academic, New York, pp 3–36

    Google Scholar 

  • Guérin C (1957) The history of BCG. In: Rosenthal SR (ed) BCG vaccination against tuberculosis. Little and Brown, Boston, pp 48–53

    Google Scholar 

  • Gupta KNNS (1909) The ayurvedic system of medicine. Chatterjee, Calcutta

    Google Scholar 

  • Guilhot C, Otal I, van Rompaey I, Martin C, Gicquel B (1994) Efficient transposition in mycobacteria: construction of Mycobacterium smegmatis insertional mutant libraries. J Bacteriol 176:535–539

    PubMed  CAS  Google Scholar 

  • Gupta S, Tyagi AK (1993) Sequence of a newly identified Mycobacterium tuberculosis gene encoding a protein with a sequence homology to virulence-regulating proteins. Gene 126:157–158

    Article  PubMed  CAS  Google Scholar 

  • Horsburgh CR Jr (1992) Epidemiology of mycobacterial diseases in AIDS. Res Microbiol 143:372–377

    Article  PubMed  Google Scholar 

  • Horsburgh CR Jr, Havlik JA, Ellis DA, Kennedy E, Fann SA, Dubois RE, Thompson SE (1991) Survival of patients with acquired immune deficiency syndrome and disseminated M. avium complex infections, with and without antimycobacterial chemotherapy. Am Rev Respir Dis 144:557–559

    Article  PubMed  Google Scholar 

  • Inderlied CD, Kemper CA, Bermudez LE (1993) The Mycobacterium avium complex. Clin Microbiol Rev 6:266–310

    PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Docherty MA, Curtiss R III, Clark-Curtiss JE (1986) Expression of Mycobacterium leprae genes from a Streptococcus mutans promoter in Escherichia coli K-12. Proc Natl Acad Sci USA 83:1926–1930

    Article  PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Tuckman M, Bloom BR (1987) Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature 327:532–536

    Article  PubMed  CAS  Google Scholar 

  • Jacobs WR Jr, Barletta R, Udani R, Chan J, Kalkut G, Sarkis G, Hatfull GF, Bloom BR (1993) Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 260:819–822

    Article  PubMed  CAS  Google Scholar 

  • Jopling WH (1984) Handbook of leprosy. Heineman, London

    Google Scholar 

  • Kikuta-Oshima LC, King CH, Shinnick TM, Quinn FD (1994) Methods for the identification of virulence genes expressed in M. tuberculosis strain H37Rv. Ann NY Acad Sci 730:263–265

    Article  PubMed  CAS  Google Scholar 

  • King CH, Shinnick TM (1995) Isolation of a putative hemolysin gene from Mycobacterium tuberculosis. J Cell Biochem [Suppl] 19B:85

    Google Scholar 

  • King CH, Mundayoor S, Crawford JT, Shinnick TM (1993) Expression of contact-dependent cytolytic activity by Mycobacterium tuberculosis and isolation of the genomic locus that encodes the activity. Infect Immun 61:2708–2712

    PubMed  CAS  Google Scholar 

  • Kinger AK, Tyagi JS (1993) Identification and cloning of genes differentially expressed in the virulent strain of Mycobacterium tuberculosis. Gene 131:113–117

    Article  PubMed  CAS  Google Scholar 

  • Kirchheimer WF, Storrs EE (1971) Attempts to establish the armadillo (Dasypus novemcinctus, Linn) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo.Int J Lepr 39:693–703

    CAS  Google Scholar 

  • Kremer L, Baulard A, Estaquier J, Poulain-Godefroy O, Locht C (1995) Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol 17:913–922

    Article  PubMed  CAS  Google Scholar 

  • Kulkami V (1995) Will extensive use of WHO-recommended MDT regimens control leprosy? Some reflections. ILA Forum 2:696–704

    Google Scholar 

  • Leao SC, Rocha CL, Murilla LA, Parra CA, Pattarroyo ME (1995) A species specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibits hemolytic activity when expressed in Escherichia coli. Infect Immun 63:4301–4306

    PubMed  CAS  Google Scholar 

  • Lechat MF (1996) Predicting trends. Int J Lepr 64 [Suppl]: S38–S43

    CAS  Google Scholar 

  • Lee BY, Horwitz MA (1995) Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest 96:245–249

    Article  PubMed  CAS  Google Scholar 

  • Lee MH, Pascopella L, Jacobs WR Jr, Hatfull GF (1991) Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, BCG, and Mycobacterium tuberculosis. Proc Natl Acad Sci USA 88:3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Lim EM, Rauzier J, Timm J, Torrea G, Murray A, Gicquel B, Portnoi D (1995) Identification of Mycobacterium tuberculosis DNA sequences encoding exported proteins by using phoA gene fusions. J Bacteriol 177:59–65

    PubMed  CAS  Google Scholar 

  • Lugosi L, Jacobs WR Jr, Bloom BR (1989) Genetic transformation of BCG. Tubercle 70:159–170

    Article  PubMed  CAS  Google Scholar 

  • Lurie MB (1964) Resistance to tuberculosis: experimental studies in native and acquired defensive mechanisms. Harvard University Press, Cambridge

    Google Scholar 

  • Mahairis GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK (1996) Molecular analysis of genetic differences between Mycobacterium bovis BCG and virulent M. bovis. J Bacteriol 178:1274–1282

    Google Scholar 

  • Marklund B-I, Speert DP, Stokes RW (1995) Gene replacement through homologous recombination in Mycobacterium intracellulare. J Bacteriol 177:6100–6105

    PubMed  CAS  Google Scholar 

  • Marston BJ, Shinnick TM (1996) Differentially expressed genes. Ann NY Acad Sci 797:32–41

    Article  PubMed  CAS  Google Scholar 

  • Mathiopoulos C, Sonenshein AL (1989) Identification of Bacillus subtilis genes expressed early during sporulation. Mol Microbiol 3:1071–1081

    Article  PubMed  CAS  Google Scholar 

  • Masur HF, Ognibene FP, Yarchoan R (1989) CD4 counts as predictors of opportunistic pneumonias in HIV infection. Arch Intern Med 111:223–231

    CAS  Google Scholar 

  • McAdam RA, Weisbrod TR, Martin J, Scuderi JD, Brown A, Cirillo JD, Kalpana G, Bloom BR, Jacobs WR Jr (1995) In vivo growth characteristics of leucine and methionine auxotrophic mutants of Mycobacterium bovis BCG generated by transposon mutagenesis. Infect Immun 63:1004–1012

    PubMed  CAS  Google Scholar 

  • McMurray DN, Collins FM Dannenberg AM Jr, Smith DW (1996) Pathogenesis of experimental tuberculosis in animal models. Curr Top Microbiol Immunol 215:157–180

    Article  PubMed  CAS  Google Scholar 

  • Mekalanos JJ (1992) Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol 174:1–7

    PubMed  CAS  Google Scholar 

  • Morse DR, Brothwell DR, Ucko PJ (1964) Tuberculosis in ancient Egypt. Am Rev Respir Dis 90:524–541

    PubMed  CAS  Google Scholar 

  • Murray PJ, Young RA (1992) Stress and immunological recognition in host-pathogen interactions. J Bacteriol 174:4193–4196

    PubMed  CAS  Google Scholar 

  • Norman E, Dellagostin OA, McFadden JJ, Dale JW (1995) Gene replacement by homologous recombination in Mycobacterium bovis BCG. Mol Microbiol 16:755–760

    Article  PubMed  CAS  Google Scholar 

  • Noordeen SK (1991) Elimination of leprosy as a public health problem. Indian J Lepr 63:601–609

    Google Scholar 

  • Orme IM (1996) Immune responses in animal models. Curr Top Microbiol Immunol 215:181–196

    Article  PubMed  CAS  Google Scholar 

  • Pascopella L, Collins FM, Martin JW, Lee MH, Hatfull GF, Stover CK, Bloom BR, Jacobs WR Jr (1994) Use of in vivo complementation in Mycobacterium tuberculosis to identify a genomic fragment associated with virulence. Infect Immun 62:1313–1319

    PubMed  CAS  Google Scholar 

  • Plum G, Clark-Curtiss JE (1994) Induction of Mycobacterium avium gene expression following phagocytosis by human macrophages. Infect Immun 62:476–483

    PubMed  CAS  Google Scholar 

  • Potts BC, Fogarty SJ, Yi H, Schlesinger LS (1995) M. tuberculosis within human macrophages is accompanied by altered levels of ß2 integrin steady state mRNA and surface protein. Thirtieth US-Japan Joint Conference on Tuberculosis and Leprosy, p 46, July 19–21, 1995; Fort Collins, CO

    Google Scholar 

  • Quinn FD, Newman GW, King CH (1996) Virulence determinants of Mycobacterium tuberculosis. Curr Top Microbiol Immunol 215:181–196

    Article  Google Scholar 

  • Reiner NE (1994) Altered cell signalling and mononuclear phagocyte deactivation during intracellular infection. Immunol Today 15:374–381

    Article  PubMed  CAS  Google Scholar 

  • Reyrat J-M, Berthet F-X, Gicquel B (1995) The urease locus of Mycobacterium tuberculosis and its utilization for the demonstration of allelic exchange in Mycobacterium bovis bacillus Calmette-Guérin. Proc Natl Acad Sci USA 92:8768–8772

    Article  PubMed  CAS  Google Scholar 

  • Riley RL, Mills CC, O’Grady F, Sultan LU, Wittstadt F, Shivpuri DN (1962) Infectiousness of air from a tuberculosis ward. Ultraviolet irradiation of infected air: comparative infectiousness of different patients. Am Rev Respir Dis 85:511–525

    PubMed  CAS  Google Scholar 

  • Salyers AA, Whitt DD (1994) Bacterial pathogenesis: a molecular approach. ASM Press, Washington, p 32

    Google Scholar 

  • Sathish M, Esser RE, Thole JER, Clark-Curtiss JE (1990) Identification and characterization of antigenic determinants of Mycobacterium leprae that react with antibodies in sera of leprosy patients. Infect Immun 58:1327–1336

    PubMed  CAS  Google Scholar 

  • Schlesinger LS (1996) Role of mononuclear phagocytes in Mycobacterium tuberculosis pathogenesis. J Invest Med 44:312–323

    CAS  Google Scholar 

  • Schlesinger LS, Horwitz, MA (1991) Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD116/CD18) and CR4 (CDllc/CD18) and interferon-gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J Immunol 147:1983–1994

    PubMed  CAS  Google Scholar 

  • Schlesinger LS, Bellinger-Kawahara, Payne NR, Horwitz MA (1990) Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 144:2772–2780

    Google Scholar 

  • Schlesinger LS, Hull SR, Kaufman TM (1994) Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol 152:4070–4079

    PubMed  CAS  Google Scholar 

  • Sela S, Thole JER, Ottenhof TM, Clark-Curtiss JE (1991) Identification of Mycobacterium leprae antigens from a cosmid library: characterization of a 15 kilodalton antigen that is recognized by both the humoral and cellular immune systems in leprosy patients. Infect Immun 59:4117–4124

    PubMed  CAS  Google Scholar 

  • Shepard CC (1960) The experimental disease that follows the injection of human leprosy bacilli into the footpads of mice. J Exp Med 112:445–454

    Article  PubMed  CAS  Google Scholar 

  • Smith H (1968) Biochemical challenge of microbial pathogenicity. Bacteriol Rev 32:164–184

    PubMed  CAS  Google Scholar 

  • Snapper SB, Lugosi L, Jekkel A, Melton R, Kieser T, Bloom BR, Jacobs WR Jr (1988) Lysogeny and transformation of mycobacteria: stable expression of foreign genes. Proc Natl Acad Sci USA 85:6987–6991

    Article  PubMed  CAS  Google Scholar 

  • Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR Jr (1990) Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol 4:1911–1919

    Article  PubMed  CAS  Google Scholar 

  • Snider D Jr, Roper WL (1992) The new tuberculosis. New Engl J Med 326:703–705

    Article  PubMed  Google Scholar 

  • Steenken W Jr, Oatway WH Jr, Petroff SA (1934) Biological studies of the tubercle bacillus. III. Dissociation and pathogenicity of the R and S variants of the human tubercle bacillus (H37). J Exp Med 60:515–525

    Article  PubMed  CAS  Google Scholar 

  • Storrs EE (1971) The nine-banded armadillo: a model for leprosy and other biomedical research. Int J Lepr 39:703–714

    CAS  Google Scholar 

  • Sturgill-Koszycki S, Schlesinger P, Chakraborty, Haddix PL, Collins HL, Fok A, Allen P, Gluck S, Heuser J, Russell DL (1994) Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton ATPase. Science 263:678–681

    Article  PubMed  CAS  Google Scholar 

  • Tyagi JS, Das TK, Kinger AK (1996) A M. tuberculosis DNA fragment contains genes encoding cell division proteins FtsX and FtsE, a small basic protein and homologues of PemK and small protein B. Gene 177:59–67

    Article  PubMed  CAS  Google Scholar 

  • Waddee AA, Kuschke RH, Dooms TG (1995) The inhibitory effects of Mycobacterium tuberculosis on MHC class II expression by monocytes activated with riminophenazines and phagocyte stimulants. Clin Exp Immunol 100:434–439

    Article  Google Scholar 

  • WHO (1996) WHO Report on the Tuberculosis Epidemic, 1996. World Health Organization, Geneva Wilson CB, Tsai V, Remington JS (1980) Failure to trigger the oxidative burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med 151:328–346

    Google Scholar 

  • Wilson TM, deLisle GW, Collins DM (1995) Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 15:1009–1015

    Article  PubMed  CAS  Google Scholar 

  • Wong KC, Wu LT (1932) The history of Chinese medicine. Tientsin Press, Tientsin

    Google Scholar 

  • Young DB, Duncan K (1995) Prospects for new interventions in the treatment and prevention of mycobacterial disease. Annu Rev Microbiol 49:641–673

    Article  PubMed  CAS  Google Scholar 

  • Young DB, Garbe T, Lathriga R, Abou-Zeid C (1990) Protein antigens: structure, function and regulation. In: McFadden JJ (ed) The molecular biology of the mycobacteria. Surrey University Press, London, pp 1–35

    Google Scholar 

  • Young RA, Bloom BR, Grosskinsky CM, Ivanyi J, Thomas D, Davis RW (1985a) Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proc Natl Acad Sci USA 82:2583–2587

    Article  PubMed  CAS  Google Scholar 

  • Young RA, Mehra V, Sweetser D, Buchanan T, Clark-Curtiss J, Davis RW, Bloom BR (1985b) Genes for the major protein antigens of Mycobacterium leprae. Nature 316:450–452

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clark-Curtiss, J.E. (1998). Identification of Virulence Determinants in Pathogenic Mycobacteria. In: Vogt, P.K., Mahan, M.J. (eds) Bacterial Infection: Close Encounters at the Host Pathogen Interface. Current Topics in Microbiology and Immunology, vol 225. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80451-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80451-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80453-3

  • Online ISBN: 978-3-642-80451-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics