Skip to main content

Molecular Architects of Plant Body Plans

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

Generally, higher plants and animals generate offspring by sexual reproduction, implying that the adult individual is generated from a single fertilized egg cell, the zygote, during a complex process called development or ontogeny. One of the most fascinating questions of biology is how the diverse body plans of higher animals and plants, comprising tiny mosses as well as huge trees, small worms as well as giant whales and, yes, humans, are generated from very similar and simple beginnings, i.e. zygotes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angenent GC, Colombo L (1996) Molecular control of ovule development. Trends Plant Sci 1: 228–232

    Google Scholar 

  • Assaad FF, Mayer U, Wanner G, Jürgens G (1996) The KEULE gene is involved in cytokinesis in Arabidopsis. Mol Gen Genet 253: 267–277

    PubMed  CAS  Google Scholar 

  • Barton MK, Poethig RS (1993) Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823–831

    Google Scholar 

  • Berleth T, Jürgens G (1993) The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118: 575–587

    Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379: 791–797

    Article  PubMed  CAS  Google Scholar 

  • Burstein Z (1995) A network model of developmental gene hierarchy. J Theor Biol 174: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Busch M, Mayer U, Jürgens G (1996) Molecular analysis of the Arabidopsis pattern formation gene GNOM: gene structure and intragenic complementation. Mol Gen Genet 250: 681–691

    PubMed  CAS  Google Scholar 

  • Callos JD, DiRado M, Xu B, Behringer FJ, Link BM, Medford JI (1994) The forever young gene encodes an oxidoreductase required for proper development of the Arabidopsis vegetative shoot apex. Plant J 6: 835–847

    Article  PubMed  CAS  Google Scholar 

  • Celenza J Jr, Grisafi P, Fink G (1995) A pathway for lateral root formation in Arabidopsis thaliana. Genes Dev 9: 2131–2142

    Article  PubMed  CAS  Google Scholar 

  • Chasan R (1992) Ceratopteris: a model plant for the 90s. Plant Cell 4:113–115

    Article  PubMed  Google Scholar 

  • Chasan R (1995) Arabidopsis in Madison: genes and phenotypes spread like weeds. Plant Cell 7:1737–1748

    Article  PubMed  CAS  Google Scholar 

  • Chasan R, Walbot V (1993) Mechanisms of plant reproduction: questions and approaches. Plant Cell 5: 1139–1146

    Article  PubMed  Google Scholar 

  • Chen Y-CS, McCormick S (1996) sidecar pollen, an Arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122: 3243–3253

    PubMed  CAS  Google Scholar 

  • Clark SE, Jacobsen SE, Levin JZ, Meyerowitz EM (1996) The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122: 1567–1575

    PubMed  CAS  Google Scholar 

  • Davies B (1996) Two is company: the complex travel arrangements of floral homeotic factors. BioEssays 18: 863–866

    Article  CAS  Google Scholar 

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Freshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86: 423–433

    Article  PubMed  Google Scholar 

  • Doebley J (1992) Mapping the genes that made maize. Trends Genet 8: 302–307

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) teosinte branchedl and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141: 333–346

    PubMed  CAS  Google Scholar 

  • Doerner P, Jorgensen J-E, You R, Steppuhn J, Lamb C (1996) Control of root growth and development by cyclin expression. Nature 380: 520–523

    Article  PubMed  CAS  Google Scholar 

  • Dolan L, Roberts K (1995) Two ways to skin a plant: the analysis of root and shoot epidermal development in Arabidopsis. BioEssays 17: 865–872

    Article  Google Scholar 

  • Doonan J, Hunt T (1996) Why don’t plants get cancer? Nature 380: 481–482

    Article  PubMed  CAS  Google Scholar 

  • Eberle J, Nemacheck J, Wen C-K, Hasebe M, Banks JA (1995) Ceratopteris: a model system for studying sex-determining mechanisms in plants. Int J Plant Sci 156: 359–366

    Article  Google Scholar 

  • Felix G, Altmann T, Uwer U, Jessop A, Willmitzer L, Morris P-C (1996) Characterization of Waldmeister, a novel developmental mutant in Arabidopsis thaliana. J Exp Bot 47: 1007–1017

    Article  CAS  Google Scholar 

  • Fowler JE, Muehlbauer GJ, Freeling M (1996) Mosaic analysis of the Liguleless3 mutant phenotype in maize by coordinate suppression of Mutator-insertion alleles. Genetics 143: 489–503

    PubMed  CAS  Google Scholar 

  • Gasser CS (1996) Homeodomains ring a BELL in plant development. Trends Plant Sci 1: 134–136

    Article  Google Scholar 

  • Gehring WJ, Affolter M, Bürglin T (1994) Homeodomain proteins. Annu Rev Biochem 63: 487–526

    Article  PubMed  CAS  Google Scholar 

  • Grbic V, Bleecker AB (1996) An altered body plan is conferred on Arabidopsis plants carrying dominant alleles of two genes. Development 122: 2395–2403

    PubMed  CAS  Google Scholar 

  • Hake S (1996) Shootmeristemless ties the knot. Trends Plant Sci 1:75–76

    Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84: 735–744

    Article  PubMed  CAS  Google Scholar 

  • Haughn GW, Schultz EA, Martinez-Zapater JM (1995) The regulation of flowering in Arabidopsis thaliana: meristems, morphogenesis, and mutants. Can J Bot 73: 959–981

    Article  CAS  Google Scholar 

  • Heck GR, Perry SE, Nichols KW, Fernandez DE (1995) AGL15, a MADS domain protein expressed in developing embryos. Plant Cell 7: 1271–1282

    Article  PubMed  CAS  Google Scholar 

  • Hemerly A, de Almeida Engler J, Bergounioex C, Van Montagu M, Engler G, Inzé D, Ferreira P (1995) Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development. EMBO J 14: 3925–3936

    PubMed  CAS  Google Scholar 

  • Hetz W, Hochholdinger F, Schwall M, Feix G (1996) Isolation and characterization of rtcs a maize mutant deficient in the formation of nodal roots. Plant J 10: 845–857

    Article  CAS  Google Scholar 

  • Hickok LG, Warne TR, Fribourg RS (1995) The biology of the fern Ceratopteris and its use as a model system. Int J Plant Sci 156: 332–345

    Article  Google Scholar 

  • Ingram GC, Goodrich J, Wilkinson MD, Simon R, Haughn WG, Coen ES (1995) Parallels between UNUSUAL FLORAL ORGANS and FIMBRIATA, genes controlling flower development in Arabidopsis and Antirrhinum. Plant Cell 7: 1501–1510

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405–413

    CAS  Google Scholar 

  • Jofuku KD, den Boer BGW, Van Montagu, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225

    Article  PubMed  CAS  Google Scholar 

  • Jürgens G (1995) Axis formation in plant embryogenesis: cues and clues. Cell 81: 467–470

    Article  PubMed  Google Scholar 

  • Jürgens G, Mayer U, Torres-Ruiz RA, Berleth T, Misera S (1991) Genetic analysis of pattern formation in the Arabidopsis embryo. Development 113 Suppl 1: 27–38

    Google Scholar 

  • Jürgens G, Torres-Ruiz RA, Berleth T (1994) Embrycnic pattern formation in flowering plants. Annu Rev Genet 28: 351–371

    Article  PubMed  Google Scholar 

  • Kieber J, Rothenberg M, Roman G, Feldmann K, Ecker JR (1993) CTR1 negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinase. Cell 72: 427–441

    Google Scholar 

  • Klinge B, Werr W (1995) Transcription of the Zea mays homeobox (ZmHox) genes is activated early in embryogenesis and restricted to meristems of the maize plant. Dev Gen 16: 349–357

    Article  CAS  Google Scholar 

  • Klinge B, Überlacker B, Korfhage C, Werr W (1996) ZmHox: a novel class of maize homeobox genes. Plant Mol Biol 30: 439–453

    Google Scholar 

  • Klucher KM, Chow H, Reiser L, Fischer RL (1996) The AINTEGUMENTA gene of Arabidopsis required for ovule and female gametophyte development is related to the floral homeotic gene APETALA2. Plant Cell 8: 137–153

    Article  PubMed  CAS  Google Scholar 

  • Lawrence PA (1992) The making of a fly - the genetics of animal design. Blackwell, Oxford

    Google Scholar 

  • Lawson EJR, Poethig RS (1995) Shoot development in plants: time for a change. Trends Genet 11: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Lee I, Aukerman MJ, Gore SL, Lohman KN, Michaels SD, Weaver LM, John MC, Feldmann KA, Amasino RM (1994) Isolation of Luminidependens: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6: 75–83

    Article  PubMed  CAS  Google Scholar 

  • Leyser HMO, Furner IJ (1992) Characterization of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116: 397–403

    Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66–69

    Article  PubMed  CAS  Google Scholar 

  • Lukowitz W, Mayer U, Jürgens G (1996) Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 84: 61–71

    Article  PubMed  CAS  Google Scholar 

  • Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383: 794–799

    Article  PubMed  CAS  Google Scholar 

  • Lyndon RF (1990) Plant development. The cellular basis. Unwin Hyman, London

    Google Scholar 

  • Ma H (1994) The unfolding drama of flower development: recent results from genetic and molecular analyses. Genes Dev 8: 745–756

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Schiefelbein JW (1996) Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8: 1505–1517

    Article  PubMed  CAS  Google Scholar 

  • Masucci JD, Rerie WG, Foreman DR, Zhang M, Galway ME, Marks MD, Schiefelbein JW (1996) The homeobox gene GLABRA2 is required for position-dependent cell differentiation in the root epidermis of Arabidopsis thaliana Development 122: 1253–1260

    PubMed  CAS  Google Scholar 

  • Mayer U, Torres Ruiz RA, Berleth T, Misdra S, Jürgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353: 402–407

    Article  Google Scholar 

  • Mayer U, Büttner G, Jürgens G (1993) Apical-basal pattern formation in the Arabidopsis embryo: studies on the role of the gnom gene. Development 117: 149–162

    Google Scholar 

  • McCormick S (1993) Male gametophyte development. Plant Cell 5: 1265–1275

    Article  PubMed  Google Scholar 

  • McGinnis W, Kuziora M (1994) The molecular architects of body design. Sci Am 270 (2): 36–42

    Article  Google Scholar 

  • Meyerowitz EM (1994) The genetics of flower development. Sci Am 271 (5): 40–47

    Article  Google Scholar 

  • Meyerowitz EM (1996) Plant development: local control, global patterning. Curr Opin Gen Dev 6: 475–479

    Article  CAS  Google Scholar 

  • Moose SP, Sisco PH (1996) GLOSSY 15, an APETALA2-like gene from maize that regulates leaf epidermal cell identity. Genes Dev 10: 3018–3027

    Article  PubMed  CAS  Google Scholar 

  • Münster T, Pahnke J, Di Rosa A, Kim JT, Martin W, Saedler H, Theißen G (1997) Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA 94: 2415–2420

    Article  PubMed  Google Scholar 

  • Nijhout HF (1990) Metaphors and the role of genes in development. BioEssays 12: 441–446

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Shimura Y (1994) Genetic analyses of signalling in flower development using Arabidopsis. Plant Mol Biol 26: 1357–1377

    Article  PubMed  CAS  Google Scholar 

  • Perry SE, Nichols KW, Fernandez DE (1996) The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell 8: 1977–1989

    Article  PubMed  CAS  Google Scholar 

  • Przemeck GKH, Mattsson J, Hardtke CS, Sung ZR, Berleth T (1996) Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization. Planta 200: 229–237

    Article  PubMed  CAS  Google Scholar 

  • Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80: 847–857

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Lang JD, Golden T, Ray S (1996) SHORT INTEGUMENT (SIN1), a gene required for ovule development in Arabidopsis, also controls flowering time. Development 122: 2631–2638

    Google Scholar 

  • Reiser L, Fischer RL (1993) The ovule and the embryo sac. Plant Cell 5: 1291–1301

    Article  PubMed  Google Scholar 

  • Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fischer RL (1995) The Bel1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83: 735–742

    Article  PubMed  CAS  Google Scholar 

  • Rerie W, Feldmann K, Marks MD (1994) The GLABRA2 gene encodes a homeodomain protein required for normal trichome development in Arabidopsis. Genes Dev 8: 1388–1399

    Article  PubMed  CAS  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259–1269

    Article  PubMed  CAS  Google Scholar 

  • Roush W (1996) Probing flower’s genetic past. Science 273: 1339–1340

    Article  PubMed  CAS  Google Scholar 

  • Running MP, Meyerowitz EM (1996) Mutations in the PERIANTHIA gene of Arabidopsis specifically alter floral organ number and initiation pattern. Development 122: 1261–1269

    PubMed  CAS  Google Scholar 

  • Saedler H, Theißen G (1994) “On the origin of species”: Mythologische und molekularbiologische Vorstellungen zur Evolution von Mais. Jahrbuch 1993. Leopoldina 39: 261–275

    Google Scholar 

  • Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378: 199–203

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Hong S-K, Tagiri A, Kitano H, Yamamoto N, Nagato Y, Matsuoka M (1996) A rice homeobox gene, OSH1, is expressed before organ differentiation in a specific region during embryogenesis. Proc Natl Acad Sci USA 93: 8117–8122

    Article  PubMed  CAS  Google Scholar 

  • Scheres B, McKhann HI, van den Berg C (1996) Roots redefined: anatomical and genetic analysis of root development. Plant Physiol 111: 959–964

    PubMed  CAS  Google Scholar 

  • Schneeberger RG, Becraft PW, Hake S, Freeling M (1995) Ectopic expression of the knox homeo box gene rough sheathl alters cell fate in the maize leaf. Genes Dev 9: 2292–2304

    Article  PubMed  CAS  Google Scholar 

  • Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H (1990) Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Shevell DE, Leu W-M, Gillmor CS, Xia G, Feldmann KA, Chua N-H (1994) EMB30 is essential for normal cell division, cell expansion, and cell adhesion in Arabidopsis and encodes a protein that has similarity to Sec7. Cell 77: 1051–1062

    Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229: 1–13

    Article  PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7: 787–795

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Hake S (1992) The initiation and determination of leaves. Plant Cell 4: 1017–1027

    Article  PubMed  Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30

    PubMed  CAS  Google Scholar 

  • Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122: 481–489

    PubMed  CAS  Google Scholar 

  • Sommer H, Beitrán J-P, Huijser P, Pape H, Lönnig W-E, Saedler H, Schwarz-Sommer Z (1990) Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J 9: 605–613

    Google Scholar 

  • Talbert PB, Adler HT, Parks DW, Comai L (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thaliana. Development 121: 2723–2735

    PubMed  CAS  Google Scholar 

  • Theißen G, Saedler H (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel’s ‘biogenetic law’ revisited. Curr Opin Gen Dev 5: 628–639

    Article  Google Scholar 

  • Theißen G, Kim J, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43: 484–516

    Article  PubMed  Google Scholar 

  • Torres Ruiz RA, Jürgens G (1994) Mutations in the FASS gene uncouple pattern formation and morphogenesis in Arabidopsis development. Development 120: 2967–2978

    PubMed  CAS  Google Scholar 

  • Van Lijsebettens MV, Vanderhaeghen R, De Block M, Bauw G, Villarroel R, Van Montagu M (1994) An SI8 ribosomal protein gene copy at the Arabidopsis PFL locus affects plant development by its specific expression in meristems. EMBO J 13: 3378–3388

    PubMed  Google Scholar 

  • Vroemen CW, Langeveld S, Mayer U, Ripper G, Jürgens G, Van Kämmen A, De Vries SC (1996) Pattern formation in the Arabidopsis embryo revealed by position-specific lipid transfer protein gene expression. Plant Cell 8: 783–791

    Article  PubMed  CAS  Google Scholar 

  • Wagner A (1994) Evolution of gene networks by gene duplications: a mathematical model and its implications on genome organization. Proc Natl Acad Sci USA 91: 4387–4391

    Article  PubMed  CAS  Google Scholar 

  • Waites R, Hudson A (1995) phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121: 2143–2154

    Google Scholar 

  • Weigel D (1995) The APETALA2 domain is related to a novel type of DNA binding domain. Plant Cell 7: 388–389

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78: 203–209

    Article  PubMed  CAS  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69: 843–859

    Google Scholar 

  • Wilson K, Long D, Swinburne J, Coupland G (1996) A Dissociation insertion causes a semidominant mutation that increases expression of TINY, an Arabidopsis gene related to APETALA2. Plant Cell 8: 659–671

    Article  PubMed  CAS  Google Scholar 

  • Wolpert L (1996) One hundred years of positional information. Trends Genet 12: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Yang C-H, Chen L-J, Sung ZR (1995) Genetic regulation of shoot development in Arabidopsis: role of the EMF genes. Dev Biol 169: 421–435

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Theißen, G., Saedler, H. (1998). Molecular Architects of Plant Body Plans. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics