Skip to main content

Ecophysiology of Xylem-Tapping Mistletoes

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

The term “mistletoe” has a double meaning: sensu stricto it applies to Viscum album L. (European mistletoe), but it is more generally used to describe perennial (usually woody) flowering plants which are attached to the shoot of trees or shrubs (Barlow 1987). The majority of the approximately 1300 mistletoe species fall into the two closely related families Loranthaceae and Viscaceae within the order Santalales (Calder 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baillon F (1988) Seasonal variation of respiration, phloem-transport and carbohydrate content in European mistletoe. Plant Physiol Biochem 26: 85–91

    CAS  Google Scholar 

  • Bannister P (1989) Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132

    Article  Google Scholar 

  • Barlow BA (1987) Mistletoes. Biologist 34: 261–269

    Google Scholar 

  • Calder DM (1983) Mistletoes in focus. In: Calder M, Bernhardt P (eds) The biology of mistletoes. Academic Press, New York, pp 1–18

    Google Scholar 

  • Coetzee J, Fineran BA (1987) The apoplastic continuum, nutrient absorption and plasmatubules in the dwarf mistletoe Korthalsella lindsayi (Viscaceae). Protoplasma 136: 145–153

    Article  Google Scholar 

  • Coetzee J, Fineran BA (1989) Tanslocation of lysine from the host Melicope simplex to the parasitic dwarf mistletoe Korthalsella lindsayi (Viscaceae). New Phytol 112: 377–381

    Article  CAS  Google Scholar 

  • Davidson NJ, Pate JS (1992) Water relations of the mistletoe Amyena fitzgeraldii and its host Acacia acuminata. J Exp 43: 1549–1555

    Google Scholar 

  • Davidson NJ, True KC, Pate JS (1989) Water relations of the parasite: host relationship between the mistletoe Amyema linophyllum (Fenzl) Tieghem and Casuarina obesa Miq. Oecologia 80: 321–330

    Article  Google Scholar 

  • De la Harpe AC, Visser JH, Grobbelaar N (1980) Photosynthesis of certain South Aftrican parasitic flowering plants. Z Pflanzenphysiol 97: 277–281

    Google Scholar 

  • Ehleringer JR, Marshall JD (1995) Water relations. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, pp 125–140

    Google Scholar 

  • Ehleringer JR, Schulze ED, Ziegler H, Lange OL, Farquhar GD, Cowan IR (1985) Xylem-tapping mistletoes: water or nutrient parasites? Science 227: 1479–1481

    Article  PubMed  CAS  Google Scholar 

  • Ehleringer JR, Cook CS, Tieszen LL (1986a) Comparative water use and nitrogen relationships in a mistletoe and its host. Oecologia 68: 279–284

    Article  Google Scholar 

  • Ehleringer JR, Ullmann I, Lange OL, Farquhar GD, Cowan IR, Schulze ED, Ziegler H (1986b) Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 234–237

    Article  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9: 121–137

    Article  CAS  Google Scholar 

  • Fisher JT (1983) Water relations of mistletoes and their hosts. In: Calder M, Bernhardt P (eds) The biology of mistletoess. Academic Press, New York, pp 161–184

    Google Scholar 

  • Glatzel G (1983) Mineral nutrition and water relations of hemiparasitic mistletoes: a question of partitioning. Experiments with Loranthus europaeus on Quercus petraea and Quercus robur. Oecologia 56: 193–201

    Article  Google Scholar 

  • Glatzel G (1987) Haustorial resistance, foliage development and mineral nutrition in the hemiparasitic mistletoe Loranthus europaeus Jacq. (Loranthaceae). In: Weber HC, Forstreuter W (eds) Parasitic flowering plants. Proc 4th Int Symp on Parasitic flowering plants, Marburg, pp 253–262

    Google Scholar 

  • Glatzel G, Balasubramaniam S (1987) Mineral nutrition of mistletoes: general concepts. In: Weber HC, Forstreuter W (eds) Parasitic flowering plants. Proc 4th Int Symp on Parasitic flowering plants, Marburg, pp 263–276

    Google Scholar 

  • Goldstein G, Rada F, Sternberg L, Burguera JL, Orozco A, Montilla M, Zabala O, Azocar A, Canales MJ, Celis A (1989) Gas exchange and water balance of a mistletoe species and its mangrove hosts. Oecologia 78: 176–183

    Article  Google Scholar 

  • Graves JD, Press MC, Stewart GR (1989) A carbon balance model of the sorghum—Striga hermonthica host - parasite association. Plant Cell Environ 12: 101–107

    Article  Google Scholar 

  • Hall RJ, Badenoch-Jones J, Parker CW, Letham DL, Barlow BA (1987) Identification and quantification of cytokinins in the xglun sap of mistletoes and their hosts in relation to leaf mimicry. Aust J Plant Physiol 14: 429–438

    Article  CAS  Google Scholar 

  • Härtel O (1937) Über den Wasserhaushalt von Viscum album L. Ber Dtsch Bot Ges 55: 310–321

    Google Scholar 

  • Hellmuth EO (1971) Eco-physiological studies on plants in arid and semi-arid regions in Western Australia. IV. Comparison of the field physiology of the host, Acacia grasbyu and its hemiparasite, Amyema nest or, under optimal and stress conditions. J Ecol 59: 351–363

    Article  Google Scholar 

  • Hollinger DJ (1983) Photosynthesis and water relations of the mistletoe, Phoradendron villosum, and its host, the California valley oak, Quercus lobata. Oecologia 60: 396–400

    Article  Google Scholar 

  • Hunter JJ, Visser JH (1985) The nitrate reductase activity (NRA) of some South African parasitic flowering plants and their hosts. S Afr Tydskr Plantkd 52: 81–84

    Google Scholar 

  • Johnson JM, Choinski JS Jr (1993) Photosynthesis in the Tapinanthus–Diplorhynchus mistletoe-host relationship. Ann Bot 72: 117–122

    Article  CAS  Google Scholar 

  • Kuijt J (1977) Haustoria of phanerogamic parasites. Annu Rev Phytopathol 17: 91–118

    Article  Google Scholar 

  • Küppers M (1992) Carbon discrimation, water-use efficiency, nitrogen and phosphorus nutrition of the host/mistletoe pair Eucalyptus behriana F. Muell and Amyema miquelii (Lehm, ex Miq.) Tieghem. at permanently low plant water status in the field. Trees 7: 8–11

    Google Scholar 

  • Küppers M, Küppers BIL, Neales TF, Swan AG (1992) Leaf gas exchange characteristics, daily carbon and water balances of the host/mistletoe pair Eucalyptus behriana F. Muell. and Amyema miquelii (Lehm, ex Miq.) Tieghem. at permanently low plant water status in the field. Trees 7: 1–7

    Google Scholar 

  • Lamont BB (1983) Mineral nutrition of mistletoes. In: Calder M, Bernhardt P (eds) The biology of mistletoes. Academic Press, New York, pp 185–204

    Google Scholar 

  • Lamont BB, Southall KJ (1982) Distribution of mineral nutrients between the mistletoe, Amyema preissii, and its host, Acacia acuminata. Ann Bot 49: 721–725

    Google Scholar 

  • Leavitt SW, Long A (1985) Stable-carbon isotopic composition of maple sap and foliage. Plant Physiol 78: 427–429

    Article  PubMed  CAS  Google Scholar 

  • Marshall JD, Ehleringer JR (1990) Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244–248

    Google Scholar 

  • Marshall JD, Dawson TE, Ehleringer JR (1994a) Integrated nitrogen, carbon, and water relations of a xylem-tapping mistletoe following nitrogen fertilization of the host. Oecologia 100: 430–438

    Article  Google Scholar 

  • Marshall JD, Ehleringer JR, Schulze ED, Farquhar G (1994b) Carbon isotope composition, gas exchange and heterotrophy in Australian mistletoes. Funct Ecol 8: 237–241

    Article  Google Scholar 

  • McNally SF, Stewart GR (1987) Inorganic nitrogen assimilation by parasitic angiosperms. In: Weber HC, Forstreuter W (eds) Parasitic flowering plants. Proc 4th Int Symp on Parasitic flowering plants, Marburg, pp 539–546

    Google Scholar 

  • Orozco A, Rada F, Azocar A, Goldstein G (1990) How does a mistletoe effect the water, nitrogen and carbon balance of two mangrove ecosystem species? Plant Cell Environ 13: 941–947

    Article  CAS  Google Scholar 

  • Panvini AD, Eickmeier WG (1993) Nutrient and water relations of the mistletoe Phoradendron leucarpum (Viscaceae): how tightly are they integrated? Am J Bot 80: 872–878

    Article  CAS  Google Scholar 

  • Pate JS (1995) Mineral relationships of parasites and their hosts. In: Press MC, Graves JD (eds) Parasitic plants. Chapman and Hall, London, pp 80–102

    Google Scholar 

  • Pate JS, True KC, Kuo J (1991a) Partitioning of dry matter and mineral nutrients during a reproductive cycle of the mistletoe Amyema linophyllum (Fenzl.) Tieghem. parasitizing Casuarina obesa Miq. J Exp Bot 42: 427–439

    Article  CAS  Google Scholar 

  • Pate JS, True KC, Rasins E (1991b) Xylem transport and storage of amino acids by S. W. Austalian mistletoes and their hosts. J Exp Bot 42: 441–451

    Article  CAS  Google Scholar 

  • Plouvier MV (1953) Sur la recherche des itols et des h£t£rosides du Gui, Viscum album L. (Loranthacée). C R Acad Sci Paris 237: 1761–1763

    CAS  Google Scholar 

  • Popp M (1987) Osmotica in Amyema miquelii (Lehm, ex Miq.) Tieghem. and Amyema pendulum (Sieber ex Sprengel) Tieghem. (Loranthaceae) on different hosts. In: Weber HC, Forstreuter W (eds) Parasitic flowering plants. Proc 4th Int Symp on Parasitic flowering plants, Marburg, pp 621–630

    Google Scholar 

  • Popp M, Smirnoff N (1995) Polyol accumulation and metabolism during water deficit. In: Smirnoff N (ed) Environment and plant metabolism. BIOS, Oxford, pp 199–215

    Google Scholar 

  • Popp M, Mensen R, Richter A, Buschmann H, von Willert DJ (1995) Solutes and succulence in southern African mistletoes. Trees 9: 303–310

    Article  Google Scholar 

  • Press MC (1995) Carbon and nitrogen relations. In: Press MC, Graved JD (eds) Parasitic plants. Chapman and Hall, London, pp 103–124

    Google Scholar 

  • Press MC, Graves J (eds) (1995) Parasitic plants. Chapman and Hall, London

    Google Scholar 

  • Press MC, Whittaker JB (1993) Exploitation of the xylem sap by parasitic organisms. Philos Trans R Soc London, Biol 341: 101–111

    Article  Google Scholar 

  • Press MC, Shah N, Tuohy JM, Stewart GR (1987) Carbon isotope ratios demonstrate carbon flux from C4 host to C3 parasite. Plant Physiol 85: 1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Press MC, Graves JD, Stewart GR (1990) Physiology of the interaction of angiosperm parasites and their higher plant hosts. Plant Cell Environ 13: 91–104

    Article  Google Scholar 

  • Raven JA (1983) Phytophages of xylem and phloem: a comparison of animal and plant sap-feeders. Adv Ecol Res 13: 135–234

    Article  Google Scholar 

  • Rennenberg H, Schupp R, Schneider A (1994) Thiol composition of a xylem-tapping mistletoe and the xylem sap of its hosts. Phytochemistry 37: 975–977

    Article  CAS  Google Scholar 

  • Richter A, Popp A (1992) The physiological importance of accumulation of cyclitols in Viscum album L. New Phytol 121: 431–438

    Article  CAS  Google Scholar 

  • Richter A, Popp M, Mensen R, Stewart GR, von Willert DJ (1995) Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Aust J Plant Physiol 22: 537–544

    Article  CAS  Google Scholar 

  • Scholander PF, Hammel HT, Bradstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 48: 339–346

    Article  Google Scholar 

  • Schulze ED, Ehleringer JR (1984) The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162: 268–275

    Article  CAS  Google Scholar 

  • Schulze ED, Turner NC, Glatzel G (1984) Carbon, water and nutrient relations of two mistletoes and their hosts: A hypothesis. Plant Cell Environ 7: 293–299

    CAS  Google Scholar 

  • Schulze ED, Lange OL, Ziegler H, Gebauer G (1991) Carbon and nitrogen isotope ratios of mistletoes growing in nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88: 457–462

    Article  Google Scholar 

  • Seel WE, Cechin I, Vincent CA, Press MC (1992) Carbon partitioning and transport in parasitic angiosperms and their hosts. In: Pollock CJ, Farrar JF, Gordon AJ (eds) Carbon partitioning within and between organisms. BIOS, Oxford, pp 199–223

    Google Scholar 

  • Stewart GR, Orebamjo TO (1980) Nitrogen status and nitrate reductase acitivity of the parasitic angiosperm Tapinanthus bangwensis (Engl. & K. Krause) Danser growing on different hosts. Ann Bot 45: 587–589

    CAS  Google Scholar 

  • Stewart GR, Press MC (1990) The physiology and biochemistry of parasitic angiosperms. Annu Rev Plant Physiol Plant Mol Biol 41: 127–151

    Article  CAS  Google Scholar 

  • Tennakoon KU, Pate JS (1996) Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Plant Cell Environ 19: 517–528

    Article  Google Scholar 

  • Tsivion Y (1978) Physiological concepts of the association between parasitic angiosperms and their hosts - a review. Isr J Bot 27: 103–121

    Google Scholar 

  • Tubeuf K (1923) Monographie der Mistel. Oldenbourg, Munich

    Google Scholar 

  • Tuquet C, Sallé G (1996) Characteristics of chloroplasts isolated from two mistletoes originating from temperate (Viscum album) and tropical (Tapinanthus dodoneifolius) areas. Plant Physiol Biochem 34: 283–292

    CAS  Google Scholar 

  • Ullmann I, Lange OL, Ziegler H, Ehleringer J, Schulze ED, Cowan JR (1985) Diurnal courses of leaf conductance and transpiration of mistletoes and their hosts in central Australia. Oecologia 67: 577–587

    Article  Google Scholar 

  • Von Willert DJ, Popp M (1995) Gas exchange and water relations of two mistletoes, Tapinanthus oleifolius and Viscum rotundifolium, on the same host, Acacia nebrownii, in south-eastern Namibia. S Afr Tydskr Plantkd 61: 264–273

    Google Scholar 

  • Wanek W, Richter A (1993) L-iditol:NAD+ 5-oxidoreductase in Viscum album: utilization of host-derived sorbitol. Plant Physiol Biochem 31: 205–211

    CAS  Google Scholar 

  • Werger MJA, Hirose T (1991) Leaf nitrogen distribution and whole canopy photosynthetic carbon gain in herbaceous stands. Vegetatio 97: 11–20

    Google Scholar 

  • Whittington J, Sinclair R (1988) Water relations of the mistletoe Amyema miquelii and its host Eucalyptus fasciculosa. Aust J Bot 36: 239–255

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Popp, M., Richter, A. (1998). Ecophysiology of Xylem-Tapping Mistletoes. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics