Skip to main content

Soil Chemistry and Plant Performance — Ecological Considerations

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

The preference of plants for particular soil conditions is a widely recognized ecological principle and was a main concern in classical plant ecology. In spite of a long research tradition, however, mechanisms involved are still far from adequately explained. Moreover, conclusions concerning wild-growing plants have often to be adopted from progress made in agrochemical and plant physiological work, usually performed on cultivars of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarnes H, Eriksen AB, Southon TE (1995) Metabolism of nitrate and ammonium in seedlings of Norway spruce (Picea abies) measured by in vivo 14N and 15N NMR spectroscopy. Physiol Plant 94: 384–390

    CAS  Google Scholar 

  • Abadía J (ed) (1995) Iron nutrition in soils and plants. Proc 7th Int Symp on Iron nutrition and interactions in plants, Zaragoza, Spain 27 June–2 July 1993. Kluwer Dordrecht

    Google Scholar 

  • Abdul-Rahman AA, Habib SA (1989) Allelopathic effect of alfalfa, Medicago sativa, on bladygrass, Imperata cylindrica. J Chem Ecol 15: 2289–2300

    CAS  Google Scholar 

  • Adams F, Hathcock PJ (1984) Aluminium toxicity and calcium deficiency in acid subsoil horizons of two coastal plains soil series. Soil Sci Soc Am J 48: 1305–1309

    CAS  Google Scholar 

  • Alva AK, Edwards DG, Asher CJ, Blarney FP (1986) Relationships between root length of soybean and calculated activities of aluminium monomers in nutrient solution. Soil Sci Soc Am J 50: 959–962

    CAS  Google Scholar 

  • Andersson M (1988) Toxicity and tolerance of aluminium in vascular plants. Water Air Soil Pollut 39: 439–462

    CAS  Google Scholar 

  • Andersson M (1992) Effects of pH and aluminium on growth of Galium odoratum (L.) Scop, in flowing solution culture. Environ Exp Bot 32: 497–504

    CAS  Google Scholar 

  • Andersson ME (1993) Aluminium toxicity as a factor limiting the distribution of Allium ursinum L. Ann Bot 72: 607–611

    CAS  Google Scholar 

  • Andersson ME, Brunet J (1993) Sensitivity to H and Al ions limiting growth and distribution of the woodland grass Bromus benekenii. Plant Soil 153: 243–254

    CAS  Google Scholar 

  • Asp H, Berggren D (1990) Phophate and calcium uptake in beech (Fagus sylcatica) in the presence of aluminium and natural fulvic acids. Physiol Plant 80: 307–314

    CAS  Google Scholar 

  • Balsberg-Påhlsson A-M (1992) Influence of nitrogen fertilization on minerals, carbohydrates, amino acids and phenolic compounds in beech (Fagus sylvatica L.) leaves. Tree Physiol 10: 93–100

    Google Scholar 

  • Bar-Ness E, Hadar Y, Chen Y, Römheld V, Marschner H (1992) Short-term effects of rhizophere microorganisms on iron uptake from microbial siderophores by maize and oat. Plant Physiol 100: 451–456

    PubMed  CAS  Google Scholar 

  • Bergkvist B (1987) Soil solution chemistry and metal budgets of spruce forest ecosystems in south Sweden. Water Air Soil Pollut 32: 131–154

    Google Scholar 

  • Bergmann W (1988) Ernährungsstörungen bei Kulturpflanzen. Fischer, Stuttgart

    Google Scholar 

  • Bienfait HF (1989) Prevention of stress in iron metabolism of plants. Acta Bot Neerl 38: 105–129

    CAS  Google Scholar 

  • Bobbink R, Hornung M, Roelofs JGM (1996) Empirical nitrogen critical loads for natural and semi-natural ecosystems. In: Werner B, Spranger T (eds) Manual of methodologies and criteria for mapping critical loads/levels and geographical areas where they are exceeded. UNE ECE Convention of long-range transboundary air pollution. Federal Environmental Agency, Berlin

    Google Scholar 

  • Boot RGA, Mensink M (1990) Size and morphology of root systems of perennial grasses from contrasting habitats as affected by nitrogen supply. Plant Soil 129: 291–299

    CAS  Google Scholar 

  • Boxman AW, Blanck K, Brandrud T-E, Emmet BA, Gundersen P, Hogervorst RF, Kjönnaas OJ, Persson H, Timmermann V (1997a) Vegetation and soil biota response to experimentally-changed nitrogen inputs in coniferous forest ecosystems of the NITREX project. Forest Ecol Mangem (in press)

    Google Scholar 

  • Boxman AW, van der Ven PJM, Roelofs JGM (1997b) Ecosystem recovery after a decrease in nitrogen input to a Scots pin stand at Ysselsteyn, the Netherlands. Forest Ecol Mangem (in pess)

    Google Scholar 

  • Brunet J (1994) Interacting effects of pH, aluminium and bas cations on growth and mineral composition of the woodland grasses Bromus benekenii and Hordelymus europaeus. Plant Soil 161: 157–166

    CAS  Google Scholar 

  • Brunet J, Falkengren-Grerup U, Tyler G (1996) Herb layer vegetation of south Swedish beech and oak forests - effects of management and soil acidity during one decade. Forest Ecol Manage 88: 259–272

    Google Scholar 

  • Chapin FS, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150–153

    CAS  Google Scholar 

  • Clarke N, Danielsson LG, Sparen A (1992) The determination of quickly reacting aluminium in natural waters by kinetic discrimation in a flow system. Int J Environ Anal Chem 48: 77–100

    CAS  Google Scholar 

  • Davidson EA, Stark JM, Firestone MK (1990) Microbial production and consumption of nitrate in an annual grassland. Ecology 71: 1968–1975

    Google Scholar 

  • De Neeling AJ, Ernst WHO (1986) Response of an acidic and a cacareous population of Chamaenerion angustifolium (L.) Scop, to iron, manganese, and aluminium. Flora (Jena) 178: 85–92

    Google Scholar 

  • Dendooven L, Merckx R, Vlassak K (1995) Limitations of a calculated N mineralization potential in studies of the N mineralization process. Plant Soil 177: 175–181

    CAS  Google Scholar 

  • Diekmann M, Dupré M (1997) Acidification and eutrophication of deciduous forests in north-western Germany demonstrated by indicator species analysis, (submitted)

    Google Scholar 

  • Edfast A-B, Näsholm T, Ericsson A (1990) Free amino acid concentrations in needles of Norway spruce and Scots pine trees on different sites in areas with two levels of nitrogen deposition. Can J Forest Res 20: 1132–1136

    CAS  Google Scholar 

  • Ellenberg H (1985) Veränderungen der Flora Mitteleuropas unter dem Einfluß von Düngung und Immissionen. Schweiz Z Forstwes 1: 19–39

    Google Scholar 

  • Ellenberg H (1992) Zeigerwerte der Gefäßpflanzen (ohne Rubus). Scripta Geobot 18: 9–166

    Google Scholar 

  • Falkengren-Grerup U (1986) Soil acidification and vegetation changes in deciduous forest in southern Sweden. Oecologia 70: 339–347

    Google Scholar 

  • Falkengren-Grerup U (1987) Long-term changes in pH of forest soils in southern Sweden. Environ Pollut 43: 79–90

    PubMed  CAS  Google Scholar 

  • Falkengren-Grerup U (1993) Effects on beech forest species of experimentally enhanced nitrogen depostion. Flora 188: 85–91

    Google Scholar 

  • Falkengren-Grerup U (1994) Importance of soil solution chemistry to field performance of Galium ordoratum and Stellaria nemorum. J Appl Ecol 31: 182–192

    CAS  Google Scholar 

  • Falkengren-Grerup U (1995a) Long-term changes in flora and vegetation in deciduous forests of southern Sweden. Ecol Bull 44: 215–226

    CAS  Google Scholar 

  • Falkengren-Grerup U (1995b) Interspecies differences in the preference of ammonium and nitrate in vascular plants. Oecologia 102: 305–311

    Google Scholar 

  • Falkengren-Grerup U (1995c) Replacement of nutrient losses caused by acidification of a beech forest soil and its effect on transplanted field-layer species. Plant Soil 168 /169: 187–193

    Google Scholar 

  • Falkengren-Grerup U, Brunet J (1996) Depositionen av forsurande och godande amnen och dess betydelse for skogens vegetation. In: Berg B (ed) Markdagen 1996. Forskningsnytt om mark. Reports in Forest Ecology and Forest Soils 72. Swedish University of Agricultural Sciences, Uppsala, pp 67–79

    Google Scholar 

  • Falkengren-Grerup U, Lakkenborg Kristensen H (1994) Importance of ammonium and nitrate to the performance of herb-layer species from deciduous forests in southern Sweden. Environ Exp Bot 34: 31–38

    Google Scholar 

  • Falkengren-Grerup U, Tyler G (1992) Chemical conditions limiting survival and growth of Galum odoratum (L.) Scop, in acid forest soil. Acta Oecol 13: 169–180

    Google Scholar 

  • Falkengren-Grerup U, Tyler G (1993a) Soil chemical properties excluding field-layer species from beech forest mor. Plant Soil 148: 185–191 (Errata in 150:323)

    Google Scholar 

  • Falkengren-Grerup U, Tyler G (1993b) Experimental evidence for the relative senstitivity of deciduous forest plants to high soil acidity. Forest Ecol Managem 60: 311–326

    Google Scholar 

  • Falkengren-Grerup U, Tyler G (1993c) The importance of soil acidity, moisture, exchangeable cation pools and organic matter solubility to the cationic composition of beech forest (Fagus sylvatica L.) soil solution. Z Pflanzenernähr Bodenk 156: 365–370

    CAS  Google Scholar 

  • Falkengren-Grerup U, Brunet J, Quist ME (1995a) Sensitivity of plants to acidic soils exemplified by the forest grass Bromus benkenii. Water Air Soil Pollut 85: 1233–1238

    CAS  Google Scholar 

  • Falkengren-Grerup U, Brunet J, Quist M, Tyler G (1995b) Is the Ca:Al ratio superior to pH, Ca. or Al concentrations of soils in accounting for the distribution of plants in deciduous forest? Plant Soil 177: 21–31

    CAS  Google Scholar 

  • Fichtner K, Schulze E-D (1992) The effect of nitrogen nutrition on growth and biomass partitioning of annual plants originating from habitats of different nitrogen availability. Oecologia 92: 236–241

    Google Scholar 

  • Fisher FM, Whitford WG (1995) Field simulation of wet and dry years in the Chihuahuan desert: soil moisture, N mineralization and ion-exchange resin bags. Biol Fertil Soils 20: 137–146

    Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminium and manganese toxicities in acid soil. In: Adams F (ed) Soil acidity and liming, 2nd edn. ASA-CSSA-SSSA, Madison, Wisconsin, pp 57–97

    Google Scholar 

  • Fuller RD, Richardson CJ (1986) Aluiminate toxicity as a factor controlling plant growth in bauxite residue. Environ Toxicol Chem 5: 905–915

    CAS  Google Scholar 

  • Gebauer G, Dietrich P (1993) Nitrogen isotope ratios in different compartments of a mixed stand of spruce, larch and beech trees and of understorey vegetation including fungi. Isotope Prax Environ Health Stud 29: 35–44

    CAS  Google Scholar 

  • Gebauer G, Rehder H, Wollenweber B (1988) Nitrate, nitrate reduction and organic nitrogen in plants from different ecological and taxonomic groups of central Europe. Oecologia 75: 371–385

    Google Scholar 

  • George E, Marschner H, Jakobsen I (1995) Role of arbuscular mycorrhizal fungi in uptake of phophorus and nitrogen from soil. Crit Rev Biotechnol 15: 257–270

    Google Scholar 

  • Gerke J (1994) Aluminium complexation by humic substances and aluminium species in the soil solution. Geoderma 63: 165–175

    CAS  Google Scholar 

  • Gerke J, Römer W, Jungk A (1994) The excretion of citric and malic acid by proteoid roots of Lupinus albus L; effects on soil solution concentrations of phosphate, iron and aluminium in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzenernähr Bodenkd 157: 289–294

    CAS  Google Scholar 

  • Gries D, Runge M (1992) The ecological significance of iron mobilization in wild grasses. J Plant Nutr 15: 1727–1737

    CAS  Google Scholar 

  • Gries D, Runge M (1995) Responses of calcicole and calcifuge Poaceae species to iron-limiting conditions. Bot Acta 108: 482–489

    CAS  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Grime JP, Hodgson JG (1969) An investigation of the ecological significance of limechlorosis by means of large-scale comparative experiments. In: Rorison JH (ed) Ecological aspects of the mineral nutrition of plants: British Ecological Society symposium 9. Blackwell, Oxford, pp 67–99

    Google Scholar 

  • Grime JP, Hutchinson TC (1967) The incidence of lime-chorosis in the natural vegetation of England. J Ecol 55: 557–566

    Google Scholar 

  • Grime JP, Crick JC, Rincon JE (1986) The ecological significance of plasticity. In: Jennings DH, Trewavas AJ (eds) Plasticity in plants. Company of Biologists, Cambridge, pp 5–30

    Google Scholar 

  • Gundersen P, Emmett BA, Kjänaas OJ, Koopmans CJ, Tietema A (1997) Impact of nitrogen deposition on nitrogen cycling in forests: a synthesis of NITREX dat. Forest Ecol Manage (in press)

    Google Scholar 

  • Gutschick VP (1981) Evolved strategies in nitrogen acquisition by plants. Am Nat 118: 607–637

    CAS  Google Scholar 

  • Hansen P, Tyler G (1992) Statistical evaluation of tree species affinity and soil preference of the macrofungal flora in south Swedish beech, oak, and hornbeam forest. Cryptogamic Bot 2: 355–361

    Google Scholar 

  • Harte J, Kinzig AP (1993) Mutualism and competition between plants and decomposers: implications for nutrient allocation in ecosystem. Am Nat 141: 829–846

    PubMed  CAS  Google Scholar 

  • Hook PB, Burke IC (1995) Evaluation of methods for estimating net nitrogen mineralization in semiarid grassland. Soil Sci Soc Am J 59: 831–837

    CAS  Google Scholar 

  • Horst WJ, Klotz F, Szulkiewicz P (1990) Mechanical impedance increases aluminium tolerance of soybean Glycine max roots. Plant Soil 124: 227–231

    CAS  Google Scholar 

  • Hue NV, Craddock GR, Adams F (1986) Effects or organic acids on aluminium toxicity in subsoils. Soil Sci Soc Am J 50: 28–34

    CAS  Google Scholar 

  • Jackson LE, Schimel PJ, Firesone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21: 409–415

    Google Scholar 

  • Johansen A, Jakobsen I, Jensen ES (1993a) Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonioum or nitrate. Biol Fertil Soils 16: 66–70

    CAS  Google Scholar 

  • Johanson A, Jakobson I, Jensen E.S. (1993b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. III. Hyphal transport of 32P and 15N. New Phytol 124: 61–68

    Google Scholar 

  • Jolley VD, Brown JC (1989) Iron inefficient and efficient oats. I. Differences in phytosiderophore release. J Plant Nutr 12: 423–436

    CAS  Google Scholar 

  • Kellner O, Redbo-Torstensson P (1995) Effects of elevated nitrogen deposition on the field-layer vegetation in coniferous forests. Ecol Bull 44: 227–237

    Google Scholar 

  • Keltjens WG, Tan K (1993) Interactions between aluminium, magnesium and calcium with different monocotyledonous and dicotyledonous plant species. Plant Soil 155 /156: 485–488

    Google Scholar 

  • Kinraide TB (1990) Assessing the rhizotoxicity of the aluminate ion, Al(OH)4−. Plant Physiol 93: 1620–1625

    PubMed  CAS  Google Scholar 

  • Kinraide TB (1991) Identity of the rhizotoxic aluminium species. Plant Soil 134: 167–178

    CAS  Google Scholar 

  • Kinzel H (1982) Pflanzenokologie und Mineralstoffwechsel. Ulmer, Stuttgart

    Google Scholar 

  • Kovacs MF (1971) Identification of aliphatic and aromatic acids in root and seed exudates of peas, cotton, and barley. Plant Soil 34: 441–451

    CAS  Google Scholar 

  • Lee EN, Foy CD (1986) Aluminium tolernce of two snapbean cultivars related to organic acid content evaluated by high-performance liquid chromatography. J Plant Nutr 9: 1481–1498

    CAS  Google Scholar 

  • Loekke H, Bak J, Falkengren-Grerup U, Finlay RD, Ilvesniemi H, Nygaard PH, Starr M (1996) Critical loads of acidic deposition for forests sopils - is the current approach adequate? Ambio 25: 510–516

    Google Scholar 

  • Mahmoud A, Grime JP (1977) A comparison of the susceptibility of Arrhenatherum elatius, Agrostis tenuis, Deschampsia flexuosa and Festuca ovina to manganese toxicity. Plant Soil 47: 559–566

    CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134: 1–20

    CAS  Google Scholar 

  • Marschner H, Kissel M (1986) Different strategies in higher plants in mobilization and uptake of iron. J Plant Nutr 9: 695–713

    CAS  Google Scholar 

  • Marschner H, Römheld V (1983) In vivo measurement of root induced pH changes at the soil-root interface. Effect of plant species and nitrogen source. Z Pflanzenphysiol 111: 241–252

    CAS  Google Scholar 

  • Marschner H, Römheld V (1994) Strategies of plants for acquisition of iron: Plant Soil 165: 261–274

    CAS  Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues - iron chlorosis on calcareous soils. Plant Soil 165: 275–283

    CAS  Google Scholar 

  • Mengel K, Scherer HW (1984) Iron distribution in vine leaves with HCO3- induced chlorosis. J Plant Nutr 7: 715–724

    CAS  Google Scholar 

  • Mengel K, Breininger MT, Bubl W (1984) Bicarbonate, the most important factor inducing iron chlorosis in vinegrapes on calcareous soil. Plant Soil 81: 333–334

    CAS  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105: 53–63

    Google Scholar 

  • Miyasaka SH, Buta GJ, Howell RK, Foy CD (1991) Mechanism of aluminium tolerance in snapbeans. Plant Physiol 96: 737–743

    PubMed  CAS  Google Scholar 

  • Näsholm T; Edfast A-B, Ericsson A, Nordén L-G (1994) Accumulation of amino acids in some boreal forest plants in response to increased nitrogen availability. New Phytol 126: 137–143

    Google Scholar 

  • Nilsson SI, Tyler G (1995) Acidification-induced chemical changes of forest soil during recent decades - a review. Ecol Bull 44: 54–64

    CAS  Google Scholar 

  • Persson T, Wirén A (1995) Nitrogen mineralization and potential nitrification at different depths in acid forest soils. Plant Soil 168 /169: 55–65

    Google Scholar 

  • Persson H, Ahlstrom K, Clemensson-Lindell A (1997) Nitrogen addition and removal at Gårdsjön - effects on fine-root growth and fine-root chemistry. Forest Ecol Manage (in press)

    Google Scholar 

  • Poorter H, Remkes C, Lambers H (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol 94: 621–627

    PubMed  CAS  Google Scholar 

  • Quist ME (1995) Reversibility of damages to forest floor plants by episodes of elevated hydrogen- and aluminium-ion concentrations in the soil solution. Plant Soil 176: 297–305

    CAS  Google Scholar 

  • Read DJ, Leake JR, Landale AR (1989) The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Boddy L, Marchant RJ, Read DJ (eds) Nitrogen, phosphorus and sulphur utilization by fungi. British Mycological Society, Cambridge, pp 181–204

    Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121: 499–513

    CAS  Google Scholar 

  • Riha SJ, Campbell GS, Wolfe J (1986) A model of competition for ammonium among heterotrophs, nitrifiers, and roots. Soil Sci Soc Am J 50: 1463–1466

    CAS  Google Scholar 

  • Robinson D, Rorison IH (1988) Plasticity in grass species in relation to nitrogen supply. Funct Ecol 2: 249–257

    Google Scholar 

  • Römheld V (1991) The role of phytosiderophores in acquisition of iron and other micro-nutrients in graminaceous species: an ecological approach. Plant Soil 130: 127–134

    Google Scholar 

  • Römheld V, Marschner H (19986) Evidence for a specific uptake system for iron phyto-siderophores in roots of grasses. Plant Physiol 80: 175–180

    Google Scholar 

  • Runge M (1984) Bedeutung und Wirkung von Aluminium als Standortfaktor. Düsseldorf. Geobot. Kolloquium, Proc, 1: 3–10

    Google Scholar 

  • Serna MD, Borras R, Legaz F, Primo-Millo E (1992) The influence of nitrogen concentration and ammonium/nitrate on N-uptake, mineral composition and yield of citrus. Plant Soil 147: 13–23

    CAS  Google Scholar 

  • Shen Y, Ström L, Jönsson JÅ, Tyler G (1996) Low-molecular organic acids in the rhizosphere soil solution of beech forest (Fagus sylvatica L.) cambisols determined by ion chromatography using supported liquid membrane enrichment technique. Soil Biol Biochem 28: 1163–1169

    CAS  Google Scholar 

  • Stenger R, Priesack E, Beese F (1995) Rates of net nitrogen mineralization in disturbed and undisturbed soils. Plant Soil 171: 323–332

    CAS  Google Scholar 

  • Stockdale EA, Rees RM (1994) Relationships between biomass nitrogen and nitrogen extracted by other nitrogen abailability methods. Soil Biol Biochem 26: 1213–1220

    Google Scholar 

  • Ström L (1997) Exudation of organic acids - importance to calcifuge - calcicole behaviour of plants. Oikos (in press)

    Google Scholar 

  • Ström L, Olsson T and Tyler G (1994) Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic acid. Plant Soil 167: 239–245

    Google Scholar 

  • Suhayda CG, Haug A (1986) Organic acids reduce aluminium toxicity in maize root membranes. Physiol Plant 68: 189–195

    CAS  Google Scholar 

  • Taylor GJ (1988) The physiology of aluminium phytotoxicity. In: Sigel H, Sigel A (eds) Metal ions in biological systems. Dekker, New York, pp 123–163

    Google Scholar 

  • Thompson K, Hodgson JG, Grime JP; Rorison IH, Band SR, Spencer RE (1993) Ellenberg numbers revisited. Phytocoenologia 23: 277–289

    Google Scholar 

  • Tilman D (1987) Secondary succession and the pattern of plant dominance along experimental nitrogen gradients. Ecol Monogr 57: 189–214

    Google Scholar 

  • Tilman D, Wedin D (1991) Plant traits and resource reduction for five grasses growing on a nitrogen gradient. Ecology 72: 685–700

    Google Scholar 

  • Tyler G (1976) Soil factors controlling metal ion absorption in the wood anemone Anemone nemorosa. Oikos 27: 71–80

    CAS  Google Scholar 

  • Tyler G (1987) Probable effects of soil acidifaction and nitrogen deposition on the floristic composition of oak (Quercus robur L.) forest. Flora 179: 165–170

    Google Scholar 

  • Tyler G (1992) Inability to solubilize phosphate in limestone soils - key factor controlling calcifuge behaviour of plants. Plant Soil 45: 65–70

    Google Scholar 

  • Tyler G (1993) Soil solution chemistry controlling the field distribution of Melica ciliate L. Ann Bot 71: 295–301

    CAS  Google Scholar 

  • Tyler G (1994a) Plant uptake of aluminium from calcareous soils. Experientia 50: 701–703

    CAS  Google Scholar 

  • Tyler G (1994b) A new approach to understanding the calcifuge habit of plants. Ann Botany 73: 327–330

    Google Scholar 

  • Tyler G (1996a) Cover distribution of vascular plants in relation to soil chemistry and soil depth in a granite rock ecosysteme. Vegetatio 127: 215–223

    Google Scholar 

  • Tyler G (1996b) Soil chemical limitations to growth and development of Veronica officinalis L. and Carex pilulifera L. Plant Soil 184: 281–289

    CAS  Google Scholar 

  • Tyler G (1997) Soil chemistry and plant distributions in rock habitats of southern Sweden. Nord J Bot 16: 609–635

    Google Scholar 

  • Tyler G, Olsson PA (1993) The calcifuge behaviour of Viscaria vulgaris J Veg Sci 4: 29–36

    Google Scholar 

  • Tyler G, Ström L (1995) Differing organic acid exudation pattern explains calcifuge behaviour of plants. Ann Botany 75: 75–78

    CAS  Google Scholar 

  • Ulrich B (1981) Ökologische Gruppierung von Böden nach ihrem chemischen Bodenzustande. Z Pflanzenernähr Düng Bodenkd 144: 289–305

    CAS  Google Scholar 

  • Ulrich B, Pankrath J (eds) (1983) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht

    Google Scholar 

  • Van de Vijver CADM, Boot RGA, Poorter H, Lambers H (1993) Phenotypic plasticity in response in nitrate supply of an inherently fast-growing species from a fertile habitat and an inherently slow-growing species from an infertile habitat. Oecologia 96: 548–554

    Google Scholar 

  • Vancura V (1964) Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil 21: 231–248

    Google Scholar 

  • Vancura V, Hovadik A (1965) Root exudates of plants. II. Composition of root exudates of some vegetals. Plant Soil 22: 21–32

    CAS  Google Scholar 

  • Verhagen FJM, Hageman PEJ, Woldendorp JW, Laanbroek HJ (1994) Competition for ammonium between nitrifying bacteria and plant roots in soil in pots; effects of grazing by flagellates and fertilization. Soil Biol Biochem 26: 89–96

    CAS  Google Scholar 

  • Waldren S, Davies MS, Etherington JR (1987) The effect of manganese on root extension of Geum rivale L, Geum urbanum L. and their hybrids. New Phytol 106: 679–688

    CAS  Google Scholar 

  • Warren GP, Whitehead DC (1996) Available soil nitrogen in relation to fractions of soil nitrogen and other soil properties. Plant Soil 112: 155–165

    Google Scholar 

  • Wissemeier AH, Klotz F, Horst WJ (1987) Aluminium induced callose synthesis in root of soybean (Glycine max L.) J Plant Physiol 129: 487–492

    CAS  Google Scholar 

  • Yamane A, Nishimura H, Mizutani J (1992) Allelopathy of yellow field cress, Rorippa sylvestris. Identification and characterization of phytotoxic constituents. J Chem Ecol 18: 683–691

    CAS  Google Scholar 

  • Zohlen A, Tyler G (1997) Differences in iron nutrition strategies of two calcifuges, Carex pilulifera L and Veronica officinalis L. Ann Botany (accepted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tyler, G., Falkengren-Grerup, U. (1998). Soil Chemistry and Plant Performance — Ecological Considerations. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics