Skip to main content

Secondary Plant Substances: Monoterpenes

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

The monoterpenes are the C10 representatives of the terpenoid family of natural products and they diverge from higher isoprenoid biosynthesis at the level of geranyl pyrophosphate. The vast majority of the several hundred naturally occuring monoterpenes are cyclic, primarily cyclo-hexanoid, and they represent a relatively small number of skeletal themes multiplied by a very large range of simple derivatives, positional isomers, and stereochemical variants (Figs. 1, 2, Dev et al. 1982; Glasby 1982; Connolly and Hill 1992, Buckingham 1994). The formation of significant quantities of monoterpenes (> 0,1% fresh tissue weight) appears to be confined to some 50 families of higher plants in which the monoterpenes are most familiar as components of the essential oils that are synthesized and accumulated in various tpyes of distinct and highly specialized secretory structures. The chemistry and biochemistry of monoterpenoids is periodically reviewed (Banthorpe and Branch 1985; Croteau 1987; Gershenzon and Croteau 1990; Beale 1991; Grayson 1992, 1994, 1996; Dewick 1995; Chappell 1995; McGarvey and Croteau 1995). The last review in this series was published 12 years ago (Schütte 1984). The monoterpenoids show numerous kinds of ecological interactions (Harborne 1991; Langenheim 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alonso WR, Croteau R (1991) Purification and characterization of the monoterpene cyclase y-terpinene synthase from Thymus vulgaris. Arch Biochem Biophys 286: 511–517

    Article  PubMed  CAS  Google Scholar 

  • Alonso WR, Croteau R (1993) Prenyltranserases and cyclases. In: Lea PJ (ed) Methods in plant biochemistry. Enzymes of secondary metabolism. Academic Press, London, pp 239–260

    Google Scholar 

  • Alonso WR, Rajaonarivony JIM, Gershenzon J, Croteau R (1992) Purification of 4S- limonene synthase, a monoterpene cyclase from the glandular trichomes of pepper-mint Mentha x piperita. J Biol Chem 267: 7582–7587

    PubMed  CAS  Google Scholar 

  • Alonso WR, Crock JE, Croteau R (1993) Production and characterization of poyclonal antibodies in rabbits to 4S-limonene synthase from spearmint (Mentha spicata). Arch Biochem Biophys 301: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Amelunxen F, Wahlig T, Arbeiter H (1969) Über den Nachweis des ätherischen Öls in isolierten Drüsenhaaren und Drüsenschuppen von Mentha piperita L. Z Pflanzenphysiol 61: 68–72

    CAS  Google Scholar 

  • Bach TJ (1987) Synthesis and metabolism of mevalonic acid in plants. Plant Physiol Biochem 25: 163–178

    CAS  Google Scholar 

  • Banthorpe DV, Branch SA (1985) The biosynthesis of C5-CM terpenoid compounds. Nat Prod Rep 2: 513–524

    Article  CAS  Google Scholar 

  • Beale MH (1991) Biosynthesis of C5-CM terpenoid compounds. Nat Prod Rep 8: 441–454

    Article  CAS  Google Scholar 

  • Bolwell GP, Bozak K, Zimmerlin A (1994) Plant cytrochome P450. Phytochemistry 37: 1491–1506

    Article  PubMed  CAS  Google Scholar 

  • Buckingham J (ed) (1994) Dictionary of natural products, vols 1–8. Champan and Hall, London

    Google Scholar 

  • Chappell J (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107: 1–6

    PubMed  CAS  Google Scholar 

  • Cheniclet C, Carde JP (1985) Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Isr J Bot 34: 219–238

    Google Scholar 

  • Clastre M, Bantignies B, Feron G, Soler E, Ambid C (1993) Purification and characterization of geranyl diphosphate synthase from Vitis vinifera L. cv. Muscat de Frontignan cell cultures. Plant Physiol 102: 205–211

    PubMed  CAS  Google Scholar 

  • Coates RM, Denissen JF, Croteau RB, Wheeler CJ (1987) Geminal dimethyl stereochemistry in the enzymatic cyclization of geranyl pyrophosphate to (+)- and (-)-a-pinene. J Am Chem Soc 109: 4399–4401

    Article  CAS  Google Scholar 

  • Colby SM, Alonso WR, Katahira EJ, McGarvey DJ, Croteau R (1993) 4S-Limonene synthase from the oil glands of spearmint. J Biol Chem 268: 23016–23024

    Google Scholar 

  • Conolly JD, Hill RA (1992) Dictionary of terpenoids. Chapman and Hall, London

    Google Scholar 

  • Croteau R (1986) Evidence for the ionization steps in monoterpene cyclization reactions using 2-fluorogeranyl and 2-fluorolinalyl pyrophosphates as substrates. Arch Biochem Biophys 251: 777–782

    Article  PubMed  CAS  Google Scholar 

  • Croteau R (1987) Biosynthesis and catabolism of monoterpenoids. Chem Rev 87:929–954

    Google Scholar 

  • Croteau R (1991) Metabolism of monoterpenes in mint (Mentha) species. Planta Med 57 (Suppl): 510–514

    Article  Google Scholar 

  • Croteau R, Felton NM (1980) Substrate specificity of monoterpenol dehydrogenases from Foeniculum vulgare and Tanacetum vulgare. Phytochemistry 19: 1343–1347

    CAS  Google Scholar 

  • Croteau R, Gershenzon J (1994) Genetic control of monoterpene biosynthesis in mints (Mentha: Lamniaceae). Recent Adv Phytochem 28: 193–229

    CAS  Google Scholar 

  • Croteau R, Karp F (1976) Biosynthesis of monoterpenes: enzymatic conversion of neryl pyrophosphate to 1,8-cineole, a-terpineol, and cyclic monoterpene hydrocarbons by a cell-free preparation from sage (Salvia officinalis). Arch Biochem Biophys 176: 734–746

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Karp F (1977) Biosynthesis of monoterpenes: partial purification and characterization of 1,8-cineole synthase from Salvia officinalis. Arch Biochem Biophys 179: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Karp F (1979a) Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Silvia officinalis) and demonstration that geranyl pyrophosphate is preferred substrate for cyclization. Arch Biochem Biophys 198: 512–522

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Karp F (1979b) Biosynthesis of monoterpenes: hydrolysis of bornyl pyro-phosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl py-rophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis). Arch Biochem Biophys 198: 523–532

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Martinkus C (1979) Metabolism of monoterpenes: demonstration of (+)-neomenthyl-P-D-glucoside as a major metabolite of (-)-menthone in peppermint (Mentha piperita), Plant Physiol 64: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Purkett PT (1989) Geranyl pyrophosphate synthase: characterization of the enzyme and evidence that this chain-length specific prenyltransferase is associated with monoterpene biosynthesis in sage (Salvia officinalis). Arch Biochem Biophys 271: 524–535

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Satterwhite DM (1989) Biosynthesis of monoterpenes: stereochemical implications of acyclic and monocyclic olefin formation by (+)- and (-)-pinene cyclases from sage. J Biol Chem 264: 15309–15315

    PubMed  CAS  Google Scholar 

  • Croteau R, Shaskus J (1985) Biosynthesis of monoterpenes: demonstration of a geranyl pyrophosphate: (-)-bornyl pyrophosphate cyclase in soluble enzyme preparations from tansy (Tanacetum vulgare). Arch Biochem Biophys 236: 535–543

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Sood VK (1985) Metabolism of monoterpenes: evidence for the function of monoterpene catabolism in peppermint (Mentha piperita) rhizomes. Plant Physiol 77: 801–806

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Venkatachalam KV (1986) Metabolism of monoterpenes: demonstration that (+)-cis-isopulegone, not piperitenone, is the key intermediate in the conversion of (-)-isopieritenone to (+)-pulegone in peppermint (Mentha piperita). Arch Biochem Biophys 249: 306–315

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Felton M, Ronald RC (1980a) Biosynthesis of monoterpenes: conversion of the acyclic precursors geranyl pyrophosphate and neryl pyrophosphate to the rearranged monoterpenes fenchol and fenchone by a soluble enzyme preparation from fennel (Foeniculum vulgare). Arch Biochem Biophys 200: 524–533

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Felton M, Ronald RC (1980b) Biosynthesis of monoterpenes: preliminary characterization of 1-endo-fenchol synthetase from fennel (Foeniculum vulgare) and evidence that no free intermediate is involved in the cyclization of geranyl pyrophosphate to the rearranged product. Arch Biochem Biophys 200: 534–546

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, El-Bialy H, El-Hindawi (1984a) Metabolism of monoterpenes: lactonization of (+)-camphor and conversion of the corresponding hydroxy acid to the glucoside- glucose ester in sage (Salvia officinalis). Arch Biochem Biophys 228: 667–680

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Sood VK, Renstrom B, Bhushan R (1984b) Metabolism of monoterpenes: early steps in the metabolism of d-neomenthyl-P-A-glucoside in peppermint (Mentha piperita) rhizomes. Plant Physiol 76: 647–653

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Shaskus J, Cane SE; Saito A; Chang C (1984c) Enzymatic cyclization of [l-,80] geranyl pyrophosphate to 1-endo-fenchol. J Am Chem Soc 106: 1142–1143

    Article  CAS  Google Scholar 

  • Croteau R, Shaskus JJ, Renstrom B, Felton NM, Cane DE, Saito A, Chang C (1985a) Mechanism of the pyrophosphate migration in the enzymic cyclization of geranyl and linalyl pyrophosphate to (+) and (-)-bornyl pyrophosphate. Biochemistry 24: 7077–7085

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Felton NM, Wheeler CJ (1985b) Stereochemistry at C-l of geranyl pyrophosphate and neryl pyrophosphate in the cyclization of (+)- and (-)-bornyl pyrophosphate. J Biol Chem 260: 5956–5962

    PubMed  CAS  Google Scholar 

  • Croteau R, Wheeler CJ, Aksela R, Oehlschlager AC (1986a) Inhibition of monoterpene cyclases by sulfonium analogs of presumptive carbocationic intermediates of the cyclization rection. J Biol Chem 261: 7257–7263

    PubMed  CAS  Google Scholar 

  • Croteau R, Satterwhite DM, Cane DE, Chang CC (1986b) Biosynthesis of monoterpenes. Enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-bornyl pyrophosphate. J Biol Chem 261: 13438–13445

    PubMed  CAS  Google Scholar 

  • Croteau R, Gurkewitz S, Johnson MA, Fisk HJ (1987a) Biochemistry of oleoresinosis: monoterpene and diterpene biosynthesis in lodgepole pine saplings infected with Ceratocystis clavigera or treated with carohydrate elicitors. Plant Physiol 85: 1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Wheeler CJ, Cane DE, Ebert R, Ha HJ (1987b) Isotopically sensitive branching in the formation of cyclic monoterpenes: proof that (-)-a-pinene and (-)-P-pinene are synthesized by the same monoterpene cyclase via deprotonation of a common intermediate. Biochemistry 26: 5383–5389

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, El-Bialy H, Dehal SS (1987c) Metabolism of monoterpenes: metabolic fate of (+)-camphor in sage (Salvia officinalis). Plant Physiol 84: 643–653

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Satterwhite DM, Cane DE, Chang CC (1988a) Biosynthesis of monoterpenes: enantioselectivity in the enzymatic cyclization of (+)- and (-)-linalyl pyrophosphate to (+)- and (-)-pinene and (+)- and (-)-camphene. J Biol Chem 263: 10063–10071

    PubMed  CAS  Google Scholar 

  • Croteau R, Satterwhite DM, Wheeler CJ, Felton NM (1988b) Biosynthesis of monoterpenes: stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (-)-endo-fenchol. J Biol Chem 263: 15449–15453

    PubMed  CAS  Google Scholar 

  • Croteau R, Satterwhite DM, Wheeler CJ, Felton NM (1989a) Biosynthesis of monoterpenes: stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (+)-a-pinene and (-)-ji-pinene. J Biol Chem 264: 2075–2080

    PubMed  CAS  Google Scholar 

  • Croteau R, Miyazaki JH, Wheeler CJ (1989b) Monoterpene biosynthesis: mechanistic evaluation of the geranyl pyrophosphate: (-)-endo-fenchol cyclase from fennel (Foeniculum vulgare). Arch Biochem Biophys 269: 507–516

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Gershenzon J, Wheeler CJ, Satterwhite DM (1990) Biosynthesis of monoterpenes: stereochemistry of the coupled isomerization and cyclization of geranyl pyro-phosphate to camphene and isocamphane monoterpenes. Arch Biochem Biophys 277: 374–381

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Karp F, Wagschal KC, Satterwhite DM, Hyatt DC, Skotland CB (1991) Biochemical characterization of a spearmint mutant that resembles peppermint in monoterpene content. Plant Physiol 96: 744–752

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Alonso WR, Koepp AE, Shim JH, Cane DE (1993) Irreversible inactivation of monoterpene cyclases by a mechanism-based inhibitor. Arch Biochem Biophys 307: 397–404

    Article  PubMed  CAS  Google Scholar 

  • Croteau R, Alonso WR, Koepp AE, Johnson MA (1994) Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase. Arch Biochem Biophys 309: 184–192

    Article  PubMed  CAS  Google Scholar 

  • Dehal SS, Croteau R (1987) Metabolism of monoterpenes: specificity of the dehydrogenase responsible for the biosynthesis of camphor, 3-thujone, and 3-isothujone. Arch Biochem Biophys 258: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Dev S, Narula APS, Yadav JS (1982) Handbook of terpenoids, monoterpenoids, vols I and II. CRC Press, Boca Raton

    Google Scholar 

  • Dewick PM (1995) The biosynthesis of C5-C20 terpenoid compounds. Nat Prod Rep 12: 507–534

    Article  PubMed  CAS  Google Scholar 

  • Dogbo O, Camara B (1987) Purification of isopentenyl pyrophosphate isomerase and geranylgeranyl pyrophosphate synthase from Capsicum chromoplasts by affinity chromatography. Biochim Biophys Acta 920: 140–148

    CAS  Google Scholar 

  • Donaldson RP, Luster DG (1991) Multiple forms of plant cytochromes P450. Plant Physiol 96: 669–674

    Article  PubMed  CAS  Google Scholar 

  • Endo T, Suga T (1992) Demonstration of geranyl diphosphate synthase in several higher plants. Phytochemistry 31: 2273–2275

    Article  CAS  Google Scholar 

  • Enjuto M, Balcells L, Campos N, Caelles C, Arro M, Boronat A (1994) Arabidopsis thaliana contains two differentially expressed HMG-CoA reductase genes, which encode microsomal forms of the enzyme. Proc Natl Acad Sci USA 91: 927–931

    Article  PubMed  CAS  Google Scholar 

  • Enjuto M, Lumbreras V, Marin C, Boronat A (1995) Expression of the Arabidopsis HMH2 gene, encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, is restricted to meristematic and floral tissues. Plant Cell 7: 517–527

    Article  PubMed  CAS  Google Scholar 

  • Falk KL, Gershenzon J, Croteau R (1990) Metabolism of monoterpenes in cell cultures of common sage (Salvia officinalis): biochemical rationale for the lack of monoterpene accumulation. Plant Physiol 93: 1559–1567

    Article  PubMed  CAS  Google Scholar 

  • Feron G, Clastre M, Ambid C (1990) Prenyltransferase compartmentation in cells of Vitis vinifera cultivated in vitro. FEBS Lett 271: 236–238

    Article  PubMed  CAS  Google Scholar 

  • Funk D, Croteau R (1993) Induction and characterization of a cytochrome P450- dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis). Plant Physiol 101: 1231–1237

    PubMed  CAS  Google Scholar 

  • Funk C, Kopp AE, Croteau R (1992) Catabolism of camphor in tissue cultures of common sage (Salvia officinalis). Arch Biochem Biophys 294: 306–313

    Article  PubMed  CAS  Google Scholar 

  • Gambliel H, Croteau R (1984) Pinene cyclases I and II: two enzymes from sage (Salvia officinalis) which catalyze stereospecific cyclization of geranyl pyrophosphate to monoterpene olefins of opposite configuration. J Biol Chem 259: 740–748

    PubMed  CAS  Google Scholar 

  • Gershenzon J, Croteau R (1990) Regulation of monoterpene biosynthesis in higher plants. Recent Adv Phytochem 24: 99–160

    CAS  Google Scholar 

  • Gershenzon J, Duffy MA, Karp F, Croteau R (1987) Mechanized techniques for the selective extraction of enzymes from plant epidermal glands. Anal Biochem 161: 159–164

    Article  Google Scholar 

  • Gershenzon J, Maffai M, Croteau R (1989) Biochemical and histochemical localization of monoterpene biosynthesis in the glandular trichomes of spearmint (Mentha spicata). Plant Physiol 89: 1351–1357

    Article  PubMed  CAS  Google Scholar 

  • Gershenzon J, McCaskill D, Rajaonarivony J, Mihaliak C, Karp F, Croteau R (1991) Biosynthetic methods for plant natural products: new procedures for the study of glandular trichome constituents. Recent Adv Phytochem 25: 347–370

    CAS  Google Scholar 

  • Gershenzon J, McCaskill D, Rajanonarivony JIM, Mihaliak C, Karp F, Croteau R (1992) Isolation of secretory cells from plant glandular trichomes and their use in biosynthetic studies of monoterpenes and other gland products. Anal Biochem 200: 130–138

    Article  PubMed  CAS  Google Scholar 

  • Gijzen M, Lewinsohn E, Croteau R (1991) Characterization of the constitutive and wound-inducible monoterpene cyclases of grand fir (Abies grandis). Arch Biochem Biophys 289: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Gijzen M, Lewinsohn E, Croteau R (1992) Antigenic cross-reactivity among monoterpene cyclases from grand fir and induction of these enzymes upon stem wounding. Arch Biochem Biophys 294: 670–674

    Article  PubMed  CAS  Google Scholar 

  • Glasby JS (1982) Encyclopedia of the terpenoids. John Wiley and Sons, Chichester, 2643 pp

    Google Scholar 

  • Gleizes M, Pauly G,Carde JP, Marpeau A, Bernard-Dagan C (1983) Monoterpene hydro-carbon biosynthesis by isolated leucoplasts of Citrofortunella mitis. Planta 159: 373–381

    Article  CAS  Google Scholar 

  • Gray JC (1987) Control of isoprenoid biosynthesis in higher plants. Adv Bot Res 14:25–91

    Google Scholar 

  • Grayson DH (1992) Monoterpenoids. Nat Prod Rep 9: 531–557

    Article  CAS  Google Scholar 

  • Grayson DH (1994) Monoterpenoids. Nat Prod Rep 11: 225–247

    Article  PubMed  CAS  Google Scholar 

  • Grayson DH (1996) Monoterpenoids. Nat Prod Rep 13: 195–225

    Article  PubMed  CAS  Google Scholar 

  • Grinspoon J, Bowman WD, Fall R (1991) Delayed onset of isoprene emission in developing velvet bean (Mucuna sp.). Plant Physiol 97: 170–174

    Article  PubMed  CAS  Google Scholar 

  • Halahan TW, Croteau R (1988) Monoterpene biosynthesis: demonstration of a geranyl pyrophosphate: sabinen hydrate cyclase in soluble enzyme preparations from sweet majoram (Marjoram hortensis). Arch Biochem Biophys 264: 618–631

    Article  Google Scholar 

  • Hallahan TW, Croteau R (1989) Monoterpene biosynthesis: mechanism and stereochemistry of the enzymatic cyclization of geranyl pyrophosphate to (+)-cis- and (+)-trans- sabinene hydrate. Arch Biochem Biophys 269: 313–326

    Article  PubMed  CAS  Google Scholar 

  • Hamada H, Fuchikami Y, Ikematsu Y, Hirata T, Williams HJ, Scott AI (1994) Hydroxylation of piperitone by cell suspension cultures of Cathanranthus roseus. Phytochemistry 37: 1037–1038

    Article  CAS  Google Scholar 

  • Harborne JB (1991) Recent advances in the ecological chemistry of plant terpenoids. In: Harborne JB; Thomas-Barberan FA (eds) Ecological chemistry and biochemistry of plant terpenoids. Clarendon Press, Oxford, pp 399–426

    Google Scholar 

  • Heide L, Berger U (1989) Partial purification and properties of geranyl pyrophosphate synthase from Lithospermum erythrorhizon cell cultures. Arch Biochem Biophys 273: 331–338

    Article  PubMed  CAS  Google Scholar 

  • Heintze A, Gorlach J, Leuschner C, Hoppe P, Hagelstein P, Schulze-Siebert D, Schultz G (1990) Plastidic isoprenoid synthesis during chloroplast development. Change from metabolic autonomy to a division-of-labor stage. Plant Physiol 93: 1121–1127

    Article  PubMed  CAS  Google Scholar 

  • Karp F, Croteau R (1982) Evidence that sabinene is an essential precursor of C(3)-oxygenated thujane monoterpenes. Arch Biochem Biophys 216: 616–624

    Article  PubMed  CAS  Google Scholar 

  • Karp F, Harris JL, Croteau R (1987) Metabolism of monoterpenes: demonstration of the hydroxylation of (+)-sabinene to (+)-cis-sabinol by an enzyme preparation from sage (Salvia officinalis) leaves. Arch Biochem Biophys 256: 179–193

    Article  PubMed  CAS  Google Scholar 

  • Karp F, Mihaliak CA, Harris JL, Croteau R (1990) Monoterpene biosynthesis: specificity of the hydroxylations of (-)-limonene by enzyme preparations from peppermint (Mentha piperita), spearmint (Mentha spicata), and perilla (Perilla frutescens) leaves. Arch Biochem Biophys 276: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Kjonaas R, Croteau R (1983) Demonstration that limonene is the first cyclic intermediate in the biosynthesis of oxygenated p-menthane monoterpenes in Mentha piperita and other Mentha species. Arch Biochem Biophys 220: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Kjonaas R, Martinkus-Taylor C, Croteau R (1982) Metabolism of monoterpenes: conversion of 1-menthone to 1-menthol and d-neomenthol by stereospecific dehydrogenases from peppermint (Mentha piperita) leaves. Plant Physiol 69: 1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Kjonaas RB, Venkatachalam KV, Croteau R (1985) Metabolism of monoterpenes: oxidation of isopiperitenol to isopiperitenone, and subsequent isomerization to piperite- none, by soluble enzyme preparations from peppermint (Mentha piperita) leaves. Arch Biochem Biophys 238: 49–60

    Article  PubMed  CAS  Google Scholar 

  • Kleinig H (1989) The role of plastids in isoprenoid biosynthesis Annu Rev Plant Physiol Plant Mol Biol 40: 39–59

    Article  CAS  Google Scholar 

  • Knudsen JT, Tollsten L, Bergstrom LG (1993) Floral scents - a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33: 253–280

    Article  CAS  Google Scholar 

  • Kuzma J, Fall R (1993) Leaf isoprene emission rate is dependent on leaf development and the level of isoprene synthase. Plant Physiol 101: 435–440

    PubMed  CAS  Google Scholar 

  • Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20: 1223–1280

    Article  CAS  Google Scholar 

  • Lewinsohn E, Gijzen M, Croteau R (1991a) Defense mechanisms of conifers: differences in constitutive and wound-induced monoterpene biosynthesis among species. Plant Physiol 96: 44–49

    Article  PubMed  CAS  Google Scholar 

  • Lewinsohn E, Gijzen M, Savage TJ, Croteau R (1991b) Defense mechanisms of conifers: relationship of monoterpene cyclase activity to anatomical specialization and oleo- resin monoterpene content. Plant Physiol 96: 38–43

    Article  PubMed  CAS  Google Scholar 

  • Lewinsohn E, Gijzen M, Croteau R (1992) Wound-inducible pinene cyclase from grand fir: purification, characterization and renaturation after SDS-PAGE. Arch Biochem Biophys 293: 167–173

    Article  PubMed  CAS  Google Scholar 

  • Lewinsohn E, Savage TJ, Gijzen M, Croteau R (1993) Simultaneous analysis of monoterpenes and diterpenoids of conifer oleoresins. Phytochem Anal 4: 220–225

    Article  CAS  Google Scholar 

  • Lewinsohn E, Worden E, Croteau R (1994) Monoterpene cyclase in grand fir callus cultures: modulation by elicitors and growth regulators. Phytochemistry 36: 651–656

    Article  CAS  Google Scholar 

  • Lupien S, Karp F, Ponnamperuma K, Wildung M, Croteau R (1995) The hydroxylation reactions of monoterpenes. Drug Metab Drug Interact 12: 245–260

    Article  CAS  Google Scholar 

  • Lützow M, Beyer P (1988) The isopentenyl diphosphate isomerase and its relation to the phytoene synthase complex in daffodil chromoplasts. Biochim Biophys Acta 959: 118–126

    Google Scholar 

  • McCaskill D, Croteau R (1993) Procedures for the isolation and quantification of the intermediate of the mevalonic acid pathway. Anal Biochem 215: 142–149

    Article  PubMed  CAS  Google Scholar 

  • McCaskill D, Croteau R (1995) Monoterpene and sequiterpene biosynthesis in glandular trichomes of peppermint (Mentha x piperita) rely exclusively on plastid-derived isopentenyl diphosphate. Planta 197: 49–56

    Article  CAS  Google Scholar 

  • McCaskill D, Gershenzon J, Croteau R (1992) Morphology and monoterpene biosynthetic capabilities of secretory cell clusters isolated from glandular trichomes of peppermint (Mentha piperita L.). Planta 187: 445–454

    Article  CAS  Google Scholar 

  • McGarvey DJ, Croteau R (1995) Terpenoid metabolism. Plant Cell 7: 1015–1026

    Article  PubMed  CAS  Google Scholar 

  • McGeady P, Croteau R (1995) Isolation and characterization of an active-site peptide from a monoterpene cyclase labeled with a mechanism-based inhibitor. Arch Biochem Biophys 317: 149–155

    Article  PubMed  CAS  Google Scholar 

  • McGeady P, Pyun HJ, Coates RM, Croteau R (1992) Biosynthesis of monoterpenes: inhibition of (+)-pinene and (-)-pinene cyclases by thia and aza analogs of the 4R- and 4S-a-terpinyl carbocation. Arch Biochem Biophys 299: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Mettal U, Boland W, Beyer P, Kleinig H (1988) Biosynthesis of monoterpene hydrocarbons by isolated chromoplasts from daffodil flowers. Eur J Biochem 170: 613–616

    Article  PubMed  CAS  Google Scholar 

  • Mgaloblishvili MP, Khetsuriani ND, Kalandadze AN, Sanadze GA (1978) Localization of isoprene biosynthesis in poplar leaf chloroplasts. Fiziol Rast 25: 1055–1061

    CAS  Google Scholar 

  • Mgaloblishvili MP, Litvinov AI, Sanadze GA (1981) Biosynthesis and secretion of isoprene (2-methyl-l,3-butadiene) by isolated chloroplasts of poplar (Populus deltoides) leaves. Dokl Akad Nauk SSSR 259: 766–768

    CAS  Google Scholar 

  • Mihaliak CA, Karp F, Croteau R (1993) Cytochrome P450 terpene hydroxylases. Methods Plant Biochem 9: 261–279

    CAS  Google Scholar 

  • Pauly G, Belingheri L, Marpeau A, Gleizes M (1986) Monoterpene formation by leucoplasts of Citrofortunella mitis and Citrus unshiu: steps and conditions of biosynthesis. Plant Cell Rep 5: 19–22

    Article  CAS  Google Scholar 

  • Perez LM, Pauly G, Carde JP, Belingheri L, Gleizes M (1990) Biosynthesis of limonene by isolated chomoplasts from Citrus sinensis fruits. Plant Physiol Biochem 28: 221–229

    CAS  Google Scholar 

  • Pichersky E, Raguso RA, Lewinsohn E, Croteau R (1994) Floral scent production in Clarkia (Onagraceae). I. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol 106: 1533–1540

    PubMed  CAS  Google Scholar 

  • Pichersky E, Lewinsohn E, Croteau R (1995) Purification and characterization of S-linalool synthase, an enzyme involved in the production of floral scent in Clarkia breweri. Arch Biochem Biophys 316: 803–807

    Article  PubMed  CAS  Google Scholar 

  • Ponnamperuma K, Croteau R (1996) Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes. Arch Biochem Biophys 329: 9–16

    Article  PubMed  CAS  Google Scholar 

  • Poulose AJ, Croteau R (1978) y-Terpinene synthetase: a key enzyme in the biosynthesis of aromatic monoterpenes. Arch Biochem Biophys 191: 400–411

    Google Scholar 

  • Pyun HJ, Wagschal KC, Jung DI, Coates RM, Croteau R (1994) Stereochemistry of the proton elimination in the formation of (+)- and (-)-a-pinene by monoterpene cyclases from sage (Salvia officinalis). Arch Biochem Biophys 308: 488–496

    Article  PubMed  Google Scholar 

  • Raguso RA, Pichersky E (1995) Floral volatiles from Clarkia breweri and C. concinna (Onagraceae): recent evolution of floral scent and moth pollination. Plant Sys Evol 194: 55–68

    Article  CAS  Google Scholar 

  • Rajaonarivony JIM, Gershenzon J, Croteau R (1992a) Characterization and mechanism of (4S)-limonene synthase, a monoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita). Arch Biochem Biophys 296: 49–57

    Article  PubMed  CAS  Google Scholar 

  • Rajaonarivony JIM, Gershenzon J, Miyazaki J, Croteau R (1992b) Evidence for an essential histidine residue in 4S-limonene synthase and other terpene cyclases. Arch Biochem Biophys 299: 77–82

    Article  PubMed  CAS  Google Scholar 

  • Satterwhite DM, Wheeler CJ, Croteau R (1985) Biosynthesis of monoterpenes: enantioselectivity in the enzymatic cyclization of linalyl pyrophosphate to (-)-endo-fenchol. J Biol Chem 260: 13901–13908

    PubMed  CAS  Google Scholar 

  • Savage TJ, Croteau R (1993) Biosynthesis of monoterpenes: regio- and stereochemistry of (+)-3-carene biosynthesis. Arch Biochem Biophys 305: 581–587

    Article  PubMed  CAS  Google Scholar 

  • Savage TJ, Hatch MW, Croteau R (1994) Monoterpene synthases of Pinus contorta and related conifers: a new class of terpenoid cyclase. J Biol Chem 269: 4012–4020

    PubMed  CAS  Google Scholar 

  • Savage TJ, Ichii H, Hume SD, Little DB, Croteau R (1995) Monoterpene synthases from gymnosperms and angiosperms: stereospecificity and inactivation by cysteinyl- and arginyl-directed modifying reagents. Arch Biochem Biophys 320: 257–265

    Article  PubMed  CAS  Google Scholar 

  • Schütte HR (1984) Secondary plant substances - monoterpenes. Prog Bot 46:119–139

    Google Scholar 

  • Silver GM, Fall R (1991) Enzymatic synthesis of isoprene from dimethylallyl diphosphate in aspen leaf extracts. Plant Physiol 97: 1588–1591

    Google Scholar 

  • Soler E, Feron G, Clastre M, Dargent R, Gleizes M, Ambid C (1992) Evidence for a geranyl diphosphate synthase located within the plastids of Vitis vinifera L. cultivated in vitro. Planta 187: 171–175

    Article  CAS  Google Scholar 

  • Spurgeon SL, Sathyamoorthy N, Porter JW (1984) Isopentenyl pyrophosphate isomerase and phenyltransferase from tomato fruit plastids. Arch Biochem Biophys 230: 446–454

    Article  PubMed  CAS  Google Scholar 

  • Suga T, Endo T (1991) Geranyl diphosphate synthase in leaves of Pelargonium roseum Phytochemistry 30: 1757–1761

    Article  CAS  Google Scholar 

  • Suga T, Hirata T, Hamada H, Hurakami S (1988) Biotransformation of 3-oxo-p- menthane derivatives by cultures cells of Nicotiana tabacum. Phytochemistry 27: 1041–1044

    Article  CAS  Google Scholar 

  • Tucker AO, Fairbrothers DE (1990) The origin of Mentha x gracilis (Lamniaceae). I. Chromosome numbers, fertility, and three morphological characters. Econ Bot 42: 183–213

    Article  Google Scholar 

  • Wagschal K, Savage TJ, Croteau R (1991) Isotopically sensitive branching as a tool for evaluating multiple product formation by monoterpene cyclases. Tetrahedron 47: 5933–5944

    Article  CAS  Google Scholar 

  • Wagschal KC, Pyun HJ, Coates RM, Croteau R (1994) Monoterpene biosynthesis: isotope effects associated with bicyclic olefin formation catalyzed by pinene synthases from sage (Salvia officinalis). Arch Biochem Biophys 308: 477–487

    Article  PubMed  Google Scholar 

  • Wheeler CJ, Croteau R (1986a) Monoterpene cyclases: use of noncyclizable substrate analog 6,7-dihydrogeranyl pyrophosphate to incouple the isomerization step of the coupled isomerization-cyclization reaction. Arch Biochem Biophys 246: 733–742

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CJ, Croteau R (1986b) Terpene cyclase catalysis in organic solvent/minimal water media: demonstration and optimization of (+)-a-pinene cyclase activity. Arch Biochem Biophys 248: 429–434

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CJ, Croteau R (1987a) Direct demonstration of the isomerization component of the monoterpene cyclase reacting using a cyclopropylcarbinyl pyrophosphate substrate analog. Proc Natl Acad Sci USA 84: 4856–4859

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CJ (1987b) Monoterpene cyclases. Stereoelectronic requirements for substrate binding and ionization. J Biol Chem 262: 8213–8219

    PubMed  CAS  Google Scholar 

  • Wheeler CJ, Croteau R (1988) Monoterpene cyclases: physiochemical features required for pyrophosphate binding determined from inhibition by structural analogs. Arch Biochem Biophys 260: 250–256

    Article  PubMed  CAS  Google Scholar 

  • Winterhalter P, Katzenberger D, Schreier P (1986) 6,7-Epoxy-linalool and related oxygen terpenoids from Carica papaya fruit. Phytochemistry 25: 1347–1350

    Google Scholar 

  • Zimmermann PR, Chatfield RB, Fishman J, Crutzen PJ, Hanst PL (1978) Estimates on the production of carbon monoxide and hydrogen from oxidation of hydrocarbon emissions from vegetation. Geophys Res Lett 5: 679–682

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schütte, HR. (1998). Secondary Plant Substances: Monoterpenes. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics