Skip to main content

Transgenic Plants in Biochemistry and Plant Physiology

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

This chapter is intended to give a general overview of the use of transgenic plants in plant biology. By means of transgenic plants a specific cellular activity can either be increased or reduced by expression of a transgene either in sense or antisense polarity. The objectives associated with these approaches vary; often the Junction of a gene of interest needs to be elucidated (reversed genetics). Thus, depending on the gene under investigation, aspects in all fields of plant research have been addressed using transgenic plants. For more applied purposes, strategies have been developed to manipulate plant metabolism and metabolic partitioning by the introduction of genes encoding known activities or by the suppression of specific cellular activities with the objective of tailoring biochemical pathways for the production of desired compounds. In addition, transgenic plants have often been created to answer questions in cell biology. For instance, a multitude of plants were transformed with the promoter regions of isolated genes in order to study the temporal and spatial expression of the specific genes. Others were used to investigate the in vivo role of putative targeting and signal sequences, the significance of introns, of protein glycosylation, etc. A vast number of transgenic plants, however, have been designed to obtain plants with high resistant properties against pathogens, in particular against viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G (1994) Binary Ti plasmid vectors. Methods Mol Biol 44: 47–58

    Google Scholar 

  • André D, Colau D, Schell J, van Montagu M, Hernalsteens JP (1986) Gene tagging in plants by a T-DNA insertion mutagen that generates APH (3f)-plant gene fusions. Mol Gen Genet 204: 512–518

    Google Scholar 

  • Aoyama T, Dong CH, Wu Y, Carabelli M, Sessa G, Ruberti I, Morelli G, Chua NH (1995) Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco. Plant Cell 7: 1773–1785

    PubMed  CAS  Google Scholar 

  • Arencibia A, Molina PR, Riva G, Selman-Housein G (1995) Production of transgenic sugarcane (Saccharum offìcinarum L.) plants by intact cell electroporation. Plant Cell Rep 14: 305–309

    CAS  Google Scholar 

  • Artsaenko O, Peisker M, zur Nieden U, Fiedler U, Weiler EW, Müntz K, Conrad U (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty pheno- type in transgenic tobacco. Plant J 8 (5): 745–750

    PubMed  CAS  Google Scholar 

  • Atanassova R, Favet N, Martz F, Chabbert B, Tollier MT, Monties B, Fritig B, Legrand M (1995) Altered lignin composition in transgenic tobacco expressing O- methyltransferase sequences in sense and antisense orientation. Plant J 8: 465–477

    CAS  Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher K, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, Maryland, pp 139–143

    Google Scholar 

  • Baron-Epel O, Gharyal PK, Schindler M (1988) Pectins as mediators of wall porosity in soybean cells. Planta 175: 389–395

    CAS  Google Scholar 

  • Bartels D, Schneider K, Terstappen G, Piatkowski D, Salamini F (1990) Molecular cloning of abscisic acid-modulated genes which are induced during desiccation of the resurrection plant Craterostigma plantagineum. Planta 181: 27–34

    CAS  Google Scholar 

  • Bartels D, Nelson D (1994) Approaches to improve stress tolerance using molecular genetics: commissioned review. Plant Cell Environ 17 (5): 659–667

    CAS  Google Scholar 

  • Bate NJ, Orr J, Weiting NI, Meromi A, Nadler-Hassar T, Doerner PW; Dixon RA, Lamb CJ, Elkind Y (1994) Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate- determining step in natural product synthesis. Proc Natl Acad Sci USA 91: 7608–7612

    PubMed  CAS  Google Scholar 

  • Bates GW, Piastuch W, Riggs CD, Rabussay D (1988) Electroporation for DNA delivery to plant protoplasts. Plant Cell Tissue Organ Cult 12: 212–218

    Google Scholar 

  • Battraw MJ, Hall TC (1990) Promoter p-glucuronidase gene expression in transgenic rice plants. Plant Mol Biol 15: 527–538

    PubMed  CAS  Google Scholar 

  • Baulcombe DC (1996) Mechanisms of pathogen-derived resistance to viruses in transgenic plants. Plant Cell 8 (10): 1833–1844

    PubMed  CAS  Google Scholar 

  • Baulcombe DC, Chapman S, Santa Cruz S (1995) Jellyfish green fluorescent protein as a reporter for virus infections. Plant J 7 (6): 1045–1053

    PubMed  CAS  Google Scholar 

  • Baum TJ, Hiatt A, Parrott WA, Pratt LH, Hussey RS (1996) Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol Plant Microbe Interact 9: 382–387

    CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C-R Acad Sci Paris, Life Sci 316: 1194–1199

    CAS  Google Scholar 

  • Becker D, Brettschneider R, Lorz H (1994) Fertile transgenic wheat from microprojectile bombardment of scutellar tissue. Plant J 5: 299–307

    PubMed  CAS  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound- induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci USA 92: 8675–8679

    PubMed  CAS  Google Scholar 

  • Benfey PN, Chua NH (1989) Regulated genes in transgenic plants. Science 244: 174–181

    PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J 8 (8): 2195–2202

    PubMed  CAS  Google Scholar 

  • Bent A (1996) Plant disease resistance genes: function meets structure. Plant Cell 8: 1757–1771

    PubMed  CAS  Google Scholar 

  • Brzobohaty B, Moore I, Palme K (1994) Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol 26: 1483–1497

    PubMed  CAS  Google Scholar 

  • Carmona MJ, Molina A, Fernández JA, López-Fando JJ, Garcia-Olmedo F (1993) Expression of the a-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogens. Plant J 3 (3): 457–462

    PubMed  CAS  Google Scholar 

  • Casas AM, Kononowicz AK, Zehr UB, Tomes DT, Axtell JD, Butler LG, Bressan RA, Hasegawa PM (1993) Transgenic sorghum plants via microprojectile bombardment. Proc Natl Acad Sci USA 90: 11212–11216

    PubMed  CAS  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green-fluorescent protein as a marker for gene expression. Science 263: 802–805

    PubMed  CAS  Google Scholar 

  • Chang SS, Park SK, Kim BC, Kang BJ, Kim DU, Nam HG (1994) Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta. Plant J 5 (4): 551–558

    CAS  Google Scholar 

  • Chrispeels MJ (1991) Sorting of proteins in the secretory system. Annu Rev Plant Physiol Plant Mol Biol 42: 21–53

    CAS  Google Scholar 

  • Chrispeels MJ, Sonnewald U (1997) Plant transformation and its application to agricultural biotechnology. In: Amaldi F, Attardi G (eds) Frontiers in biology: the genetic language, vol 2. Istitutio della Enciclopedia italiana treccani (in press)

    Google Scholar 

  • Christou P (1996) Transformation technology. Trends Plant Sci 1 (12): 423–431

    Google Scholar 

  • Collinge DB, Slusarenko AJ (1987) Plant gene expression in response to pathogens. Plant Mol Biol 9: 389–410

    CAS  Google Scholar 

  • Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol 23: 567–581

    PubMed  CAS  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89: 4938–4941

    PubMed  CAS  Google Scholar 

  • Crute IR, Pink DA (1996) Genetics and utilization of pathogen resistance in plants. Plant Cell 8: 1747–1755

    PubMed  CAS  Google Scholar 

  • Davey MR, Rech EL, Mulligan BJ (1989) Direct DNA transfer to plant cells. Plant Mol Biol 13: 273–285

    PubMed  CAS  Google Scholar 

  • De Block M, Botterman J, Vandewiele M, Dockx J, Thoen C, Gossete V, Mowa NR, Thompson C, van Montagu M, Leemans J (1987) Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6 (9): 2513–2518

    PubMed  CAS  Google Scholar 

  • Dorbe MF, Caboche M, Daniel-Vedele F (1992) The tomato nia gene complements a Nicotiana plumbaginifolia nitrate reductase-deficient mutant and is properly regulated. Plant Mol Biol 18: 363–375

    PubMed  CAS  Google Scholar 

  • Draper J, Davey MR, Freeman JP, Cocking EC, Cox BJ (1982) Ti plasmid homologous sequences present in tissues from Agrobacterium plasmid-transformed Petunia protoplasts. Plant Cell Physiol 23: 451–458

    CAS  Google Scholar 

  • Dwivedi UN, Campbell WH, Yu J, Datla RS, Bugos RC, Chiang VL, Podila GK (1994) Modification of lignin biosynthesis in transgenic Niotiana through expression of an antisense O-methyltransferase gene from Populus. Plant Mol Biol 26: 61–71

    PubMed  CAS  Google Scholar 

  • Eckes P, Schmitt P, Daub W, Wengenmayer F (1989) Overproduction of alfalfa glutamine synthetase in transgenic tobacco plants. Mol Gen Genet 217: 263–268

    PubMed  CAS  Google Scholar 

  • Edwards JW, Coruzzi GM (1990) Cell-specific gene expression in plants. Annu Rev Plant Physiol Plant Mol Biol 24: 275–303

    CAS  Google Scholar 

  • Estruch J J, Chriqui D, Grossmann K, Schell J, Spena A (1991a) The plant oncongene rolC is responsible for the release of cytokinins from glucoside conjugates. EMBO J 10: 2889–2895

    PubMed  CAS  Google Scholar 

  • Estruch JJ, Schell J, Spena A (1991b) The protein encoded by the rolB plant oncogene hydrolyses indole glucosides. EMBO J 10: 3125–3128

    PubMed  CAS  Google Scholar 

  • Farmer EE, Ryan CA (1990) Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716

    PubMed  CAS  Google Scholar 

  • Fitchen JH, Beachy RN (1993) Genetically engineered protection against viruses in transgenic plants. Annu Rev Microbiol 47: 739–763

    PubMed  CAS  Google Scholar 

  • Fluhr R, Kuhlemeier C, Nagy F, Chua NH (1986) Organ-specific and light-induced expression of plant genes. Science 232: 1106–1112

    PubMed  CAS  Google Scholar 

  • Fobert PR, Labb£ H, Cosmopoulos J, Gottlob-McHugh S, Ouellet T, Hattori J, Sunohara G, Iyer VN, Miki BL (1994) T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. Plant J 6 (4): 565–577

    Google Scholar 

  • Foyer CH, Lefebvre C, Provot M, Vincentz M, Vaucheret H (1993) Modulation of nitrogen and carbon metabolism in transformed Nicotiana plumbaginifolia mutant E23 lines expressing either increased or decreased nitrate reductase activity. Aspects Appl Biol 34: 137–145

    Google Scholar 

  • Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K (1994) Production of fertile transgenic maize plants by silicon carbide whisker-mediated transformation. Plant J 6 (6): 941–948

    CAS  Google Scholar 

  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus DNA. Cell 21: 285–294

    PubMed  CAS  Google Scholar 

  • Frommer WB, Sonnewald U (1995) Molecular analysis of carbon partitioning in solanaceous species. J Exp Bot 46: 587–607

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261: 754–756

    PubMed  CAS  Google Scholar 

  • Gatz C, Frohberg C, Wendenburg R (1992) Stringent repression and homogeneous derepression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J 2: 397–404

    PubMed  CAS  Google Scholar 

  • Gibson S, Falcone DL, Browse J, Somerville C (1994) Use of transgenic plants and mutants to study the regulation and function of lipid composition: commissioned review. Plant Cell Environ 17: 627–637

    CAS  Google Scholar 

  • Glick BS, Beasley EM, Schatz G (1992) Protein sorting in mitochondria. TIBS 17: 453–459

    PubMed  CAS  Google Scholar 

  • Gomord V, Faye L (1996) Signals and mechanisms involved in intracellular transport of secreted proteins in plants. Plant Physiol Biochem 34 (2): 165–181

    CAS  Google Scholar 

  • Good X, Kellogg JA, Wagoner W, Langhoff D, Matsumura W, Bestwick RK (1994) Reduced ethylene synthesis by transgenic tomatoes expressing S-adenosylmethionine hydrolase. Plant Mol Biol 26: 781–790

    PubMed  CAS  Google Scholar 

  • Gray JE, Picton S, Shabbeer J, Schuch W, Grierson D (1992) Molecular biology of fruit ripening and its manipulation with antisense genes. Plant Mol Biol 19: 69–87

    PubMed  CAS  Google Scholar 

  • Gray JE, Picton S, Giovannoni J J, Grierson D (1994) The use of transgenic and naturally occurring mutants to understand and manipulate tomato fruit ripening: commissioned review. Plant Cell Environ 17: 557–571

    CAS  Google Scholar 

  • Guerche P, Charbonnier M, Jouanin L, Tourneur C, Paszkowski J, Pelletier G (1987) Direct gene transfer by electroporation in Brassica nap us. Plant Sci 52: 111–116

    CAS  Google Scholar 

  • Guivarc’h A, Caissard JC, Azmi AA, Elmayan T, Chriqui D, Tepfer M (1996) In situ detection of expression of the gus reporter gene in transgenic plants: ten years of blue genes. Transgenic Res 5: 281–288

    Google Scholar 

  • Hain R, Reif HJ, Krause E, Langebartels R, Kindl H, Vornam B, Wiese W, Schmelzer E, Schreier PH, Stocker RH, Stenzel K (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361: 153–156

    PubMed  CAS  Google Scholar 

  • Halpin C, Knight ME, Foxon GA, Campbell MM, Boudet AM, Boon JJ, Chabbert B, Tollier MT, Schuch W (1994) Manipulation of lignin quality by downregulation of cinnamyl alcohol dehydrogenase. Plant J 6: 339–350

    CAS  Google Scholar 

  • Hamilton AJ, Lycett GW, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346: 284–287

    CAS  Google Scholar 

  • Hammond-Kosack KE, Harrison K, Jones JDG (1994) Developmentally regulated cell death on expression of the fungal avirulence gene Avr9 in tomato seedlings carrying the disease-resistance gene Cf-9. Proc Natl Acad Sci USA 91: 10445–10449

    PubMed  CAS  Google Scholar 

  • Harms K, Atzorn R, Brash A, Kuhn H, Wasternack C, Willmitzer L, Pena-Cortes H (1995) Expression of a flax allene oxide synthase cDNA leads to increased endogenous jas- monic acid (JA) levels in transgenic potato plants but not to a corresponding activation of JA-responding genes. Plant Cell 7: 1645–1654

    PubMed  CAS  Google Scholar 

  • Haseloff J, Amos B (1995) GFP in plants. Trends Genet 11: 328–329

    PubMed  CAS  Google Scholar 

  • Hattori J, Brown D, Mourad G, Labbe H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B (1995) An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet 246: 419–425

    PubMed  CAS  Google Scholar 

  • Herbers K, Sonnewald U (1996) Manipulating metabolic partitioning in transgenic plants. Trends Biotechnol 14 (6): 198–205

    PubMed  CAS  Google Scholar 

  • Hernalsteens JP, van Vliet F, de Beuckeleer M, Depicker A, Engler G, Lemmers M, Holsters M, van Montagu M, Schell J (1980) The Agrobacterium tumefaciens Ti plasmid as a host vector system for introducing foreign DNA in plant cells. Nature 287: 654–656

    CAS  Google Scholar 

  • Herrera-Estrella L, DeBlock M, Messens E, Hernalsteens JP, van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J 2: 987–995

    PubMed  CAS  Google Scholar 

  • Hiatt A (1990) Antibodies produced in plants. Nature 344: 469–470

    PubMed  CAS  Google Scholar 

  • Hiatt A, Cafferkey R, Bowdish K (1989) Production of antibodies in transgenic plants. 342: 76–78

    CAS  Google Scholar 

  • Hilder V, Gatehouse A, Sheerman S, Barker R, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163

    CAS  Google Scholar 

  • Hobbie L, Estelle M (1994) Genetic approaches to auxin action: commissioned review. Plant Cell Environ 17: 525–540

    PubMed  CAS  Google Scholar 

  • Hobbie L, Timpte C, Estelle M (1994) Molecular genetics of auxin and cytokinin. Plant Mol Biol 26: 1499–1519

    PubMed  CAS  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on the separation of the vir and T-region of agrobacteria. Nature 303: 179–180

    CAS  Google Scholar 

  • Hoff T, Truong HN, Caboche M (1994) The use of mutants and transgenic plants to study nitrate assimilation: commissioned review. Plant Cell Environ 17: 489–506

    CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1992) Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15–38

    PubMed  CAS  Google Scholar 

  • Irie K, Hosoyama H, Takeuchi T, Iwabuch K, Watanabe H, Abe M, Abe K, Arai S (1996) Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteinases. Plant Mol Biol 30: 149–157

    PubMed  CAS  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8 (1): 97–109

    PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5: 387–405

    CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: P-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907

    PubMed  CAS  Google Scholar 

  • Jensen RA (1986) The shikimate/arogenate pathway: link between carbohydrate metabolism and secondary metabolism. Physiol Plant 66: 164–168

    CAS  Google Scholar 

  • Johnson R, Narvaez J, An G, Ryan C (1989) Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 86: 9871–9875

    PubMed  CAS  Google Scholar 

  • Katavic V, Haughn GW, Reed D, Martin M, Kunst L (1994) In planta transformation of Arabidopsis thaliana. Mol Gen Genet 245: 363–370

    PubMed  CAS  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1: 86–96

    CAS  Google Scholar 

  • Klee HJ, Hayford MB, Kretzmer KA, Barry GF, Kishore GM (1991) Control of ethylene synthesis by expression of a bacterial enzyme in transgenic tomato plants. Plant Cell 3: 1187–1193

    PubMed  CAS  Google Scholar 

  • Koncz C, Martini N, Mayerhofer R, Koncz-Kalmann Z, Korber H, Redei GP, Schell J (1989) High frequency T-DNA mediated gene tagging in plants. Proc Natl Acad Sci USA 86: 8467–8471

    PubMed  CAS  Google Scholar 

  • Koncz C, Mayerhofer R, Koncz-Kalmann Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) Isolation of a gene encoding a novel chloroplast protein by T-DNA tagging in Arabidopsis thaliana EMBO J 9: 1337–1346

    PubMed  CAS  Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74

    CAS  Google Scholar 

  • Kruse E, Mock HP, Grimm B (1995) Reduction of coproporphyrinogen oxidase level by antisense RNA synthesis leads to deregulated gene expression of plastid proteins and affects the oxidative defense system. EMBO J 14: 3712–3720

    PubMed  CAS  Google Scholar 

  • Last DJ, Brettell RIS, Chamberlain DA, Chaudhury AM, Larkin PJ, Marsh EL, Peacock WJ, Dennis ES (1991) pEmu: an improved promoter for gene expression in cereal cells. Theor Appl Genet 81: 581–588

    Google Scholar 

  • Lea PJ, Forde BG (1994) The use of mutants and transgenic plants to study amino acid metabolism: commissioned review. Plant Cell Environ 17: 541–556

    CAS  Google Scholar 

  • Leidreiter K, Heineke D, Heldt HW, Miiller-Rober B, Sonnewald U, Willmitzer L (1995) Leaf-specific antisense inhibition of starch biosynthesis in transgenic potato plants leads to an increase in photoassimilate export from source leaves during the light period. Plant Cell Physiol 36 (4): 615–624

    CAS  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A knottedl-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876

    PubMed  CAS  Google Scholar 

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and CI. Science 258: 1773–1775

    PubMed  CAS  Google Scholar 

  • Lodge JK, Kaniewski WK, Turner NE (1993) Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci USA 90: 7089–7093

    PubMed  CAS  Google Scholar 

  • Logemann J, Jach G, Tommerup H, Mundy J, Schell J (1992) Expression of a barley ribosome-inactivating protein leads to increased fungal protection in transgenic tobacco plants. Biotechnology 10: 305–308

    CAS  Google Scholar 

  • Lomonosoff GP (1995) Pathogen-derived resistance to plant viruses. Annu Rev Phytopathol 33: 323–343

    Google Scholar 

  • Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Nad Acad Sci USA 91: 7802–7806

    CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) A gene triggering flower formation in Arabidopsis. Nature 377: 522–524

    PubMed  CAS  Google Scholar 

  • Mandel MA, Bowman JL, Kempin SA, Ma H, Meyerowitz EM, Yanofsky MF (1992) Manipulation of flower structure in transgenic tobacco. Cell 71: 133–143

    PubMed  CAS  Google Scholar 

  • Mason HS, Mullet JE (1990) Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell 2: 569–579

    PubMed  CAS  Google Scholar 

  • Matzke MA, Matzke AJM, Eggleston WB (1996) Paramutation and transgene silencing: a common response to invasive DNA? Trends Plant Sci l(ll):382–388

    Google Scholar 

  • McGurl B, Pearce G, Orozco-Cardenas M, Ryan CA (1992) Structure, expression, and antisense inhibition of the systemin precursor gene. Science 255: 1570–1573

    PubMed  CAS  Google Scholar 

  • McGurl B, Orozco-Cardenas M, Pearce G, Ryan CA (1994) Overexpression of the prosys- temin gene in transgenic tomato plants generates a systemic signal that constitutively induces proteinase inhibitor synthesis. Proc Natl Acad Sci USA 91: 9799–9802

    PubMed  CAS  Google Scholar 

  • Mclntyre CL, Bettenay HM, Manners JM (1996) Strategies for the suppression of peroxidase gene expression in tobacco. II. In vivo suppression of peroxidase activity in transgenic tobacco using ribozyme and antisense constructs. Trangenic Res 5: 263–270

    Google Scholar 

  • McNellis TW, von Arnim AG, Deng XW (1994) Overexpression of Arabidopsis COP1 results in partial suppression of light-mediated development: evidence for a light- inactivable repressor of photomorphogenesis. Plant Cell 6: 1391–1400

    PubMed  CAS  Google Scholar 

  • Mett VL, Lochhead LP, Reynolds PHS (1993) Copper-controllable gene expression system for whole plants. Proc Natl Acad Sci USA 90: 4567–4571

    PubMed  CAS  Google Scholar 

  • Meyer P, Saedler H (1996) Homology-dependent gene silencing in plants. Annu Rev Plant Physiol Mol Biol 47: 23–48

    CAS  Google Scholar 

  • Misawa N, Yamano S, Linden H, de Felipe MR, Lucas M, Ikenaga H, Sandmann G (1993) Functional expression of the Erwinia uredovora carotenoid biosynthesis gene Ctrl in transgenic plants showing an increase of beta-carotene biosynthesis activity and resistance to the bleaching herbicide norflurazon. Plant J 4: 833–840

    PubMed  CAS  Google Scholar 

  • Mitra A, Higgins DW, Langenberg WG, Nie H, Sengupta DN, Silverman RH (1996) A mammalian 2-5A system functions as an antiviral pathway in transgenic plants. Proc Natl Acad Sci USA 93: 6780–6785

    PubMed  CAS  Google Scholar 

  • Mol JNM, van der Krol AR, Van Tunen AJ, van Blockland R, de Lange P, Stuitje A (1990) Regulation of plant gene expression by antisense RNA. FEBS Lett 268: 427–430

    PubMed  CAS  Google Scholar 

  • Murphy DJ (1996) Engineering oil production in rapeseed and other oil crops. Trends Biotechnol 14: 206–213

    CAS  Google Scholar 

  • Miiller-Rober B, Kofimann J (1995) Approaches to influence starch quantity and starch quality in transgenic plants: commissioned review. Plant Cell Environ 17: 601–613

    Google Scholar 

  • Muller-Rflber B, la Cognata U, Sonnewald U, Willmitzer L (1994) A truncated version of an ADP-glucose pyrophosphorylase promoter from potato specifies guard cell selective expression in transgenic plants. Plant Cell 6: 601–612

    Google Scholar 

  • Nakamura K, Matsuoka K (1993) Protein targeting to the vacuole in plant cells. Plant Physiol 101: 1–5

    PubMed  CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. Plant Cell 2: 279–289

    PubMed  CAS  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1995) Plant polymers for biodegradable plastics: cellulose, starch and polyhydroxyalkanoates. Mol Breed 1: 105–122

    CAS  Google Scholar 

  • Neuhaus JM (1996) Protein targeting to the plant vacuole. Plant Physiol Biochem 34 (2): 217–221

    CAS  Google Scholar 

  • Oeller PW, Wong LM, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 427–439

    Google Scholar 

  • Ogawa T, Hori T, Ishida I (1996) Virus-induced cell death in plants expressing the mammalian 2′,5′ oligoadenylate system. Nature Biotechnol 14: 1566–1569

    CAS  Google Scholar 

  • Omirulleh S, Ábrahám M, Golovkin M, Stefanov I, Karabaev MK, Mustárdy I, Mórocz S, Dudits D (1993) Activity of a chimeric promoter with the doubled CaMV 35S enhancer element in protoplast-derived cells and transgenic plants in maize. Plant Mol Biol 21: 415–428

    PubMed  CAS  Google Scholar 

  • Pang S, DeBoer DL, Wan Y, Guangning Y, Layton JG, Neher MK, Armstrong CL, Fry JE, Hinchee MAW, Fromm ME (1996) An improved green fluorescent protein gene as a vital marker in plants. Plant Physiol 112: 893–900

    PubMed  CAS  Google Scholar 

  • Perlak FJ, Stone TB, Muskopf YM, Petersen LJ, Parker GB, McPherson SA, Wyman J, Love S, Reed G, Biever D, Fischhoff DA (1993) Genetically improved potatoes: protection from damage by Colorado potato beetles. Plant Mol Biol 22: 313–321

    PubMed  CAS  Google Scholar 

  • Piruzian ES, Mett VL, Kobets NS, Urmeeva FI (1988) The use of bacterial genes encoding herbicide tolerance in constructing transgenic plants. Microbiol Sci 5: 242–248

    PubMed  CAS  Google Scholar 

  • Quail PH (1994) Photosensory perception and signal transduction in plants. Curr Opin Genet Dev 4: 652–661

    PubMed  CAS  Google Scholar 

  • Ramachandran S, Hiratsuka K, Chua NH (1994) Transcription factors in plant growth and development. Curr Opin Genet Div 4: 642–646

    CAS  Google Scholar 

  • Rathore KS, Chowdhury VK, Hodges TK (1993) Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts. Plant Mol Biol 21: 871–884

    PubMed  CAS  Google Scholar 

  • Reich TJ, Iyer VN, Miki BL (1986) Efficient transformation of alfalfa protoplasts by the intranuclear microinjection of Ti plasmids. Biotechnology 4: 1001–1004

    CAS  Google Scholar 

  • Reichel C, Mathur J, Eckes P, Langenkemper K, Koncz C, Schell J, Reiss B, Maas C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci USA 93: 5888–5893

    PubMed  CAS  Google Scholar 

  • Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L (1989) Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J 8: 23–29

    PubMed  CAS  Google Scholar 

  • Rodermel SR, Abbott MS, Bogorad L (1988) Nuclear-organelle interactions: nuclear antisense gene inhibits ribulose bisphosphate carboxylase enzyme levels in transformed tobacco plants. Cell 55: 673–681

    PubMed  CAS  Google Scholar 

  • Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanou Genes Dev 5: 438–446

    PubMed  CAS  Google Scholar 

  • Rommens CMT, Salmerón JM, Oldroyd GED, Staskawicz BJ (1995) Intergenic transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7: 1537–1544

    PubMed  CAS  Google Scholar 

  • Rosso MN, Schouten A, Roosien J, Borst-Vrenssen T, Hussey RS, Gommers FJ, Bakker J, Schots A, Abad P (1996) Expression and functional characterization of a single chain Fv antibody directed against secretions involved in plant nematode infection process. Biochem Biophys Res Commun 220: 255–263

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809–1819

    PubMed  CAS  Google Scholar 

  • Sachs MM, Ho TD (1986) Alteration of gene expression during environmental stress in plants. Annu Rev Plant Physiol 37: 363–376

    CAS  Google Scholar 

  • Sanchez-Serrano, Amati S, Dammann C, Ebneth M, Herbers K, Hildmann T, Lorberth R, Prat S, Willmitzer L (1993) Proteinase inhibitors in the potato response to wounding. In: Chet I (ed) Biotechnology in plant disease control. Wiley-Liss, New York

    Google Scholar 

  • Sato Y, Tamaoki M, Murakami T, Yamamoto N, Murakami-Kano Y, Matsuoka M (1996) Abnormal cell divisions in leaf primordia caused by the expression of the rice homeobox gene OSH1 lead to altered morphology of leaves in transgenic tobacco. Mol Gen Genet 251: 13–22

    PubMed  CAS  Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1991) A steroid-inducible gene expression system for plant cells. Proc Natl Acad Sci USA 88: 10421–10425

    PubMed  CAS  Google Scholar 

  • Schena M, Lloyd AM, Davis RW (1993) The HAT4 gene of Arabidopsis encodes a developmental regulator. Genes Dev 7: 367–379

    PubMed  CAS  Google Scholar 

  • Schiefelbein JW (1994) Cell fate and cell morphogenesis in higher plants. Curr Opin Genet Dev (1994) 4: 647–651

    PubMed  CAS  Google Scholar 

  • Schmidt RC, Muller A, Hain R, Bartling D, Weiler EW (1996) Transgenic tobacco plants expressing the Arabidopsis thaliana nitrilase II enzyme. Plant J 9: 683–691

    PubMed  CAS  Google Scholar 

  • Schmülling T, Schell J, Spena A (1988) Single genes from Agrobacterium rhizogenes influence plant development. EMBO J 7: 2621–2629

    PubMed  Google Scholar 

  • Schmülling T, Schell J, Spena A (1989) Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differently regulated in transgenic plants. Plant Cell 1: 665–670

    PubMed  Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–276

    CAS  Google Scholar 

  • Simpson J, Timko MR, Cashmore AR, Schell J, Van Montagu M, Herrera-Estrella L (1985) Light-inducible and tissue-specific expression of a chimeric gene under control of the 5′ flanking sequence of a pea chlorophyll a/b-binding protein gene. EMBO J 4: 2723–2729

    PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene, knotted-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7: 787–795

    PubMed  CAS  Google Scholar 

  • Sitbon F, Sundberg B, Olsson O, Sandberg G (1991) Free and conjugated indoleacetic acid (IAA) contents in transgenic tobacco plants expressing the iaaM and iaaH IAA biosynthesis genes from Agrobacterium tumefaciens. Plant Physiol 95: 480–485

    PubMed  CAS  Google Scholar 

  • Smeekens S, Weisbeek P, Robinson C (1990) Protein transport into and within chloroplasts. TIBS 15: 73–76

    PubMed  CAS  Google Scholar 

  • Smigocki AC, Owens LK (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85: 5131–5135

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Willmitzer L (1992) Molecular approaches to sink-source interactions. Plant Physiol 99: 1267–1270

    PubMed  CAS  Google Scholar 

  • Sonnewald U, von Schaewen A, Willmitzer L (1990) Expression of mutant patatin protein in transgenic tobacco plants: role of glycans and intracellular location. Plant Cell 2: 345–355

    PubMed  CAS  Google Scholar 

  • Sonnewald U, Lerchl J, Zrenner R, Frommer W (1994) Manipulation of sink-source relations in transgenic plants. Plant Cell Environ 17: 649–658

    CAS  Google Scholar 

  • Spena A, Prinsen E, Fladung M, Schulze SC, Van Onckelen H (1991) The indoleacetic acid-lysine synthetase gene of Pseudomonas syringae subsp. savastanoi induces developmental alterations in transgenic tobacco and potato plants. Mol Gen Genet 227: 205–212

    PubMed  CAS  Google Scholar 

  • Staswick PE (1990) Novel regulation of vegetative storage protein genes. Plant Cell 2: 1–6

    PubMed  CAS  Google Scholar 

  • Stitt M, Sonnewald U (1995) Regulation of metabolism in transgenic plants. Annu Rev Plant Mol Biol 46: 341–368

    CAS  Google Scholar 

  • Stockhaus J, Schell J, Willmitzer L (1989) Correlation of the expression of the nuclear photosynthetic gene ST-LS1 with the presence of chloroplasts. EMBO J 8: 2445–2451

    PubMed  CAS  Google Scholar 

  • Suter-Crazzolara C, Klemm M, Reiss B (1995) Reporter genes. Methods Cell Biol 50: 425–438

    PubMed  CAS  Google Scholar 

  • Tamura K, Kimura M, Yamaguchi I (1995) Blasticidin S deaminase gene (BSD): a new selection marker gene for transformation of Arabidopsis thaliana and Nicotiana tabacum. Biosci Biotechnol Biochem 59: 2336–2338

    PubMed  CAS  Google Scholar 

  • Tavladoraki P, Benvenuto E, Trinca S, De Martinis D, Cattaneo A, Galeffi P (1993) Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366: 469–472

    PubMed  CAS  Google Scholar 

  • Terras FRG, Eggermont K, Kovaleva V, Raikhel NV, Osborn RW, Kester A, Rees SB, Torrekens S, Leuven FV, Vanderleyden J, Cammue BPA, Broekaert WF (1995) Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7: 573–588

    PubMed  CAS  Google Scholar 

  • Thilmony RL, Chen Z, Bressan RA, Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv tabaci expressing avrPto. Plant Cell 7: 1529–1536

    PubMed  CAS  Google Scholar 

  • Uberlacker B, Klinge B, Werr W (1996) Ectopic expression of the maize homeobox genes ZmHoxla or ZmHoxlb causes pleiotropic alterations in the vegetative and floral development of transgenic tobacco. Plant Cell 8. 349–362

    PubMed  CAS  Google Scholar 

  • Urwin PE, Atkinson HJ, Waller DA, McPherson MJ (1995) Engineered oryzacystatin-I expressed in transgenic hairy roots confers resistance to Globodera pallida. Plant J 8: 121–131

    PubMed  CAS  Google Scholar 

  • Van der Krol AR, Lenting PE, Veenstra J, van der Meer IM, Koes RE, Gerats AGM, Mol JNM, Stuitje AR (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333: 866–869

    Google Scholar 

  • Van der Salm T, Bosch D, Honée G, Feng L, Munsterman E, Bakker P, Stiekema WJ, Visser B (1994) Insect resistance of transgenic plants that express modified Bacillus thuringiensis crylA(b) and crylC genes: a resistance management strategy. Plant Mol Biol 26: 51–59

    PubMed  Google Scholar 

  • Vick VA, Zimmerman DC (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol 75: 458–461

    PubMed  CAS  Google Scholar 

  • Voelker TA, Herman EM, Chrispeels MJ (1989) In vitro mutated phytohemagglutinin genes expressed in tobacco seeds: role of glycans in protein targeting and stability. Plant Cell 1: 95–104

    PubMed  CAS  Google Scholar 

  • Von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180: 535–545

    Google Scholar 

  • Walden R, Koncz C, Schell J (1990) The use of gene vectors in plant molecular biology. Methods Mol Cell Biol 1: 175–194

    CAS  Google Scholar 

  • Watanabe Y, Ogawa T, Takahashi H, Ishida I, Takeuchi Y, Yamamoto M, Okada Y (1995) Resistance against multiple plant viruses in plants mediated by a double stranded- RNA specific ribonuclease. FEBS Lett 372: 165–168

    PubMed  CAS  Google Scholar 

  • Ward ER, Ryals JA, Miflin BJ (1993) Chemical regulation of transgene expression in plants. Plant Mol Biol 22: 361–366

    PubMed  CAS  Google Scholar 

  • Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377: 495–500

    PubMed  CAS  Google Scholar 

  • White RF (1979) Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99: 410–412

    PubMed  CAS  Google Scholar 

  • Whitelam GC, Harberd NP (1994) Action and function of phytochrome family members revealed through the study of mutant and transgenic plants: commissioned review. Plant Cell Environ 17: 615–625

    CAS  Google Scholar 

  • Whitham S, McCormick S, Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93: 8776–8781

    PubMed  CAS  Google Scholar 

  • Wilde RJ, Schufflebottom E, Cooke S, Jasinska I, Merryweather A, Beri R, Brammar WJ, Bevan MW, Schuch W (1992) Control of gene expression in tobacco cells using a bacterial operator-repressor system. EMBO J 11: 1251–1259

    PubMed  CAS  Google Scholar 

  • Wilson TMA (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci USA 90: 3134–3141

    PubMed  CAS  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Leemans J, van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2: 2143–2150

    PubMed  CAS  Google Scholar 

  • Zangh W, McElroy D, Wu R (1991) Analysis of rice Actl 5′region activity in transgenic rice plants. Plant Cell 3: 1155–1165

    Google Scholar 

  • Zhu B, Chen THH, Li PH (1996) Analysis of late-blight disease resistance and freezing tolerance in transgenic potato plants expression sense and antisense genes from an osmotin-like protein. Planta 198: 70–77

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herbers, K., Sonnewald, U. (1998). Transgenic Plants in Biochemistry and Plant Physiology. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics