Skip to main content

Cytoskeleton: Microtubules

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

A decade has passed since the last survey regarding microtubular research in plant cells and tissue was addressed in this series (Kristen 1986). During that time microtubule research gained from two major advancements: a better three-dimensional resolution of the microtubular arrays by confocal laser scanning microscopy and the commencement of the molecular techniques in this area. Both these techniques led to a new challenging move as regards studies on occurrence, arrangement and function of cytoskeletal elements in plant cells. This progress is reflected by an increase in review articles on particular aspects of this research field (Lloyd 1987,1994; Derksen and Emons 1990; Derksen et al. 1990; Cyr 1991a,b; Hussey PJ et al. 1991; Morejohn 1991; Palevitz 1991; Wada and Murata 1991; Wick 1991a,b; Williamson 1991; Fosket and Morejohn 1992; Lambert 1993; Goddard et al. 1994; Lambert and Lloyd 1994; Cyr and Palevitz 1995). Microtubules can be categorized into four characteristic arrays regarding their arrangement during the life cycle of a plant cell: the array during interphase or in stationary cells, the preprophase band, the mitotic spindle, and the phragmoplast during cytokinesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe S, Ito Y, Davies E (1992) Co-sedimentation of actin, tubulin and membranes in the cytoskeleton fraction from peas and mouse 3T3 cells. J Exp Bot 252: 941–949

    Google Scholar 

  • Abe S, Ito Y, Davies E (1995) Dynamic changes in the arrangement of cortical microtubules in conifer tracheids during differentiation. Planta 197: 418–421

    CAS  Google Scholar 

  • Akashi T, Shibaoka H (1987) Effects of gibberellin on the arrangement and the cold stability of cortical microtubules in epidermal cells of pea internodes. Plant Cell Physiol 28: 339–348

    CAS  Google Scholar 

  • Asada T, Shibaoka H (1994) Isolation of polypeptides with microtubule-translocating activity from phragmoplasts of tobacco BY-2 cells. J Cell Sci 107:2249–2257

    PubMed  CAS  Google Scholar 

  • Asada T, Sonobe S, Shibaoka H (1991) Microtubule translocation in the cytokinetic apparatus of cultured tobacco cells. Nature 350: 238–241

    CAS  Google Scholar 

  • Baluska F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth and tissue differentiation in roots of maize (Zea mays L.). J Cell Sci 103: 191–200

    Google Scholar 

  • Baskin TI, Busby CH, Fowke LC, Sammut M, Gubler F (1992) Improvements in immunostaining samples embedded in methacrylate: localization of microtubules and other antigens throughout developing organs in plants of diverse taxa. Planta 187: 405–413

    Google Scholar 

  • Bergfeld R, Speth V, Schopfer P (1988) Reorientation of microfibrils and microtubules at the outer epidermal wall of maize coleoptiles during auxin-mediated growth. Bot Acta 101: 57–67

    CAS  Google Scholar 

  • Cai G, Bartalesi A, Del Casino C, Moscatelli A, Tiezzi A, Cresti M (1993) The kinesin-immunoreactive homologue from Nicotiana tabacum pollen tubes - biochemical properties and subcellular localization. Planta 191: 496–506

    CAS  Google Scholar 

  • Carpenter JL, Ploense SE, Snustad DP, Silflow CD (1992) Preferential expression of an alpha tubulin gene of Arabidopsis in pollen. Plant Cells 4: 557–571

    CAS  Google Scholar 

  • Carpenter JL, Kopczak SD, Snustad DP, Silflow CD (1993) Semiconstitutive expression on an Arabidopsis thaliana α-tubulin gene. Plant Mol Biol 21: 937–942

    PubMed  CAS  Google Scholar 

  • Chan J, Rutten T, Lloyd CW (1996) Isolation of microtubule-associated proteins from carrot cytoskeletons: a 120-kDa map decorates all four microtubule arrays. Plant J 10: 251–259

    PubMed  CAS  Google Scholar 

  • Chevrier V, Komesli S, Smit AC, Vantard M, Lambert A-M (1992) A monoclonal antibody, raised against mammalian centrosomes and screened by recognition of plant microtubule organizing centers, identifies a pericentriolar component in different cells types. J Cell Sci 101: 823–835

    PubMed  Google Scholar 

  • Chu B, Snustad DP, Carter JB (1993) Alteration of ß-tubuli gene expression during low temperature exposure in leaves of Arabidopsis thaliana. Plant Physiol 103: 371–377

    PubMed  CAS  Google Scholar 

  • Cleveland DW (1993) Tubulin and associated proteins. In: Kreis T, Vale R (eds) Guidebook to the cytoskeleton and motor proteins. Oxford University Press, New York, pp 101–105

    Google Scholar 

  • Colasanti J, Cho SO, Wick SM, Sundaresan V (1993) Localization of the functional p34cdc2 homologue of maize in dividing cells of the root tip and stomatal complex: association with the predicted division site in premitotic cells. Plant Cell 5: 1101–1111

    PubMed  CAS  Google Scholar 

  • Cyr RJ (1991a) Calcium-calmodulin affects microtubule stability in lysed protoplasts. J Cell Sci 100: 311–318

    CAS  Google Scholar 

  • Cyr RJ (1991b) In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Microtubule-associated proteins in higher plants. Academic Press, London, pp 57–67

    Google Scholar 

  • Cyr RJ (1994) Microtubules in plant morphogenesis: role of cortical array. Annu Rev Cell Biol 10: 153–180

    PubMed  CAS  Google Scholar 

  • Cyr RJ, Palevitz BA (1989) Microtubule-binding proteins from carrots. I. Initial characterization and microtubule bundling. Planta 177: 245–260

    CAS  Google Scholar 

  • Cyr RJ, Palevitz BA (1995) Organization of cortical microtubules in plant cells. Curr Opin Cell Biol 7: 65–71

    PubMed  CAS  Google Scholar 

  • Cyr RJ, Bustos MM, Guiltinan MJ, Fosket DE (1987) Developmental modulation of tubulin protein and mRNA levels during somatic embryogenesis in cultured carrot cells. Planta 171: 365–376

    CAS  Google Scholar 

  • Dawson PJ, Llyod CW (1985) Identification of multiple tubulins in taxol microtubules purified from carrot suspension cells. EMBO J 4: 2451–2455

    PubMed  CAS  Google Scholar 

  • Derksen J, Emons AM (1990) Microtubules in tip growth systems. In: Heath IB (ed) Tip growth in plant and fungal cells. Academic Press, London, pp 147–181

    Google Scholar 

  • Derksen J, Wilms FHA, Pierson ES (1990) The plant cytoskeleton: its significance in plant development. Acta Bot Neerl 39: 1–18

    CAS  Google Scholar 

  • Ding B, Turgeon R, Parthasarathy MV (1991) Microfilaments in the preprophase band of freeze substituted tobacco root cells. Protoplasma 165: 209–211

    Google Scholar 

  • Duckett CM, Lloyd CW (1994) Gibberellic acid-induced microtubule reorientation in dwarf peas is accompanied by rapid modification by an α-tubulin isotype. Plant J 5: 363–372

    CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994a) A calmodulin-sensitive interaction between microtubules and a higher plant homolog of elongation factor-1α. Plant Cell 6: 893–905

    PubMed  CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994b) Beyond translation elongation factor-1α (EF-1α) and the cytoskeleton. Protoplasma 180: 99–105

    CAS  Google Scholar 

  • Durso NA, Cyr RJ (1994c) A MAP by another name would still bind to microtubules. Plant Cell 6: 1699–1702

    PubMed  CAS  Google Scholar 

  • Durso NA, Leslie JD, Cyr RJ (1996) In situ immunocytochemical evidence that a homolog of protein translation factor EF-1α is associated with microtubules in carrot cells. Protoplasma 190: 141–150

    CAS  Google Scholar 

  • Eleftheriou EP, Palevitz BA (1992) The effect of cytochalasin D on preprophase band organization, F-actin and division site in Allium. J Cell Sci 103: 989–998

    CAS  Google Scholar 

  • Falconer MM, Seagull RW (1988) Xylogenesis in tissue culture. III. Continuing deposition during tracheary element development. Protoplasma 144: 10–16

    Google Scholar 

  • Falconer MM, Donaldson G, Seagull RW (1988) MTOCs in higher plant cells: an immunofluorescent study of microtubule assembly sites following depolymerization. Protoplasma 144: 46–55

    Google Scholar 

  • Flanders DJ, Rawlins DJ, Shaw PJ, Lloyd CW (1990) Re-establishment of the interphase microtubule array in vacuolated plant cells studied by confocal microscopy and 3-D imaging. Development 110: 897–904

    Google Scholar 

  • Fosket DE, Morejohn LC (1992) Structural and functional organization of tubulin. Annu Rev Plant Physiol Plant Mol Biol 43: 201–240

    CAS  Google Scholar 

  • Fuchs U, Moeeps B, Maucher HP, Schraudolf H (1993) Isolation, characterization and sequence of a cDNA encoding χ-tubulin protein from the fern Anemia phyllitidis L. Sw. Plant Mol Biol 23: 595–603

    PubMed  CAS  Google Scholar 

  • Fukuda H, Kobayashi H (1989) Dynamic organization of the cytoskeleton during tracheary-element differentiation. Dev Growth Diff 31: 9–16

    Google Scholar 

  • Geahlen RL, Haley BE (1979) Use of a GTP photoaffmity probe to resolve aspects of the mechanism of tubulin polymerization. J Biol Chem 254: 11982–11987

    PubMed  CAS  Google Scholar 

  • Giddings TH, Staehelin LA (1991) Microtubule mediated control of microfibril deposition: a re-examination of the hypothesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 85–99

    Google Scholar 

  • Goddard RH, Wick SM, Silflow CD, Snustad DP (1994) Microtubule components of the plant cytoskeleton. Plant Physiol 104: 1–6

    PubMed  CAS  Google Scholar 

  • Green PB, Selker ML (1991) Mutual alignments of cell walls, cellulose, and cytoskeletons: their role in meristems. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 303–322

    Google Scholar 

  • Han I-S, Jongewaard I, Fosket DE (1991) Limited expression of a diverged ß-tubulin gene during soybean (Glycine max L.) development. Plant Mol Biol 16: 225–234

    PubMed  CAS  Google Scholar 

  • Hasezawa S, Marc J, Palevitz BA (1991) Microtubule reorganization during the cell cycle in synchronized BY-2 tobacco suspensions. Cell Motil Cytoskeleton 18: 94–106

    CAS  Google Scholar 

  • Hepler PK, Cleary AL, Gunning BES, Wadsworth P, Wasteneys GO (1993) Cytoskeletal dynamics in living plant cells. Cell Biol Int Rep 17: 127–142

    Google Scholar 

  • Hoffman JC, Vauhn KC, Joshi HC (1994) Structural and immunolochemical characterization of microtubule organizing centers in pteridophyte spermatogenous cells. Protoplasma 179: 46–60

    Google Scholar 

  • Holzbaur ELF, Mikami A, Paschal BM, Vallee RB (1994) Molecular characterization of cytoplasmic dynein. In: Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 251–267

    Google Scholar 

  • Hugdahl JD, Bokros CL, Hanesworth VR, Aalund GR, Morejohn LC (1993) Unique functional characteristics of the polymerization and MAP binding regulatory domains of plants tubulin. Plant Cell 5: 1063–1080

    PubMed  CAS  Google Scholar 

  • Hush JM, Overall R (1991) Electrical and mechanical fields orient cortical microtubules in higher plant tissues. Cell Biol Int Rep 15: 551–560

    Google Scholar 

  • Hush JM, Wadsworth P, Callaham DA, Hepler PK (1994) Quantification of microtubule dynamics in living plant cells using fluorescence redistribution after photobleaching. J Cell Sci 107: 775–784

    PubMed  Google Scholar 

  • Hussey PJ, Gull K (1985) Multiple isotypes of α-and β-tubulin in the plant Phaseolus vulgaris. FEBS Lett 181: 113–118

    CAS  Google Scholar 

  • Hussey PJ, Traas J A, Gull K, Lloyd CW (1987) Isolation of cytoskeletons from synchronized plant cells: the interphase microtubule array utilises multiple tubulin isotypes. J Cell Sci 88: 225–230

    CAS  Google Scholar 

  • Hussey PJ, Lloyd CW, Gull K (1988) Differential and developmental expression of β- tubulins in a higher plant. J Biol Chem 263: 5474–5479

    PubMed  CAS  Google Scholar 

  • Hussey PJ, Snustad DP, Silflow CD (1991) Tubulin gene expression in higher plants. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 15–27

    Google Scholar 

  • Ishida K, Katsumi M (1991) Immunfluorescence microscopical observation of cortical microtubule arrangement in root cells of Pisum sativum L. var. Alaska. Plant Cell Physiol 27: 939–945

    Google Scholar 

  • Ishida K, Katsumi M (1992) Effects of gibberellin and abscisic acid on the cortical microtubule orientation in hypocotyl cells of light-grown cucumber seedlings. Int J Plant Sci 153: 155–163

    CAS  Google Scholar 

  • Iwata K, Hogetsu T (1989) Orientation of wall microfibrils in Avena coleoptiles and mesocotyls and in Pisum epicotyls. Plant Cell Physiol 30: 1011–1016

    CAS  Google Scholar 

  • Jiang C-H, Sonobe S (1993) Identification and preliminary characterization of a 65 kDa higher-plant microtubule associated protein. J Cell Sci 105: 891–901

    CAS  Google Scholar 

  • Joshi HC, Palevitz BA (1996) γ-Tubulin and microtubule organization in plants. Trends Cell Biol 6: 41–44

    PubMed  CAS  Google Scholar 

  • Joyce CM, Villemur R, Snustad DP, Silflow CD (1992) Tubulin gene expression in maize (Zea mays L.): change in isotype expression along the developmental axis of seedling root. J Mol Biol 227: 97–107

    PubMed  CAS  Google Scholar 

  • Kerr GP, Carter JV (1990) Tubulin isotypes in rye roots are altered during cold acclimation. Plant Physiol 93: 83–88

    PubMed  CAS  Google Scholar 

  • Kopczak SD, Haas NA, Hussey PJ, Silflow CD, Snustad DP (1992) The small genome of Arabidopsis contains at least six expressed α-tubulin genes. Plant Cell 4: 539–547

    PubMed  CAS  Google Scholar 

  • Kristen U (1986) General and molecular cytology: the cytoskeleton: microtubules. Prog Bot 48: 1–22

    CAS  Google Scholar 

  • Lambert A-M (1993) Microtubule-organizing centers in higher plants. Curr Opin Cell Biol 5: 116–122 (1993)

    PubMed  CAS  Google Scholar 

  • Lambert A-M, Lloyd CW (1994) The higher plant microtubule cylce. In: Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 325–341

    Google Scholar 

  • Lambert A-M, Vantard M, Schmit AC, Stoeckel H (1991) Mitosis in plants. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 199–208

    Google Scholar 

  • Ledbetter MC, Porter KR (1963) A ‘microtubule’ in plant cell fine structure. J Cell Biol 19: 239–250

    PubMed  CAS  Google Scholar 

  • Leu W-M, Cao X-L, Wilson TJ, Snustad DP, Chua N-H (1995) Phytochrome A and phyto- chrome B mediate the hypocotyl-specific downregulation of TUB1 by light in Arabidopsis. Plant J 7: 2187–2196

    CAS  Google Scholar 

  • Little M, Seehaus T (1988) Comparative analysis of tubulin sequences. Comp Biochem Physiol [3] 90: 665–670

    Google Scholar 

  • Little M, Luduena RF, Morejohn LC, Asnes C, Hoffman E (1984) The tubulins of animals, plants, fungi and protists. Implications for metazoan evolution. Origins Life 13: 169–176

    CAS  Google Scholar 

  • Liu B, Marc J, Joshi HC, Palevitz BA (1993) A χ-tubulin-related protein associated with the microtubule arrays of higher plants in a cell cycle-dependent manner. J Cell Sci 104: 1217–1228

    PubMed  CAS  Google Scholar 

  • Lui B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) χ-Tubulin in Arabidopsis - gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6: 303–314

    Google Scholar 

  • Liu B, Joshi HC, Palevitz BA (1995) Experimental manipulation of χ-tubulin distribution in Arabidopsis using antimicrotubular drugs. Cell Motil Cytoskeleton 31: 113–129

    PubMed  CAS  Google Scholar 

  • Liu B, Cyr RJ, Palevitz BA (1996) A kinesin-like protein KatAp, in the cells of Arabidopsis and other plants. Plant Cell 8: 119–132

    PubMed  CAS  Google Scholar 

  • Liu GQ, Cai G, Del Casino C, Tiezzi A, Cresti M (1994) Kinesin-related polypeptide is associated with vesicles from Corylus avellana pollen. Cell Motil Cytoskeleton 29: 155–166

    PubMed  CAS  Google Scholar 

  • Lloyd CW (1987) The plant cytoskeleton: the impact of fluorescence microscopy. Annu Rev Plant Physiol 38: 119–138

    CAS  Google Scholar 

  • Lloyd CW (1989) The plant cytoskeleton. Curr Opin Cell Biol 1: 30–35

    PubMed  CAS  Google Scholar 

  • Lloyd CW (1994) Why should stationary plant cells have such dynamic microtubules? Mol Biol Cell 5: 1277–1280

    PubMed  CAS  Google Scholar 

  • Lloyd DW, Venverloo CJ, Goodbody KC, Shaw PJ (1991) Confocal laser microscopy and three-dimensional reconstruction of nucleus-associated microtubules in the division plane of vacuolated plant cells. J Microsc 166: 99–109

    Google Scholar 

  • Lloyd CW, Shaw PJ, Warn RM, Yuan M (1996) Gibberellic acid-induced reorientation of cortical microtubules in living plant cells. J Microsc 181: 140–144

    Google Scholar 

  • Mandelkow E, Mandelkow EM (1995) Microtubules and microtubule-associated proteins. Curr Opin Cell Biol 7: 72–81

    PubMed  CAS  Google Scholar 

  • Mandelkow E, Song YH, Mandelkow EM (1995) The microtubule lattice - dynamic instability of concepts. Trends Cell Biol 5: 262–266

    PubMed  CAS  Google Scholar 

  • Marc J, Mineyuki Y, Palevitz BA (1989) A planar microtubule organizing zone in guard cells of Allium: experimental depolymerization and reassembly of microtubules. Planta 179: 516–529

    Google Scholar 

  • Margolis RL, Rauch CT, Wilson L (1980) Mechanism of colchicine dimer addition to microtubule ends: implications for the microtubule polymerization mechanism. Biochemistry 19: 5550–5557

    PubMed  CAS  Google Scholar 

  • Mayumi K, Shibaoka H (1995) A possible double role for brassinolide in the reorientation of cortical microtubules in the epidermal cells of azuki bean epicotyls. Plant Cell Physiol 36: 173–181

    CAS  Google Scholar 

  • McDonald Ar, Liu B, Joshi HC, Palevitz BA (1993) χ-tubulin is associated with a cortical- microtubule-organizing zone in the developing guard cells of Allium cepa L. Planta 191: 357–361

    Google Scholar 

  • Mendu N, Silflow CD (1993) Elevated levels of tubulin transcripts accompany the GA3-induced elongation of oat internode segments. Plant Cell Physiol 34: 973–983

    CAS  Google Scholar 

  • Mineyuki Y, Palevitz BA (1990) Relationship between preprophase band organization, F- actin and the division site in Allium. Fluorescence and morphogenetic studies on cytochalasin-treated cells. J Cell Sci 97: 283–295

    CAS  Google Scholar 

  • Mineyuki Y, Gunning BES (1990) A role for preprophase bands of microtubules in maturation of new cell walls, and a general proposal on the function of preprophase band sites in cell division in higher plants. J Cell Sci 97: 527–537

    Google Scholar 

  • Mineyuki Y, Yamashita M, Nagahama Y (1991) p34cdc2 kinase homologue in the preprophase band. Protoplasma 162: 182–186

    Google Scholar 

  • Mita T, Shibaoka H (1984) Gibberellin stabilizes microtubules in onion leaf sheath cells. Protoplasma 119: 100–109

    Google Scholar 

  • Mitsui H, Nakatani K, Yamaguchi-Shinozaki K, Shinozaki K, Nishikawa K, Takahashi H (1994) Sequencing and characterization of the kinesin-related genes katB and katC of Arabidopsis thaliana. Plant Mol Biol 25: 865–876

    PubMed  CAS  Google Scholar 

  • Mitsui H, Hasezawa S, Nagata T, Takahashi H (1996) Cell cycle-dependent accumulation of a kinesin-like protein, Kat B/C, in synchronised tobacco BY-2 cells. Plant Mol Biol 30: 177–181

    PubMed  CAS  Google Scholar 

  • Mizuno K (1993) Microtubule nucleation sites on nuclei of higher plant cells. Protoplasma 173: 77–85

    Google Scholar 

  • Mizuno K (1994) Inhibition of gibberellin-induced elongation, reorientation of cortical microtubules and change of isoform of tubulin in epicotyl segments of azuki bean by protein kinase inhibitors. Plant Cell Physiol 35: 1149–1157

    CAS  Google Scholar 

  • Montoliu L, Rigau J, Puigdomenech P (1989) A tandem of a-tubulin genes preferentially expressed in radicular tissues from Zea mays. Plant Mol Biol 14: 1–15

    Google Scholar 

  • Montoliu L, Puigdomenech P, Rigau J (1990) The tubα3 gene from Zea mays: structure and expression in dividing plant tissues. Gene 94: 201–207

    PubMed  CAS  Google Scholar 

  • Morejohn LC (1991) The molecular pharmacology of plant tubulin and microtubules. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 29–43

    Google Scholar 

  • Morejohn LC (1994) Microtubule binding proteins are not necessarily microtubule-associated proteins. Plant Cell 6: 1696–1698

    PubMed  CAS  Google Scholar 

  • Moscatelli A, DelCasino C, Lozzi L, Cai G, Scali M, Tiezzi A, Cresti M (1995) High molecular weight polypeptides related to dynein heavy chains in Nicotiana tabacum pollen tubes. J Cell Sci 108: 1117–1125

    PubMed  CAS  Google Scholar 

  • Multigner L, Gagnon J, Van Dorsselaer A, Job D (1992) Stabilization of sea urchin flagellar microtubules by histone HI. Nature 360: 33–39

    PubMed  CAS  Google Scholar 

  • Nagata T, Kumagai F, Hasezawa S (1994) The origin and organization of cortical microtubules during the transition between M and G1 phase of the cell cycle as observed in highly synchronized cells of tobacco BY-2. Planta 193: 567–572

    CAS  Google Scholar 

  • Nick P, Lambert A-M, Vantard M (1995) A microtubule-associated protein in maize is expressed during phytochrome-induced cell elongation. Plant J 8: 835–844

    PubMed  CAS  Google Scholar 

  • Nishihama R, Banno H, Shibata W, Hisano K, Nakashima M, Usami S, Machida Y (1995) Plant homologues of components of MAPK (mitogen-activated protein kinase) signal pathways in yeast and animal cells. Plant Cell Physiol 36: 749–757

    PubMed  CAS  Google Scholar 

  • Olmsted J (1986) Microtubule-associated proteins. Annu Rev Cell Biol 2: 421–457

    PubMed  CAS  Google Scholar 

  • Pal M, Roychaudbury A, Pal A, Biswas S (1990) A novel tubulin from Mimosa pudica - purification and characterization. Eur J Biochem 192: 329–335

    PubMed  CAS  Google Scholar 

  • Palevitz BA (1991) Microtubule rearrangment, translocation and reutilization. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 45–55

    Google Scholar 

  • Panteris E, Galatis B, Apostolakos P (1991) Patterns of cortical and perinuclear microtubule organization in meristematic root cells of Adiantum cappilus veneris. Protoplasma 165: 173–188

    Google Scholar 

  • Pereira A, Goldstein LSB (1994) The kinesin superfamily. In: Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 269–284

    Google Scholar 

  • Picquot P, Vantard M, Amiri I, Fausser L, Lambert A-M (1988) Amino acid composition and proteolytic generated domains of higher plant tubulin. Biochem Biophys Res Commun 156: 304–311

    PubMed  CAS  Google Scholar 

  • Pirollet F, Derancourt J, Haiech J, Job D, Margolis RL (1992) Ca2+-calmodulin regulated effectors of microtubule stability in bovine brain. Biochemistry 31: 8849–8855

    PubMed  CAS  Google Scholar 

  • Quader H, Deichgraber G, Schnepf E (1986) The cytoskeleton in Cobea seed hairs: patterning during cell-wall differentiation. Planta 168: 1–10

    CAS  Google Scholar 

  • Quatrano RS (1987) The role of hormones during seed development. In: Davies PJ (ed) Plant hormones and their role in plant growth and development. Nijhoff, Dordrecht, pp 494–514

    Google Scholar 

  • Raff EC (1994) The role of multiple tubulin isoforms in cellular microtubule function. In: Hyams JS, Lloyd CW (eds) Microtubules. Wiley-Liss, New York, pp 85–109

    Google Scholar 

  • Reddy ASN, Safadi F, Narasimhulu SB, Golovkin M, Hu X (1996a) A novel plant calmodulin-binding protein with a kinesin heavy chain motor domain. J Biol Chem 271: 7052–7060

    PubMed  CAS  Google Scholar 

  • Reddy ASN, Narasimhulu SB, Safadi F, Golovkin M (1996b) A plant kinesin heavy chain-like protein is a calmodulin-binding protein. Plant J 10: 9–21

    PubMed  CAS  Google Scholar 

  • Roberts IN, Lloyd CW, Roberts KR (1985) Ethylene-induced microtubule reorientations: mediation by helical arrays. Planta 164: 439–447

    Google Scholar 

  • Robinson DG, Quader H (1982) The microtubule-microfibril syndrome. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 109–126

    Google Scholar 

  • Roland JC, Vian B (1979) The wall of the growing plant cell: its three dimensional organization. Int Rev Cytol 61: 129–166

    Google Scholar 

  • Sakiyama M, Shibaoka H (1990) Effects of abscisic acid on the orientation and cold stability of cortical microtubules in epicotyl cells of the dwarf pea. Protoplasma 157: 165–171

    CAS  Google Scholar 

  • Sakiyama-Sogo M, Shibaoka H (1993) Gibberellin A3 and abscisic acid cause the reorientation of cortical microtubules in epicotyl cells of the decapitated dwarf pea. Plant Cell Physiol 34: 431–437

    CAS  Google Scholar 

  • Samuels AL, Giddings TH, Staehhelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130: 1345–1357

    PubMed  CAS  Google Scholar 

  • Sawidis T, Quader H, Bopp M, Schnepf E (1991) Presence and absence of the preprophase band of microtubules in moss protonemata: a clue to understading its function. Protoplasma 163: 156–161

    Google Scholar 

  • Schellenbaum P, Vantard M, Lambert A-M (1992) Higher plant microtubule-associated proteins (MAPs): a survey. Biol Cell 76: 359–364

    CAS  Google Scholar 

  • Schellenbaum P, Vantard M, Peter C, Fellous A, Lambert A-M (1993) Co-assembly properties of higher plant microtubule-associated proteins with purified brain and plant tubulins. Plant J 3: 253–260

    CAS  Google Scholar 

  • Scholey JM, Vale RD (1994) Kinesin-based organelle transport. In: Hyams JS, Lloyd CW (eds) Microtubules: Wiely-Liss, New York, pp 343–365

    Google Scholar 

  • Seagull RW (1990) The effects of microtubules and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibers. Protoplasma 159: 44–59

    CAS  Google Scholar 

  • Seagull RW, Falconer MM, Weerdenburg C (1987) Microfilaments: dynamic arrays in higher plant cells. J Cell Biol 104: 995–1004

    PubMed  CAS  Google Scholar 

  • Shibaoka H (1991) Microtubules and the regulation of cell morphogenesis by plant hormones. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 159–168

    Google Scholar 

  • Smirnova EA, Bajer AS (1994) Microtubule converging centers and reorganization of the interphase cytoskeleton and the mitotic spindle in higher plant Haemanthus. Cell Motil Cytoskeleton 27: 219–233

    PubMed  CAS  Google Scholar 

  • Smit AC, Vantard M, Lambert A-M (1983) Aster-like microtubule centers establish spindle polarity during interphase-mitosis transition in higher plant cells. Plant Cell Rep 2: 285–288

    Google Scholar 

  • Snustad DP, Haas NA, Kopcak SD, Silflow CD (1992) The small genome of Arabidopsis contains at least nine expressed P-tubulin genes. Plant Cell 4: 549–556

    PubMed  CAS  Google Scholar 

  • Sonesson A, Widell S (1993) Cytoskeleton components of inside-out and right-side-out plasma membrane vesicles from plants. Protoplasma 177: 45–52

    Google Scholar 

  • Staehelin LA, Hepler PK (1996) Cytokinesis in higher plants. Cell 84: 821–824

    PubMed  CAS  Google Scholar 

  • Stoppin V, Vantard M, Schmit A-C, Lambert A-M (1994) Isolated plant nuclei nucleate microtubule assembly: the nuclear surface in higher plants has centrosome-like activity. Plant Cell 6: 1099–1106

    PubMed  CAS  Google Scholar 

  • Sullivan KF (1988) Structure and utilization of tubulin isotypes. Annu Rev Cell Biol 4: 687–716

    PubMed  CAS  Google Scholar 

  • Thompson WC (1982) The cyclic tyrosination/detyrosination of alpha tubulin. Methods Cell Biol 24: 235–255

    PubMed  CAS  Google Scholar 

  • Tiezzi A, Moscatelli A, Cai G, Bartalesi A, Cresti M (1992) An immunoreactive homolog of mammalian kinesin in Nicotiana tabacum pollen tubes. Cell Motil Cytoekeleton 21: 132–137

    CAS  Google Scholar 

  • Vallee RB, Shpetner HS (1990) Motor proteins of cytoplasmic microtubules. Annu Rev Biochem 59: 909–932

    PubMed  CAS  Google Scholar 

  • Vantard M, Schellenbaum P, Fellous A, Lambert A-M (1991) Characterization of maize microtubule-associated proteins, one of which is immunologically related to tau. Biochemistry 30: 9334–9340

    PubMed  CAS  Google Scholar 

  • Vantard M, Peter C, Fallous A, Schellenbaum P, Lambert A-M (1994) Characterization of a 100 kDa heat-stable microtubule-associated protein from higher plants. Eur J Biochem 220: 847–853

    PubMed  CAS  Google Scholar 

  • Vassilev A, Kimble M, Silflow CD, Lavoie M, Kuriyama R (1995) Identification of intrinsic dimer and overexpressed monomeric forms of χ-tubulin in Sf9 cells infected with baculovirus containing the Chlamydomonas χ-tubulin sequence. J Cell Sci 108: 1083–1092

    PubMed  CAS  Google Scholar 

  • Villemur R, Joyce CM, Haas NA, Goddard RH, Kopcak SD, Hussey PJ, Snustad DP, Silflow CD (1992) α-tubulin gene family of maize ((Zea maize L.): evidence for two ancient a-tubulin genes in plants. J Mol Biol 227: 81–96

    Google Scholar 

  • Wacker I, Quader H, Schnepf E (1988) Influence of the herbicide oryzalin on cytoskeleton and growth of Funaria hygrometrica protonemata. Protoplasma 142: 55–67

    Google Scholar 

  • Wada M, Murata T (1991) The cytoskeleton in fern protonematal growth in relation to photomorphogenesis. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 277–288

    Google Scholar 

  • Wang W, Takezawa D, Narasimhulu SB, Reddy ASN, Poovaiah BW (1996) A novel kinesin-like protein with a calmodulin binding domain. Plant Mol Biol 31: 87–100

    PubMed  CAS  Google Scholar 

  • Wasteneys GO, Gunnings BES, Hepler PK (1993) Microinjection of fluorescent brain tubulin reveals dynamic properties of cortical microtubules in living plant cells. Cell Motil Cytoskeleton 24: 205–213

    Google Scholar 

  • Webster DR, Wehland J, Weber K, Borisy GG (1990) Detyrosination of alpha tubulin does not stabilize microtubules in vivo. J Cell Biol 111: 113–122

    PubMed  CAS  Google Scholar 

  • Wernicke W, Jung G (1992) Role of cytoskeleton in cell shaping of developing mesophyll of wheat (Triticum aestivum L.). Eur J Cell Biol 57: 88–94

    PubMed  CAS  Google Scholar 

  • Wiche G, Oberkannins C, Himmler A (1991) Molecular structure and function of micro-tubule-associated proteins. Int Rev Cytol 124: 217–273

    PubMed  CAS  Google Scholar 

  • Wick SM (1991a) Spatial aspects of cytokinesis in plant cells. Curr Opin Cell Biol 3: 253–260

    PubMed  CAS  Google Scholar 

  • Wick SM (1991b) The preprophase band. In: Lloyd CW (ed) The cytoskeletal basis of plant growth and form. Academic Press, London, pp 231–244

    Google Scholar 

  • Williamson RE (1991) Orientation of cortical microtubules in interphase plant cells. Int Rev Cytol 129: 135–206

    Google Scholar 

  • Yasuhura H, Sonobe S, Shibaoka H (1992) ATP-sensitive binding to microtubules of polypeptides extracted from isolated phragmoplasts of tobacco BY-2 cells. Plant Cell Physiol 33: 601–688

    Google Scholar 

  • Yokota E, Sonobe S, Shibaoka H (1995) Plant microtubules can be translocated by a dynein ATPase from sea urchin in vitro. Plant Cell Physiol 36: 1536–1569

    Google Scholar 

  • Yuan M, Shaw PJ, Warn RM, Lloyd CW (1994) Dynamic reorientation of cortical microtubules, from transverse to longitudinal, in living plant cells. Proc Natl Acad Sci USA 91: 6050–6053

    PubMed  CAS  Google Scholar 

  • Yuan M, Warn RM, Shaw PJ, Lloyd CW (1995) Dynamic microtubules under the radial and outer tangential walls of microinjected pea epidermal cells observed by computer reconstruction. Plant J 7: 17–23

    PubMed  CAS  Google Scholar 

  • Zanomeni K, Schopfer P (1993) Reorientation of microtubules at the outer epidermal wall of maize coleoptiles by phytochrome, blue-light photoreceptor, and auxin. Protoplasma 173: 103–112

    Google Scholar 

  • Zhang D, Wadsworth P, Hepler PK (1990) Microtubule dynamics in living dividing plant cells: confocal imaging of microinjected fluorescent brain tubulin. Proc Natl Acad Sci USA 87: 8820–8824

    PubMed  CAS  Google Scholar 

  • Zheng YX, Wong ML, Alberts B, Mitchison T (1995) Nucleation of microtubule assembly by a χ-tubulin-containing ring complex. Nature 378: 578–583

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Quader, H. (1998). Cytoskeleton: Microtubules. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics