Skip to main content

Stomatal Patchiness

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 59))

Abstract

“Stomatal patchiness”, the phenomenon where the heterogeneous distribution of stomatal apertures results in a patchy carbon assimilation and transpiration, has increasingly drawn the attention of plant ecophysiologists, particularly of those who employ gas-exchange methodology. Since stomatal homogeneity is an assumption in the standard method of calculating net photosynthesis (A), transpiration rate (E), stomatal conductance (Gs) and leaf internal CO2 partial pressure (ci) from gas-exchange measurements (von Caemmerer and Farquhar 1981), stomatal patchiness may lead to erroneous estimations. Although several investigations reported inhomogeneous distributions of stomatal aperture on a leaf surface (e.g. Molisch 1912; Cruiziat et al. 1979; Laisk et al. 1980; Spence 1987; van Gardingen et al. 1989), the consequences on calculated gas-exchange parameters were not assessed. Justification for ignoring inhomogeneous stomatal aperture was suggested by Sharkey et al. (1982), who found (in unstressed leaves) that direct measurements of internal CO2 partial pressures were quite similar to values calculated from gas-exchange measurements assuming stomatal homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armacost RR (1944) The structure and function of the border parenchyma and vein-ribs of certain dicotyledon leaves. Proc Iowa Acad Sci 51: 157–169

    Google Scholar 

  • Beyschlag W, Pfanz H (1990) A fast method to detect the occurrence of nonhomogeneous distribution of stomatal aperture in heterobaric plant leaves. Oecologia 82: 52–55

    Article  Google Scholar 

  • Beyschlag W, Lange OL, Tenhunen JD (1987) Diurnal patterns of leaf internal CO2 partial pressure in the sclerophyll shrub Arbutus unedo growing in Portugal. In: Tenhunen JD, Catarino F, Lange OL, Oechel WC (eds) Plant response to stress. Functional analysis in Mediterranean ecosystems. NATO ASI Series G, vol 15. Springer, Berlin Heidelberg New York, pp 355–368

    Google Scholar 

  • Beyschlag W, Phibbs A, Pfanz H (1990) The role of temperature and humidity in controlling the diurnal stomatal behaviour of Arbutus unedo L. during the dry season. Biochem Physiol Pflanzen 186: 265–271

    Google Scholar 

  • Beyschlag W, Pfanz H, Ryel RJ (1992) Stomatal patchiness in Mediterranean evergreen sclerophylls. Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. Planta 187: 546–553

    Article  Google Scholar 

  • Beyschlag W, Kresse F, Ryel RJ, Pfanz H (1994) Stomatal patchiness in conifers: experiments with Picea abies (L.) Karst. and Abies alba Mill. Trees Struct Funct 8: 132–138

    Google Scholar 

  • Bongi G (1990) A gas exchange procedure to evaluate non-uniform stomatal closure effects in single mesophyte evergreen leaves under high VPD. In: Baltscheffsky M (ed) Current research in photosynthesis, vol 4. Kluwer, Dordrecht, pp 717–720

    Google Scholar 

  • Bro E, Meyer S, Genty B (1996) Heterogeneity of leaf CO2 assimilation during photosynthetic induction. Plant Cell Environ 19: 1349–1358

    Article  CAS  Google Scholar 

  • Brugnolli E, Lauteri M (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiol 95: 628–635

    Article  Google Scholar 

  • Burschka C, Lange OL, Hartung W (1985) Effects of abscisic acid on stomatal conductance and photosynthesis in leaves of intact Arbutus unedo plants under natural conditions. Oecologia 67: 593–595

    Article  Google Scholar 

  • Von Caemmerer S, Farquhar GD (1981) Some relationships between biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376–387

    Article  Google Scholar 

  • Canny MJ (1990) What becomes of the transpiration stream? New Phytol 114: 341–368

    Article  Google Scholar 

  • Cardon ZG, Mott KA, Berry JA (1994) Dynamics of patchy stomatal movements and their contribution to steady state and oscillating stomatal conductance calculated with gas-exchange techniques. Plant Cell Environ 17: 995–1005

    Article  Google Scholar 

  • Cheeseman JM (1991) Patchy: simulating and visualizing the effects of stomatal patchiness on photosynthetic CO2 exchange studies. Plant Cell Environ 14: 593–599

    Article  Google Scholar 

  • Cornic G, Ghashghaie J (1991) Effect of temperature on net carbon dioxide assimilation and photosystem II quantum yield of electron transfer of French bean (Phaseolus vulgaris L.) leaves during drought stress. Planta 185: 255–260

    Article  CAS  Google Scholar 

  • Cornic G, Le Gouallec JL, Briantais JM, Hodges M (1989) Effects of dehydration and high light on photosynthesis of two C3 plants [Phaseolus vulgaris L. and Elatostemma repens (Lour.) Hall f.] Planta 177: 84–90

    Article  CAS  Google Scholar 

  • Cowan IR (1977) Stomatal behaviour and environment. Adv Bot Res 4: 117–228

    Article  Google Scholar 

  • Cowan IR (1994) As to the mode of action of the guard cells in dry air. In: Schulze ED, Caldwell MM (eds) Ecophysiology of photosynthesis. Ecological studies, vol 100. Springer, Berlin Heidelberg New York, pp 205–229

    Google Scholar 

  • Cowan IR, Troughton JH (1971) The role of stomata in transpiration and assimilation. Planta 97: 325–339

    Article  Google Scholar 

  • Cruiziat P, Thomas PA, Bodet C (1979) Comparaison entre mesures locales et mesure globale de la résistance stomatique de feuillies de Tournesol (Helianthus annuus). Oecol Plant 14: 447–459

    Google Scholar 

  • Dai Z, Edwards GE, Ku SB (1992) Control of photosynthesis and stomatal conductance in Ricinus communis L. (castor bean) by leaf air vapor pressure deficit. Plant Physiol 99: 1426–1436

    Article  PubMed  CAS  Google Scholar 

  • Daley PF, Raschke K, Ball JT, Berry J A (1989) Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol 90: 1233–1238

    Article  PubMed  CAS  Google Scholar 

  • Day TA, Heckathorn SA, DeLucia EH (1991) Limitation of photosynthesis in Pinus taeda L. (loblolly pine) at low soil temperature. Plant Physiol 96: 1246–1254

    Article  PubMed  CAS  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988a) Stomatal closure fully accounts for the inhibition of photosynthesis by abscisic acid. New Phytol 108: 263–266

    Article  CAS  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1988b) Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Phytol 110: 503–509

    Article  Google Scholar 

  • Downton WJS, Loveys BR, Grant WJR (1990) Salinity effects on the stomatal behavior of grapevine. New Phytol 116: 499–503

    Article  CAS  Google Scholar 

  • During H (1992) Low air humidity causes non-uniform stomatal closure in heterobaric leaves of Vitis species. Vitis 31: 1–7

    Google Scholar 

  • Düring H, Loveys BR (1996) Stomatal patchiness of field-grown sultana leaves: diurnal changes and light effects. Vitis 35: 7–10

    Google Scholar 

  • Düring H, Stoll M (1996a) Stomatal patchiness of grapevine leaves. I. Estimation of non-uniform stomatal apertures by a new infiltration technique. Vitis 35: 65–68

    Google Scholar 

  • Düring H, Stoll M (1996b) Stomatal patchiness of grapevine leaves. II. Uncoordinated and coordinated stomatal movements. Vitis 35: 69–71

    Google Scholar 

  • Eckstein J (1997) Heterogene Kohlenstoffassimilation in Blättern höherer Pflanzen als Folge der Variabilität stomatärer öffnungsweiten. Charakterisierung und Kausalanalyse des Phänomens stomatal patchiness. PhD dissertation, University of Würzburg

    Google Scholar 

  • Eckstein J, Beyschlag W, Mott KA, Ryel RJ (1996) Changes in photon flux can induce stomatal patchiness. Plant Cell Environ 19: 1066–1075

    Article  Google Scholar 

  • Ellenson JL, Amundson RG (1982) Delayed light imaging for the early detection of plant stress. Science 215: 1104–1106

    Article  PubMed  CAS  Google Scholar 

  • Epron D, Dreyer E (1993) Photosynthesis of oak leaves under water stress: maintenance of high photochemical efficiency of photosystem II and occurrence of non-uniform CO2 assimilation. Tree Physiol 13: 107–117

    PubMed  CAS  Google Scholar 

  • Farquhar GD, Hubick KT, Terashima I, Condon AG, Richards RA (1987) Genetic variation in the relationship between photosynthetic CO2 assimilation rate and stomatal conductance to water loss. Prog Photosynth Res 5 (5): 209–212

    Google Scholar 

  • Flanagan LB, Jefferies RL (1989a) Photosynthetic and stomatal responses of the halophyte, Plantago maritima L. to fluctuations in salinity. Plant Cell Environ 2: 559–568

    Article  Google Scholar 

  • Flanagan LB, Jefferies RL (1989b) Effects of increased salinity on CO2 assimilation, O2 evolution and δ13C values of leaves of Plantago maritima L. developed at low and high NaCl levels. Planta 178: 377–384

    Article  CAS  Google Scholar 

  • Genty B, Meyer S (1995) Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Aust J Plant Physiol 22: 277–284

    Article  Google Scholar 

  • Gunasekera D, Berkowitz GA (1992) Heterogeneous stomatal closure in response to leaf water deficits is not a universal phenomenon. Plant Physiol 98: 660–665

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto Y, Ino T, Kramer PJ, Naylor AW, Strain BR (1984) Dynamic analysis of water stress of sunflower leaves by means of a thermal image processing system. Plant Physiol 76: 266–269

    Article  PubMed  CAS  Google Scholar 

  • Heiland I (1994) Untersuchungen zur heterogenen Verteilung der stomatären Öffnungsweiten an Fagus sylvatica L. und anderen Holzgewächsen. Diploma thesis, Technische Hochschule Darmstadt

    Google Scholar 

  • Hirasawa T, Wakabayashi K, Touya S, Ishihara K (1995) Stomatal responses to water deficits and abscisic acid in leaves of sunflower plants (Helianthus annuus L.) grown under different conditions. Plant Cell Physiol 36: 955–964

    CAS  Google Scholar 

  • Hofman GJ, Splinter WE (1968) Water potential measurements of an intact plant soil system. Agron J 60: 408–413

    Article  Google Scholar 

  • Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration. Scaling up from leaf to region. Adv Ecol Res 15: 1–49

    Article  Google Scholar 

  • Kaiser WM (1987a) Non-stomatal, primary dehydration effects on photosynthesis: possible mechanisms for reversible and irreversible damage. Curr Top Plant Biochem Physiol 6: 119–133

    Google Scholar 

  • Kaiser WM (1987b) Effects of water deficit on photosynthetic capacity. Physiol Plant 7: 142–149

    Article  Google Scholar 

  • Kappen L, Haeger S (1991) Stomatal responses of Tradescantia albiflora to changing air humidity in light and darkness. J Exp Bot 42: 979–986

    Article  Google Scholar 

  • Kappen L, Andesen G, Lösch R (1987) In situ observations of stomatal movements. J Exp Bot 38: 126–142

    Article  Google Scholar 

  • Keesmann A (1995) Untersuchung des Auftretens heterogen verteilter Stomataöffnungen bei Kräutern aus dem Bereich der höheren Pflanzen. Diploma thesis, University of Würzburg

    Google Scholar 

  • Laisk A, Oja V, Kull K (1980) Statistical distribution of stomatal apertures of Vicia faba and Hordeum vulgare and the Spannungsphase of stomatal opening. J Exp Bot 31: 49–58

    Article  Google Scholar 

  • Lechner M (1993) Untersuchungen an Arbutus unedo L. zum Einfluß von Wasserstress auf die heterogene Verteilung der stomatären öffnungsweiten. Diploma thesis, University of Würzburg

    Google Scholar 

  • Linsbauer K (1917) Beiträge zur Kenntnis der Spaltöffnungsbewegung. Flora 9: 100–143

    Google Scholar 

  • Loreto F, Sharkey TD (1990) Low humidity can cause uneven photosynthesis in olive (Olea europaea L.) leaves. Tree Physiol 6: 409–415

    PubMed  Google Scholar 

  • Lösch R, Schenk (1978) Humidity response of stomata and the potassium content of guard cells. J Exp Bot 29: 781–787

    Article  Google Scholar 

  • Maier-Maercker U (1979) Peristomatal transpiration and stomatal movement: a controversial view. Z Pflanzenphysiol 91:157–172

    Google Scholar 

  • Malone M, Tomos AD (1993) Measurements of gradients of water potential in elongating pea stems by pressure probe and picolitre osmometry. J Exp Bot 43: 1325–1331

    Article  Google Scholar 

  • Mansfield TA, Hetherington AM, Atkinson CJ (1990) Some current aspects of stomatal physiology. Annu Rev Plant Physiol Plant Mol Biol 41: 55–75

    Article  CAS  Google Scholar 

  • Martin B, Rilling C (1993) Different influences of drought and stomatal patchiness on gas exchange of wheat leaves. Plant Physiol 102(1)suppl:778

    Google Scholar 

  • Matthews M, Omasa K (1992) Spatial distribution of chlorophyll fluorescence at low leaf water potentials in sunflower. Photosynth Res 34: 219

    Google Scholar 

  • Meidner H, Edwards M (1996) Osmotic and turgor pressures of guard cells. Plant Cell Environ 19: 503

    Article  Google Scholar 

  • Molisch H (1912) Das Offen- und Geschlossensein der Spaltöffnungen, veranschaulicht durch eine neue Methode (Infiltrationsmethode). Z Bot 4: 106–122

    Google Scholar 

  • Mott KA (1995) Effects of patchy stomatal closure on gas-exchange measurements following ABA treatment. Plant Cell Environ 18: 1291–1300

    Article  CAS  Google Scholar 

  • Mott KA, Parkhurst DF (1991) Stomatal responses to humidity in air and Helox. Plant Cell Environ 14: 509–515

    Article  Google Scholar 

  • Mott KA, Cardon ZG, Berry JA (1993) Asymmetric patchy stomatal closure for the two surfaces of Xanthium strumarium L. leaves at low humidity. Plant Cell Environ 16: 25–34

    Article  Google Scholar 

  • Ni BR, Pallardy SG (1992) Stomatal and non-stomatal limitations to net photosynthesis in seedlings of woody angiosperms. Plant Physiol 99: 1502–1508

    Article  PubMed  CAS  Google Scholar 

  • Nicolis G, Prigogine I (1989) Exploring complexity. Freeman, New York

    Google Scholar 

  • Nonami H, Schulze ED (1989) Cell water potential, osmotic potential, and turgor in the epidermis and mesophyll of transpiring leaves. Planta 177: 35–46

    Article  Google Scholar 

  • Nonami H, Schulze ED, Ziegler H (1990) Mechanisms of stomatal movement in response to air humidity, irradiance and xylem water potential. Planta 183: 57–64

    Google Scholar 

  • Olsson T, Leverenz JW (1994) Non-uniform stomatal closure and the apparent convexity of the photosynthetic flux density response curve. Plant Cell Environ 17: 701–710

    Article  Google Scholar 

  • Omasa K (1990) Image instrumentation methods of plant analysis. Mod Methods Plant Anal 11: 203–243

    Article  Google Scholar 

  • Omasa K, Hashimoto Y, Aiga I (1981) A quantitative analysis of the relationships between O3 absorption and its acute effects on plant leaves using image instrumentation. Environ Contrib Biol 19: 85–92

    Article  CAS  Google Scholar 

  • Omasa K, Hashimoto Y, Kramer PJ, Strain BR, Aiga I, Kondo J (1985) Direct observation of reversible and irreversible stomatal responses of attached sunflower leaves to SO2. Plant Physiol 79: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Omasa K, Shimazaki KI, Aiga I, Larcher W, Onoe M (1987) Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol 84: 748–752

    Article  PubMed  CAS  Google Scholar 

  • Patzke J (1990) Die Heterogenität der Stomaweiten und ihr Einfluß auf die Verteilung des Kohlendioxids und der Photosyntheseaktivität im Blatt: Gaswechselmessungen, Rasterelektronenmikroskopie, und Chlorophyllfluoreszenz-Bildanalyse. PhD dissertation, University of Göttingen

    Google Scholar 

  • Peisker M, Tichä I (1991) Effects of chilling on C02 gas exchange in two cultivars of Phaseolus vulgaris L. J Plant Physiol 138: 12–16

    Google Scholar 

  • Pospíšlová J, Šantrucek J (1994) Stomatal patchiness. Biol Plant 36: 481–510

    Article  Google Scholar 

  • Pospíšilová J, Šantrucek J (1997) Stomatal patchiness: effects on photosynthesis. In: Pessarakli M (ed) Handbook of photosynthesis. Dekker, New York, pp 427–441

    Google Scholar 

  • Raschke K (1970) Stomatal response to pressure changes and interruptions in the water supply of detached leaves of Zea mays. Plant Physiol 45: 414–423

    Article  Google Scholar 

  • Raschke K, Hedrich R (1985) Simultaneous and independent effects of abscisic acid on stomata and the photosynthetic apparatus in whole leaves. Planta 163: 105–118

    Article  CAS  Google Scholar 

  • Raschke K, Patzke J, Daley PF, Berry JA (1990) Spatial and temporal heterogeneities of photosynthesis detected through analysis of chlorophyll-fluorescence images of leaves. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer, Boston, pp 573–578

    Google Scholar 

  • Rawlins SL (1963) Resistance to water flow in the transpiration stream. In: Zelitch I (ed) Bulletin 664 Connecticut Agric Exp Stn, New Haven, pp 69–85

    Google Scholar 

  • Robinson SP, Grant WJR, Loveys BR (1988) Stomatal limitation of photosynthesis in abscisic-acid treated and water-stressed leaves measured at elevated CO2. Aust J Plant Physiol 15: 495–503

    Article  CAS  Google Scholar 

  • Scheuermann R, Biehler K, Stuhlfauth T, Fock HP (1991) Simultaneous gas exchange and fluorescence measurements indicate differences in the response of sunflower, bean and maize to water stress. Photosynth Res 27: 189–197

    Google Scholar 

  • Schroeder JI, Hagiwara S (1990) Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of non-selective Ca2+ permeable channels. Proc Natl Acad Sci USA 87: 9305–9309

    Article  PubMed  CAS  Google Scholar 

  • Schulze ED (1994) The regulation of plant transpiration: interactions of feedforward, feedback, and futile cycles. In: Schulze ED (ed) Flux control in biological systems. Academic Press, New York, pp 203–235

    Google Scholar 

  • Shackel KA, Brinckmann E (1985) In situ measurement of epidermal cell turgor, leaf water potential, and gas exchange in Tradescantia virginiana L. Plant Physiol 78: 66–70

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Seemann JR (1981) Mild water stress effects on carbon-reduction-cycle intermediates, ribulose biophosphate carboxylase activity, and spatial homogeneity of photosynthesis in intact leaves. Plant Physiol 89: 1060–1065

    Article  Google Scholar 

  • Sharkey TD, Imai K, Farquhar GD, Cowan IR (1982) A direct confirmation of the standard method of estimating intercellular partial pressure of CO2. Plant Physiol 69: 657–659

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Loreto F, Vassey TL (1990) Effects of stress on photosynthesis. In: Baltscheffsky M (ed) Current research in photosynthesis. Kluwer, Boston, pp 549–556

    Google Scholar 

  • Sharpe PJ, Wu H, Spence RD (1987) Stomatal mechanics. In: Zeiger E, Farquhar GD, Cowan IR (eds) Stomatal mechanics, Stanford University Press, Stanford, pp 91–114

    Google Scholar 

  • Sheriff DW, Meidner H (1975) Water movement into and through Tradescantia virginiana (L.) leaves. J Exp Bot 26: 897–902

    Article  Google Scholar 

  • Siebke K, Weis E (1995) ‘Assimilation images’ of leaves of Glechoma hederacea: analysis of non-synchronous stomata related oscillations. Planta 196:155–165

    Google Scholar 

  • Smith S, Weyers JDB, Berry WG (1989) Variation in stomatal characteristics over the lower surface of Commelina communis leaves. Plant Cell Environ 12: 653–659

    Article  Google Scholar 

  • Spence RD (1987) The problem of variability in stomatal responses, particularly aperture variance, to environmental and experimental conditions. New Phytol 107: 303–315

    Article  Google Scholar 

  • Stahl E (1894) Einige Versuche über die Transpiration und Assimilation. Bot Z 6: 117–147

    Google Scholar 

  • Stuhlfauth T, Scheuermann R, Fock HP (1990) Light energy dissipation under water stress conditions. Contribution of reassimilation and evidence for additional processes. Plant Physiol 92: 1053–1061

    Article  PubMed  CAS  Google Scholar 

  • Tenhunen JD, Meister HP, Caldwell MM, Lange OL (1984) Environmental constraints on productivity of the Mediterranean sclerophyll shrub Quercus coccifera. Proc INTECOL Workshop on Rates of natural primary productivity and agricultural production. Options Mediterran 84: 33–53

    Google Scholar 

  • Tenhunen JD, Lange OL, Harley PC, Beyschlag W, Meyer A (1985) Limitations due to water stress of leaf net photosynthesis of Quercus coccifera in the Portuguese evergreen scrub. Oecologia 67: 23–30

    Article  Google Scholar 

  • Terashima I (1992) Anatomy of non-uniform leaf photosynthesis. Photosynth Res 31: 195–212

    Article  CAS  Google Scholar 

  • Terashima I, Wong SC, Osmond CB, Farquhar GD (1988) Characterisation of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol 29: 385–394

    CAS  Google Scholar 

  • Upadhyaya SK, Rand RH, Cooke JR (1988) Role of stomatal oscillations on transpiration, assimilation and water-use efficiency of plants. Ecol Model 41: 27–40

    Article  CAS  Google Scholar 

  • Van Gardingen PR, Jeffree CE, Grace J (1989) Variation in stomatal aperture in leaves of Avenafatua L. observed by low-temperature scanning electron microscopy. Plant Cell Environ 12: 887–898

    Article  Google Scholar 

  • Ward DA, Drake BG (1988) Osmotic stress temporarily reverses the inhibitions of photosynthesis and stomatal conductance by abscisic acid - evidence that abscisic acid induces a localized closure of stomata in intact, detached leaves. J Exp Bot 199: 147–155

    Article  Google Scholar 

  • Wise RR, Sparrow DH, Ortiz-Lopez A, Ort DR (1991) Biochemical regulation during the mid-day decline of photosynthesis in field grown sunflower. Plant Sci 74: 45–52

    Article  CAS  Google Scholar 

  • Wise RR, Ortiz-Lopez A, Ort DR (1992) Spatial distribution of photosynthesis during drought in field-grown and acclimated and nonacclimated growth chamber-grown cotton. Plant Physiol 100: 26–32

    Article  PubMed  CAS  Google Scholar 

  • Wong SC, Cowan IR, Farquhar GD (1979) Stomatal conductance correlates with photosynthetic capacity. Nature 282: 424–426

    Article  Google Scholar 

  • Wylie RB (1943) The role of the epidermis in foliar organisation and its relation to minor venation. Am J Bot 30: 273–280

    Article  Google Scholar 

  • Wylie RB (1949) Differences in foliar organisation among leaves from four locations in the crown of an isolated tree (Acer platanoides). Proc Iowa Acad Sci 56: 189–198

    Google Scholar 

  • Xu DQ, Terashima K, Crang RFE, Chen XM, Hesketh JD (1994) Stomatal and nonstomatal acclimation to a CO2 enriched atmosphere. Biotronics 23: 1–9

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beyschlag, W., Eckstein, J. (1998). Stomatal Patchiness. In: Behnke, HD., Esser, K., Kadereit, J.W., Lüttge, U., Runge, M. (eds) Progress in Botany. Progress in Botany, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80446-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80446-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80448-9

  • Online ISBN: 978-3-642-80446-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics