Advertisement

Gradient and Spin-Echo (GRASE) Imaging

  • D. A. Feinberg

Abstract

Magnetic resonance (MR) imaging pulse sequences are developed through an evolutionary process rather than by entirely de nova invention. Useful new imaging sequences evolve by combining new and existing methodology. For example, spin warp phase encoding was incorporated into selective line scan imaging to produce contemporary 2D FT gradient echo imaging (4). The incorporation of a 180° RF refocusing pulse into 2D FT gradient echo imaging yielded spin echo imaging (1). Spin echo images and gradient echo images differ considerably in their static field inhomogeneity and susceptibility artifacts, tissue contrast and the effects of blood flow. Elimination of field inhomogeneity artifacts allowed for much later echo times, increasing T2 contrast in spin echo images, which is extremely useful for tissue characterization in medical diagnosis. Development of pulse sequences may in retrospect appear straightforward. In reality, there are often major difficulties in removing unanticipated image artifacts in new imaging sequences for which solutions often require more creativity than do the original sequence. Imaging with multiple spin echoes was hypothetically suggested as a simple variant of gradient refocused echo-planar imaging (EPI) but without consideration of artifacts from stimulated echo magnetization. It took years and contributions from several scientists [19, 31] to overcome stimulated echo artifacts for successful implementation of spin-echo train imaging.

Keywords

Phase Error Spin Echo Field Inhomogeneity CPMG Sequence Read Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Crooks LE, Arakawa M, Hoenninger J, Watts J, McRee R, Kaufman L, Davis PL, Margulis AR, DeGroot J (1982) Nuclear magnetic resonance whole-body imager operating at 3.5 K Gauss. Radiology 143:169–174PubMedGoogle Scholar
  2. 2.
    Crooks LE, Watts J, Hoenninger J, Arakawa M, Kaufman L, Guenther H, Feinberg DA (1985) Thin section definition in magnetic resonance imaging: technical concepts and their implementation. Radiology 154:463–467PubMedGoogle Scholar
  3. 3.
    Edelstein WA, Hutchison JM, Johnson G, Redpath TW, Mallard JR (1980) UK Patent no GB2,079,463A, methods of producing image information from objects (priority date: 3/14/ 1980)Google Scholar
  4. 4.
    Edelstein WA, Hutchison JM, Johnson G, Redpath TW, Mallard JR (1980) Spin warp imaging and applications to whole body imaging. Phys Med Biol 25:751–756PubMedCrossRefGoogle Scholar
  5. 5.
    Feinberg DA, Mills CM, Posin JP, Ortendahl DA et al (1985) Multiple spin-echo magnetic resonance imaging. Radiology 155:437–442PubMedGoogle Scholar
  6. 6.
    Feinberg DA, Hale JD, Watts JC, Kaufman L, Mark A (1986) Halving MR imaging time by conjugation: demonstration at 3.5 kG. Radiology 161:527–531PubMedGoogle Scholar
  7. 7.
    Feinberg DA, Hale JD (1986) Inner-volume echo planar imaging in book of abstracts. Proceedings of 5th annual meeting, Society of Magnetic Resonance in Medicine, p 950Google Scholar
  8. 8.
    Feinberg DA, Oshio K (1991) US Patent no 5,270,654 Ultra-fast multi-section MRI using gradient and spin echo (GRASE) imaging (priority date: 7/6/1991)Google Scholar
  9. 9.
    Feinberg DA, Oshio K (1991) GRASE (gradient and spin echo) MR imaging: a new fast clinical imaging technique. Radiology 181:597PubMedGoogle Scholar
  10. 10.
    Feinberg DA, Oshio K (1991) Gradient-echo time shifting in fast imaging. In: Book of abstracts (works in progress), 10th annual meeting, Society of Magnetic Resonance in Medicine, San Francisco, p 1239Google Scholar
  11. 11.
    Feinberg DA, Oshio K (1992) Gradient-echo shifting in fast MRI techniques (GRASE) for correction of field inhomogeneity errors and chemical shift (communication). J Magn Reson 97:177–183CrossRefGoogle Scholar
  12. 12.
    Feinberg DA, Turner R, Jakab PD, von Kienlin M (1990) Echo-planar imaging with asymmetric gradient modulation and inner-volume excitation. Magn Res Med 13:162–169CrossRefGoogle Scholar
  13. 13.
    Feinberg DA (1993) GRASE imaging provides image quality and speed, Diagnostic Imaging. Miller Freeman, 2: p 71–78Google Scholar
  14. 14.
    Feinberg DA, Oshio K (1994) Phase errors In multi-shot echo planar imaging with echo time shift. Magn Res Med 32:535–539CrossRefGoogle Scholar
  15. 15.
    Feinberg DA, Kiefer B, Litt AW (1995) High resolution GRASE MRI of the brain and spine: 512 and 1024 matrix imaging. J Comput Assist Tomogr 19(1): 1–7PubMedCrossRefGoogle Scholar
  16. 16.
    Feinberg DA Kiefer B, Litt AW (1994) Dual contrast GRASE (gradient-spin echo) imaging using mixed bandwidth. Magn Res Med 31:461–464CrossRefGoogle Scholar
  17. 17.
    Feinberg DA, Kiefer B (1994) High resolution imaging of the brain with GRASE (TGSE). First meeting of the Society of Magnetic Resonance in Medicine. J Magn Res Imaging 4(P):48Google Scholar
  18. 18.
    Feinberg DA, Kiefer B (1994) High speed T2-weighted imaging of the liver with single-shot GRASE (TGSE). First meeting of the Society of Magnetic Resonance in Medicine. J Magn Reson Imaging 4(P):48Google Scholar
  19. 19.
    Hennig J, Friedburg H, Strobel B (1986) Rapid nontomographic approach to MR myelography without contrast agent. J Comput Assist Tomogr 10:375–380PubMedGoogle Scholar
  20. 20.
    Hennig J, Neurith A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson G, Hutchison JMS, Redpath TW, Eastwood LM (1983) Improvements in performance time for simultaneous three-dimensional imaging. J Magn Res 54:374–378CrossRefGoogle Scholar
  22. 22.
    Kiefer B, Hollenbach HP, Feinberg DA (1994) T2-weighted imaging with long echo train 3D turbo gradient spin-echo for neurological applications with high resolution. Second meeting of the Society of Magnetic Resonance in Medicine, San Francisco, 1994Google Scholar
  23. 23.
    Mansfield P (1977) J Phys C 10:L55CrossRefGoogle Scholar
  24. 24.
    Mansfield P, Pykett IL (1978) Biological and medical imaging by NMR. J Magn Reson 29:355–373CrossRefGoogle Scholar
  25. 25.
    McKinnon GC (1993) Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Res Med 30:609–616CrossRefGoogle Scholar
  26. 26.
    Ordidge JR, Howseman A, Coxon R et al (1989) Snapshot imaging at 0.5T using echo-planar technique. Magn Reson Med 10:227PubMedCrossRefGoogle Scholar
  27. 27.
    Oshio K, Feinberg DA (1991) GRASE (gradient- and spin-echo) imaging: a novel fast MRI Technique. Magn Res Med 20:344–349CrossRefGoogle Scholar
  28. 28.
    Oshio K, Feinberg DA (1992) Single-shot GRASE imaging without fast gradients. Magn Res Med 26:355–360CrossRefGoogle Scholar
  29. 29.
    Oshio K, Jolesz F (1994) Fast T1-weighted imaging with multiexcitation EPI. Proceedings from the 1st meeting of the Society of Magnetic Resonance, p 37Google Scholar
  30. 30.
    Rofsky NM, Weinreb JC, Safir J, Mercado C, Goldman JP, Megibow AJ (1994) Comparison of fat suppression techniques for hepatic MR imaging: turbo-SE, breath-hold turbo-SE, GRASE, and turbo STIR. First meeting of the Society of Magnetic Resonance in Medicine. J Magn Reson Imaging 4(P):66CrossRefGoogle Scholar
  31. 31.
    Strobel B, Ratzel D (1984) US Patent no 4,697,148. Process for the excitation of a sample for NMR tomography (priority date: 4/18/84)Google Scholar
  32. 32.
    Xiang QS Nalcioglu O (1987) A formalism of generating multiparametric encoding gradients in NMR tomography. IEEE Trans Med Imaging 6:14–20PubMedCrossRefGoogle Scholar
  33. 33.
    Feinberg DA, Kiefer B, Johnson G (1995) GRASE improves spatial resolution in single shot imaging. Magn Reson Med 33:529–533PubMedCrossRefGoogle Scholar
  34. 34.
    Feinberg DA, Kiefer B, Johnson G (1995) GRASE increased flexibility in GRASE imaging by k-space-banded phase encoding. Magn Reson Med 34:149–155PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • D. A. Feinberg

There are no affiliations available

Personalised recommendations