Advertisement

Abdominal Diffusion Imaging Using Echo-Planar Imaging

  • M. F. Müller
  • P. V. Prasad

Abstract

The most significant advantage of echo planar imaging (EPI) is the ability to provide “snapshot” images devoid of any motion artifacts [1, 2], Susceptibility to motion artifacts was the prime reason for conventional magnetic resonance (MR) imaging to be restricted primarily to imaging the brain. However, with the evolution of several ultrafast imaging techniques [1, 3] this restriction has been lifted. Cardiac and abdominal MR imaging have become routine examinations.

Keywords

Renal Artery Stenosis Diffusional Anisotropy Diffusion Measurement Spin Echo Ureteral Obstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen MS, Weisskopf RM (1991) Ultra-fast imaging. Magn Reson Imaging 9:1–37PubMedCrossRefGoogle Scholar
  2. 2.
    Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50PubMedCrossRefGoogle Scholar
  3. 3.
    Chien D, Edelman RR (1991) Ultrafast imaging using gradient echoes. Magn Reson Q 7(l):31–56PubMedGoogle Scholar
  4. 4.
    Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–635CrossRefGoogle Scholar
  5. 5.
    Steijskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292CrossRefGoogle Scholar
  6. 6.
    Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval JM (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407PubMedGoogle Scholar
  7. 7.
    Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171(3):853–857PubMedGoogle Scholar
  8. 8.
    Le Bihan D (1991) Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7(l):1-30PubMedGoogle Scholar
  9. 9.
    Turner R, Le BD, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414PubMedGoogle Scholar
  10. 10.
    Moseley ME, Kucharczyk J, Mintorovitch J et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11(3):423–429PubMedGoogle Scholar
  11. 11.
    Warach S, Chien D, Li W, Ronthal M, Edelman RR (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke [published erratum appears in Neurology 1992, Nov; 42(11):2192]. Neurology 42(9):1717–1723PubMedGoogle Scholar
  12. 12.
    Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445PubMedGoogle Scholar
  13. 13.
    Douek P, Turner R, Pekar J, Patronas N, Le Bihan D (1991) MR color mapping of myelin fiber orientation. J Comput Assist Tomogr 15:923–929PubMedCrossRefGoogle Scholar
  14. 14.
    Prasad PV, Nalcioglu O (1991) A modified pulse sequence for in vivo diffusion imaging with reduced motion artifacts. Magn Reson Med 18(1):116–131PubMedCrossRefGoogle Scholar
  15. 15.
    Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10:L55–L58CrossRefGoogle Scholar
  16. 16.
    Lemley KV, Kriz W (1987) Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int 31:538–548PubMedCrossRefGoogle Scholar
  17. 17.
    Kriz W, Kaissling B (1992) Structural organization of the mammalian kidney. In: Seidin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, vol 1, 2nd edn. Raven, New York, pp 707–777Google Scholar
  18. 18.
    Powers TA, Lorenz CH, Holburn GE, Price RR (1991) Renal artery stenosis: in vivo perfusion MR imaging. Radiology 178:543–548PubMedGoogle Scholar
  19. 19.
    Terris JM (1986) Swine as a model in renal physiology and nephrology: an overview. In: Tumbleson ME (ed) Swine in biomedical research, vol 3. Plenum, New York, pp 1673–1689Google Scholar
  20. 20.
    Nielsen TW, Maaske CA, Booth NH (1965) Some comparative aspects of porcine renal function. In: Bustad LK, McCellan RO (eds) Swine in biomedical research. Frayn, Seattle, pp 529–536Google Scholar
  21. 21.
    Snedecor GW, Cochran WG (1980) Two-way classifications. In: Snedecor GW, Cochran WG (eds) Statistical methods, 7th edn. Iowa State University Press, Ames, Iowa, pp 255–273Google Scholar
  22. 22.
    Lorenz CH, Pickens DR, Puffer DB, Price RR (1991) Magnetic resonance diffusion/perfusion phantom experiments. Magn Reson Med 19:254–260PubMedCrossRefGoogle Scholar
  23. 23.
    Wesbey GE, Moseley ME, Ehman RL (1984) Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol 19(6):484–490PubMedCrossRefGoogle Scholar
  24. 24.
    Wesbey GE, Moseley ME, Ehman RL (1984) Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol 19(6):491–498PubMedCrossRefGoogle Scholar
  25. 25.
    Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505PubMedGoogle Scholar
  26. 26.
    Pickens D III, Jolgren DL, Lorenz CH, Creasy JL, Price RR (1992) Magnetic resonance perfusion/diffusion imaging of the excised dog kidney. Invest Radiol 27(4):287–292PubMedCrossRefGoogle Scholar
  27. 27.
    Laiken ND, Fanestil DD (1990) Physiology of the body fluids. In: West JB (ed) Best and Taylor’s physiological basis of medical practice, 12th edn. Williams and Wilkins, Baltimore, pp 406–418Google Scholar
  28. 28.
    Harth O (1980) Nierenfunktion. In: Schmidt RF, Thews G (ed) Physiologie des Menschen, 20th edn. Springer, Berlin Heidelberg New York, pp 668–702Google Scholar
  29. 29.
    Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18(6):689–699PubMedGoogle Scholar
  30. 30.
    Klahr S, Harris KPG (1992) Obstructive uropathy. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, vol 3. Raven, New York, pp 3327–3369Google Scholar
  31. 31.
    Koushanpour E, Kriz W (1986) Body fluids: turnover rates and dynamics of fluid shifts. In: Koushanpour E, Kriz W (eds) Renal physiology: principles, structure, and function, 2nd edn. Springer, Berlin Heidelberg New York, pp 21–40Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. F. Müller
  • P. V. Prasad

There are no affiliations available

Personalised recommendations