Skip to main content

Abdominal Diffusion Imaging Using Echo-Planar Imaging

  • Chapter
Echo-Planar Imaging
  • 596 Accesses

Abstract

The most significant advantage of echo planar imaging (EPI) is the ability to provide “snapshot” images devoid of any motion artifacts [1, 2], Susceptibility to motion artifacts was the prime reason for conventional magnetic resonance (MR) imaging to be restricted primarily to imaging the brain. However, with the evolution of several ultrafast imaging techniques [1, 3] this restriction has been lifted. Cardiac and abdominal MR imaging have become routine examinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen MS, Weisskopf RM (1991) Ultra-fast imaging. Magn Reson Imaging 9:1–37

    Article  PubMed  CAS  Google Scholar 

  2. Stehling MK, Turner R, Mansfield P (1991) Echo-planar imaging: magnetic resonance imaging in a fraction of a second. Science 254:43–50

    Article  PubMed  CAS  Google Scholar 

  3. Chien D, Edelman RR (1991) Ultrafast imaging using gradient echoes. Magn Reson Q 7(l):31–56

    PubMed  CAS  Google Scholar 

  4. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–635

    Article  CAS  Google Scholar 

  5. Steijskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42:288–292

    Article  Google Scholar 

  6. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval JM (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407

    PubMed  Google Scholar 

  7. Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hyperthermia. Radiology 171(3):853–857

    PubMed  Google Scholar 

  8. Le Bihan D (1991) Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7(l):1-30

    PubMed  Google Scholar 

  9. Turner R, Le BD, Maier J, Vavrek R, Hedges LK, Pekar J (1990) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414

    PubMed  CAS  Google Scholar 

  10. Moseley ME, Kucharczyk J, Mintorovitch J et al (1990) Diffusion-weighted MR imaging of acute stroke: correlation with T2-weighted and magnetic susceptibility-enhanced MR imaging in cats. AJNR Am J Neuroradiol 11(3):423–429

    PubMed  CAS  Google Scholar 

  11. Warach S, Chien D, Li W, Ronthal M, Edelman RR (1992) Fast magnetic resonance diffusion-weighted imaging of acute human stroke [published erratum appears in Neurology 1992, Nov; 42(11):2192]. Neurology 42(9):1717–1723

    PubMed  CAS  Google Scholar 

  12. Moseley ME, Cohen Y, Kucharczyk J et al (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445

    PubMed  CAS  Google Scholar 

  13. Douek P, Turner R, Pekar J, Patronas N, Le Bihan D (1991) MR color mapping of myelin fiber orientation. J Comput Assist Tomogr 15:923–929

    Article  PubMed  CAS  Google Scholar 

  14. Prasad PV, Nalcioglu O (1991) A modified pulse sequence for in vivo diffusion imaging with reduced motion artifacts. Magn Reson Med 18(1):116–131

    Article  PubMed  CAS  Google Scholar 

  15. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10:L55–L58

    Article  CAS  Google Scholar 

  16. Lemley KV, Kriz W (1987) Cycles and separations: the histotopography of the urinary concentrating process. Kidney Int 31:538–548

    Article  PubMed  CAS  Google Scholar 

  17. Kriz W, Kaissling B (1992) Structural organization of the mammalian kidney. In: Seidin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, vol 1, 2nd edn. Raven, New York, pp 707–777

    Google Scholar 

  18. Powers TA, Lorenz CH, Holburn GE, Price RR (1991) Renal artery stenosis: in vivo perfusion MR imaging. Radiology 178:543–548

    PubMed  CAS  Google Scholar 

  19. Terris JM (1986) Swine as a model in renal physiology and nephrology: an overview. In: Tumbleson ME (ed) Swine in biomedical research, vol 3. Plenum, New York, pp 1673–1689

    Google Scholar 

  20. Nielsen TW, Maaske CA, Booth NH (1965) Some comparative aspects of porcine renal function. In: Bustad LK, McCellan RO (eds) Swine in biomedical research. Frayn, Seattle, pp 529–536

    Google Scholar 

  21. Snedecor GW, Cochran WG (1980) Two-way classifications. In: Snedecor GW, Cochran WG (eds) Statistical methods, 7th edn. Iowa State University Press, Ames, Iowa, pp 255–273

    Google Scholar 

  22. Lorenz CH, Pickens DR, Puffer DB, Price RR (1991) Magnetic resonance diffusion/perfusion phantom experiments. Magn Reson Med 19:254–260

    Article  PubMed  CAS  Google Scholar 

  23. Wesbey GE, Moseley ME, Ehman RL (1984) Translational molecular self-diffusion in magnetic resonance imaging. I. Effects on observed spin-spin relaxation. Invest Radiol 19(6):484–490

    Article  PubMed  CAS  Google Scholar 

  24. Wesbey GE, Moseley ME, Ehman RL (1984) Translational molecular self-diffusion in magnetic resonance imaging. II. Measurement of the self-diffusion coefficient. Invest Radiol 19(6):491–498

    Article  PubMed  CAS  Google Scholar 

  25. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168(2):497–505

    PubMed  Google Scholar 

  26. Pickens D III, Jolgren DL, Lorenz CH, Creasy JL, Price RR (1992) Magnetic resonance perfusion/diffusion imaging of the excised dog kidney. Invest Radiol 27(4):287–292

    Article  PubMed  Google Scholar 

  27. Laiken ND, Fanestil DD (1990) Physiology of the body fluids. In: West JB (ed) Best and Taylor’s physiological basis of medical practice, 12th edn. Williams and Wilkins, Baltimore, pp 406–418

    Google Scholar 

  28. Harth O (1980) Nierenfunktion. In: Schmidt RF, Thews G (ed) Physiologie des Menschen, 20th edn. Springer, Berlin Heidelberg New York, pp 668–702

    Google Scholar 

  29. Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18(6):689–699

    PubMed  CAS  Google Scholar 

  30. Klahr S, Harris KPG (1992) Obstructive uropathy. In: Seldin DW, Giebisch G (eds) The kidney: physiology and pathophysiology, vol 3. Raven, New York, pp 3327–3369

    Google Scholar 

  31. Koushanpour E, Kriz W (1986) Body fluids: turnover rates and dynamics of fluid shifts. In: Koushanpour E, Kriz W (eds) Renal physiology: principles, structure, and function, 2nd edn. Springer, Berlin Heidelberg New York, pp 21–40

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, M.F., Prasad, P.V. (1998). Abdominal Diffusion Imaging Using Echo-Planar Imaging. In: Echo-Planar Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80443-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80443-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80445-8

  • Online ISBN: 978-3-642-80443-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics