Skip to main content

Periprosthetic Bone Mineral Density and Other Orthopedic Applications

  • Chapter
Bone Densitometry and Osteoporosis
  • 623 Accesses

Abstract

Bone quality is a crucial concept in orthopedic practice. When implanting a total hip prosthesis or placing a transpeduncular screw, one needs to know the mechanical consistency and biological reactivity of the host bone. These two components, the mass-related mechanical properties and the biological ability to remodel and adapt, are what have been called bone quality [155]. They have been studied extensively histologically, roentgenographically, and scintigraphically since fracture fixation devices, prosthetic implants, and limb lengthening instrumentaries were introduced into the orthopedic surgery [32, 83,106,155]. In this regard a noninvasive and quantitative measurement of bone mass should have been considered a major advance for further insight into bone quality. However, after its development bone densitometry found early but few applications in the orthopedic field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahl T, Sjoberg H, Dalen N (1988) Bone mineral content in the calcaneus after ankle fracture. Acta Orthop Scand 59: 173–175

    PubMed  CAS  Google Scholar 

  2. Ahnfelt L, Herberts P, Malchau H, Andersson GBJ (1990) Prognosis of total hip replacement: a Swedish multicenter study of 4.664 revisions.Acta Orthop Scand 238 [Suppl 61]: 1–25

    CAS  Google Scholar 

  3. Akeson WH,Woo SL, Rutherford L et al (1976) The effects of rigidity of internal fixation plates on long bone remodeling. A biomechanical and quantitative histologic study. Acta Orthop Scand 47: 241–249

    Article  PubMed  CAS  Google Scholar 

  4. Alho A (1993) Mineral and mechanics of bone fragility fractures. A review of fixation methods. Acta Orthop Scand 64: 227–232

    Article  PubMed  CAS  Google Scholar 

  5. Andersson SM, Nilsson BE (1979) Changes in bone mineral content following ligamentous knee injuries. Med Sci Sports 11: 351–354

    Article  PubMed  CAS  Google Scholar 

  6. Andersson SM, Nilsson BE (1979) Changes in bone mineral content following tibial shaft fractures. Clin Orthop 144: 226–229

    PubMed  Google Scholar 

  7. Andersson SM, Nilsson BE (1979) Posttraumatic bone mineral loss in tibial shaft fractures treated with a weightbearing brace. Acta Orthop Scand 50: 689–691

    Article  PubMed  CAS  Google Scholar 

  8. Angelides M, Chan M, Ahmed AM, Joly L (1988) Effect of total knee arthroplasty on distal femur stress. Trans Orthop Res Soc 13: 475–483

    Google Scholar 

  9. Aro HT, Wippermann BW, Hodgson SF, Wahner HW, Lewallen DG, Chao EYS (1989) Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry. J Bone Joint Surg Am 71: 1020–1030

    PubMed  CAS  Google Scholar 

  10. Aronson J, Harrison BH, Steward CL, Harp JH (1989) The histology of distraction osteogenesis using different external fixators. Clin Orthop 241: 106–116

    PubMed  Google Scholar 

  11. Banks LM, Fowler CP, Robertson I, Thomas R, Whittle M, Strachan R (1994) DXA and total knee replacement - an initial experience. Bone Miner 25 [Suppl 2]:S3 (abstract)

    Google Scholar 

  12. Bartucci EJ, Gonzales MH, Cooperman DR, Freedberg HI, Barmada R, Laros GS (1985) The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 67: 1094–1107

    PubMed  CAS  Google Scholar 

  13. Bauer GCH (1954) Rate of bone salt formation in healing fractures determined in rats by means of radiocalcium. Acta Orthop Scand 23:169–191

    Google Scholar 

  14. Beljan JR, Hellewell AB, Goldman M (1971) The effect of calcium deficiency on healing of experimental fractures in the avian tarsus as determined by the fracture repair ratio. Clin Orthop 78: 277–285

    Article  PubMed  CAS  Google Scholar 

  15. Bickerstaff DR, O’Doherty DP, Kanis JA (1993) Changes in cortical and trabecular bone in algodystrophy. Br J Rheumatol 32: 46–51

    Google Scholar 

  16. Bjork L, Lemperg R (1967) Radiographic determination of the bone mineral content in amputation stumps. Acta Radiol Diagn (Stockh) 6: 575–578

    CAS  Google Scholar 

  17. Blane CE, Herzenberg JE, DiPietro MA (1991) Radiographic imaging for Ilizarov limb lengthening in children. Pediatr Radiol 21: 117–120

    Article  PubMed  CAS  Google Scholar 

  18. Bloebaum RD, Bachus KN, Mitchell W, Hoffman G, Hofmann AA (1995) Analysis of the bone surface area in resected tibia. Clin Orthop 309: 2–10

    Google Scholar 

  19. Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE (1990) The effects of stem stiffness after canine porous-coated total hip arthroplasty. Clin Orthop 261: 196–213

    PubMed  Google Scholar 

  20. Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding: laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop 274: 79–96

    PubMed  Google Scholar 

  21. Brand RA, Yoder SA, Pedersen DR (1985) Intraobserver variability in interpreting radiographic lucencies aboult total hip reconstructions. Clin Orthop 192: 237–239

    PubMed  Google Scholar 

  22. Cameron HV, Cameron GI (1987) Stress relief osteoporosis of the anterior femoral condyles in total knee replacement. A study of 185 patients. Orthop Rev 16:449-456

    CAS  Google Scholar 

  23. Capello WN (1990) Technical aspects of cementless total hip arthroplasty. Clin Orthop 261: 102–106

    PubMed  Google Scholar 

  24. Carlson GD,Abitbol JJ, Anderson DR et al. (1992) Screw fixation in the human sacrum: an in vitro study of the biomechanics of fixation. Spine 17: S1 - S8

    Google Scholar 

  25. Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194: 1174–1176

    Article  PubMed  CAS  Google Scholar 

  26. Coe JD, Warden KE, Herzig MA, McAfee PC (1990) Influence of bone mineral density on the fixation of thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 15: 902–907

    Article  PubMed  CAS  Google Scholar 

  27. Cohen B, Rushton N (1994) A comparative study of peri-prosthetic bone mineral density measurement using two different dual-energy X-rayabsorptiometry systems. Br J Radiol 67: 852–855

    Google Scholar 

  28. Cohen B, Rushton N (1995) Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg Br 77:479-483

    Google Scholar 

  29. Cohen B, Rushton N (1995) Bone remodelling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg Br 77: 815–819

    Google Scholar 

  30. Dalenberg DD, Asher MA, Robinson RG, Jayaraman G (1993) The effect of a stiff spinal implant and its loosening on the bone mineral content in canines. Spine 18: 1862–1866

    Article  PubMed  CAS  Google Scholar 

  31. Engh CA (1983) Hip arthroplasty with a Moore prosthesis with porous coating: a five year study. Clin Orthop 176: 53–66

    Google Scholar 

  32. Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement: the factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69: 45–55

    PubMed  CAS  Google Scholar 

  33. Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231: 7–28

    PubMed  Google Scholar 

  34. Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral component. Clin Orthop 257: 107–128

    PubMed  Google Scholar 

  35. Engh CA, McGovern TF, Bobyn JD, Harris WH (1992) A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am 74: 1009–1020

    PubMed  CAS  Google Scholar 

  36. Engh CA, McGovern TF, Schmidt LM (1993) Roentgenographic densitometry of bone adjacent to a femoral prosthesis. Clin Orthop 292: 177–190

    Google Scholar 

  37. Engh CA, Hooten Jr JP, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Macalino GE, Zicat BA (1994) Porous coated total hip replacements. Clin Orthop 298: 89–96

    PubMed  Google Scholar 

  38. Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop 248: 9–12

    PubMed  Google Scholar 

  39. Eyres KS, Bell MJ, Kanis JA (1993) New bone formation during leg lengthening. J Bone Joint Surg Br 75: 96–106

    PubMed  CAS  Google Scholar 

  40. Eyres KS, Bell MJ, Kanis JA (1993) Methods of assessing new bone formation during limb lengthening: ultrasonography, dual energy X-ray absorptiometry and radiography compared. J Bone Joint Surg Br 75: 358–364

    PubMed  CAS  Google Scholar 

  41. Eyres KS, Kanis JA (1995) Bone loss after tibial fracture: evaluated by dual-energy X-ray absorptiometry. J Bone Joint Surg Br 77: 473–478

    PubMed  CAS  Google Scholar 

  42. Finsen V (1988) Osteopenia after osteotomy of the tibia. Calcif Tissue Int 42: 1–4

    Article  PubMed  CAS  Google Scholar 

  43. Finsen V, Benum P (1986) Refracture rare after removal of fixation device from healed hip fractures. Acta Orthop Scand 57: 434–435

    Article  PubMed  CAS  Google Scholar 

  44. Finsen V, Benum P (1986) The second hip fracture: an epidemiologic study. Acta Orthop Scand 57: 431–433

    Article  PubMed  CAS  Google Scholar 

  45. Finsen V, Benum P (1987) The interrelationship of past and present fractures of the forearm and hand. Acta Orthop Scand 58: 370–372

    Google Scholar 

  46. Finsen V, Benum P (1989) Osteopenia after ankle fractures: the influence of early weight bearing and muscle activity. Clin Orthop 245: 261–268

    PubMed  Google Scholar 

  47. Finsen V, Haave 0 (1987) Changes in bone-mass after tibial shaft fracture. Acta Orthop Scand 58: 369–371

    CAS  Google Scholar 

  48. Finsen V, Haave O, Benum P (1989) Fracture interaction in the extremities: the possible relevance of post-traumatic osteopenia. Clin Orthop 240: 244–249

    PubMed  Google Scholar 

  49. Finsen V, Svenningsen S, Harnes OB, Nesse O, Benum P (1988) Osteopaenia after plated and nailed femoral shaft fractures. J Orthop Trauma 2: 13–17

    Article  PubMed  CAS  Google Scholar 

  50. Frost HM (1989) The biology of fracture healing: an overview for clinicians, part. L Clin Orthop 248: 283–293

    Google Scholar 

  51. Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: the bone modeling problem. Anat Rec 226: 403–413

    Article  PubMed  CAS  Google Scholar 

  52. Galante JO, Rostoker W, Lueck R, Ray RD (1971) Sintered fiber composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53: 101–108

    PubMed  CAS  Google Scholar 

  53. Gerlanc M, Haddad D, Hyatt GW, Langloh JT, St Hilaire P (1975) Ultrasonic study of normal and fractured bone. Clin Orthop 111: 175–184

    Article  PubMed  Google Scholar 

  54. Gill PJ, Kernohan G, Mawhinney IN, Mollan RA, Mcllhagger R (1989) Investigation of the mechanical properties of bone using ultrasound. Proc Inst Mech Eng 203: 61–63

    CAS  Google Scholar 

  55. Glassman AH, Engh CA, Griffin WL (1990) Removal of porous coated femoral hip stem. In: Proceedings of AADS 57th Annual Meeting, New Orleans, Louisiana, p 199

    Google Scholar 

  56. Gristina AG (1994). Implant failure and the immuno-incompetent fibroinflammatory zone. Clin Orthop 298: 106–118

    PubMed  Google Scholar 

  57. Gruen T (1987) Radiographic criteria for the clinical performance of uncemented total hip replacements. In: Lemons JE (ed) Quantitative characterization and performence of porous implants for hard tissue applications. American Society for Testing and Materials, Philadelphia, pp 207–218

    Chapter  Google Scholar 

  58. Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141:17–27

    PubMed  Google Scholar 

  59. Gundry CR, Miller CW, Ramos E (1990) Dual-energy radiographic absorptiometry of the lumbar spine: clinical experience with two different systems. Radiology 174: 539–541

    PubMed  CAS  Google Scholar 

  60. Haddad RJ, Cook SD, Brinker MR (1990) A comparison of three varieties of uncemented porous-coated hip replacement. J Bone Joint Surg Br 72: 2–8

    PubMed  CAS  Google Scholar 

  61. Hamanishi C, Kawabata T, Yoshii T, Tanaka S (1995) Bone mineral density changes in distracted callus stimulated by pulsed direct electrical current. Clin Orthop 312: 247–252

    PubMed  Google Scholar 

  62. Hamanishi C, Yoshii T, Totani Y, Tanaka S (1994) Bone mineral density of lengthened rabbit tibia is enhanced by transplantation of fresh autologous bone marrow cells: an experimental study using dual X-ray absorptiometry. Clin Orthop 303: 250–255

    PubMed  Google Scholar 

  63. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5: 46–54

    Article  PubMed  CAS  Google Scholar 

  64. Harrington KD (1975) The use of methylmethacrylate as an adjunct in the internal fixation of unstable comminuted intertrochanteric fractures in osteoporotic patients. J Bone Joint Surg Am 57: 744–750

    PubMed  CAS  Google Scholar 

  65. Harris WH, Jasty M (1985) Bone ingrowth into porous coated canine acetabular replacements: the effect of pore size, apposition and dislocation. In: Fitzgerald RH (ed) The hip. Proceedings of the 13th open scientific meeting of the hip society. Mosby, St Louis, pp 214–234

    Google Scholar 

  66. Healy WL (1995) Economic considerations in total hip arthroplasty and implant standardization. Clin Orthop 311: 102–108

    PubMed  Google Scholar 

  67. Hedley AK, Gruen TA, Borden LS (1986) Two year follow-up of the PCA non-cemented total hip replacement. In: Brand RA (ed) The hip. Proceedings of the 14th open scientific meeting of the hip society. Mosby, St Louis, pp 225–250

    Google Scholar 

  68. Hellewell AG (1980) Absorptiometric quantitation of experimental fracture mineralization. In: 4th International Conference on Bone Mineral Measurement. NIH publication 80–1938: 121–125

    Google Scholar 

  69. Hofmann AA, Wyatt RW, France EP, Bigler GT, Daniels AU, Hess WE (1987) Endosteal bone loss after total hip arthroplasty. Clin Orthop 245: 138–144

    Google Scholar 

  70. Hollis JM, Hofmann 0E, Steward CL, Flahiff CM, Nelson CL (1992) Effect of micromotion on ingrowth into porous coated implants using a transcortical model. In: Transactions of the 4th World Biomaterials Congress, p 258

    Google Scholar 

  71. Hozack WJ, Booth RE Jr (1990) Clinical and radiographic results with the trilock femoral component: a wedge-fit porous ingrowth stem design. Semin Arthroplasty 1: 64–69

    PubMed  CAS  Google Scholar 

  72. Hughes SS, Furia JP, Smith P, Pellegrini VD Jr (1995) Atrophy of the proximal part of the femur after total hip arthroplasty without cement. J Bone Joint Surg Am 77: 231–239

    PubMed  CAS  Google Scholar 

  73. Huiskes R (1980) Some fundamental aspects of human-joint replacement. Acta Orthop Scand 51 [Suppl 1]: 1

    Article  Google Scholar 

  74. Huiskes R (1990) The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop 261: 27–38

    PubMed  Google Scholar 

  75. Huiskes R, Chao EYS (1989) A survey of finite element methods in orthopaedic biomechanics. J Biomech 16: 385–394

    Article  Google Scholar 

  76. Huiskes R,Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274: 124–134

    Google Scholar 

  77. Husby T, Hoiset A, Alho A (1987) Osteoporosis and stability of osteosynthesis of the femoral neck. Trans Orthop Res Soc 12: 236

    Google Scholar 

  78. Hvid I (1988) Trabecular bone strength of the knee. Clin Orthop 227: 210–222

    PubMed  CAS  Google Scholar 

  79. Hvid I, Hansen SL (1985) Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res 3: 462–470

    Article  Google Scholar 

  80. Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH (1994) Fit of uncemented femoral component and the use of cement influence the strain transfer to the femoral cortex. J Orthop Res 12: 648–656

    Article  PubMed  CAS  Google Scholar 

  81. Jiang CC, Insall JN (1989) Effect of rotation on the axial alignment of the femur. Clin Orthop 248: 50–56

    PubMed  Google Scholar 

  82. Johnston RC, Crowninshield RD (1983) Roentgenologic results of total hip arthroplasty: a ten-year follow-up study. Clin Orthop 181: 92–102

    PubMed  Google Scholar 

  83. Kantor SG, Schneider R, Insall JN, Becker MW (1990) Radionuclide imaging of asymptomatic versus syptomatic total knee arthroplasties. Clin Orthop 260: 118–123

    PubMed  Google Scholar 

  84. Kaplan PA, Montesi SA, Jardon OM (1988) Bone-ingrowth hip prostheses in asymptomatic patients: radiographic features. Radiology 169: 221–227

    PubMed  CAS  Google Scholar 

  85. Karlsson MK, Nilsson BE, Obrant KJ (1993) Bone mineral loss after lower extremity trauma. Acta Orthop Scand 64: 362–364

    Article  PubMed  CAS  Google Scholar 

  86. Kattapuram SV, Lodwick GS, Chandler H (199o) Porous coated total hip prostheses: radiographic analysis and clinical correlation. Radiology 174: 861–864

    Google Scholar 

  87. Kenwright J, Goodship AE (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop 241: 36–47

    PubMed  Google Scholar 

  88. Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RB (1993) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. J Bone Joint Surg Br 75: 279–287

    PubMed  CAS  Google Scholar 

  89. Kiratli BJ, Heiner JP, McBeath AA (1991) Bone mineral density response after total hip arthroplasty: one year follow up. J Bone Miner Res 6 [Suppl 1]S110 (abstract)

    Google Scholar 

  90. Kiratli BJ, Heiner JP, McKinley N, Wilson MA, McBeath AA (1991) Bone mineral density of the proximal femur after uncemented total hip arthroplasty. Trans Orthop Res Soc 16: 545

    Google Scholar 

  91. Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual X-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10: 836–844

    Article  PubMed  CAS  Google Scholar 

  92. Kiratli BJ, Heiner JP, McKinley N, Wilson MA, McBeath AA (1992) Bone mineral density of the proximal femur after uncemented total hip arthroplasty. Trans Orthop Res Soc 17: 238

    Google Scholar 

  93. Kiratli JB, Checovic MM, McBeath AA, Wilson MA, Heiner JP (1996) Measurement of bone mineral density by dual-energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 11: 184–192

    Article  PubMed  CAS  Google Scholar 

  94. Korovessis P, Pip eros G, Michael A (1994) Prosthetic bone mineral density after Mueller and Zweymueller total hip arthroplasties. Clin Orthop 309: 214–221

    PubMed  Google Scholar 

  95. Krackow KA, Jones MM, Teeny SM,Hungerford DS (1991) Primary total knee arthroplasty in patients with fixed valgus deformity. Clin Orthop 273: 9–18

    Google Scholar 

  96. Kumano K, Hirabayashi S, Ogawa Y, Aota Y (1994) Pedicle screws and bone mineral density. Spine 19: 1157–1161

    Article  PubMed  CAS  Google Scholar 

  97. Kwong LM, Jasty M, Mulroy RD, Maloney WJ, Bragdon C, Harris WH (1992) The histology of the radiolucent line. J Bone Joint Surg Br 74: 67–73

    PubMed  CAS  Google Scholar 

  98. Laros GS, Moore JF (1974) Complications of fixation in intertrochanteric fractures. Clin Orthop 101: 110–116

    PubMed  Google Scholar 

  99. Laskey MA, Flaxman ME, Barber RW (1991) Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR woo dual energy X-ray absorptiometers. Br J Radiol 64: 1023–1029

    Article  PubMed  CAS  Google Scholar 

  100. Lee RW,Volz RG, Sheridan DC (1991) The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop 273: 177–189

    Google Scholar 

  101. Levitz CL, Lotke PA, Karp JS (1995) Long-term changes in bone mineral density following total knee replacement. Clin Orthop 321: 68–72

    PubMed  Google Scholar 

  102. Lewis JL (1975) A dynamic model of a healing fractured long bone. J Biomech 8: 17–24

    Article  PubMed  CAS  Google Scholar 

  103. Liu TK, Yang RS, Chieng PU, Shee BW (1995) Periprosthetic bone mineral density of the distal femur after total knee arthroplasty. Int Orthop 19: 346–351

    Article  PubMed  CAS  Google Scholar 

  104. Lord J, Marotte JH, Guillamon JL, Blanchard JP (1988) Cementless revisions of failed aseptic cemented and cementless total hip arthroplasties: 284 cases. Clin Orthop 235: 67–74

    PubMed  Google Scholar 

  105. Maffulli N, Hughes T, Fixsen JA (1992) Ultrasonographic monitoring of limb lengthening. J Bone Joint Surg Br 74: 130–132

    PubMed  CAS  Google Scholar 

  106. Maloney WJ, Jasty M, Burke DW, O’Connor DO, Zalenski EB, Bragdon C, Harris WH (1989) Biomechanical and histologic investigation of cemented total hip arthroplasty: a study of autopsy-retrieved femurs after in vivo cycling. Clin Orthop 249: 129–140

    PubMed  Google Scholar 

  107. Marinoni EC, Trevisan C, Bigoni M, Castellano S, Ortolani S, Peretti G (1994) Metodiche di valutazione strumentale nel follow-up delle protesi totali di ginocchio. In: Monteleone A (ed) International meeting knee prosthesis, microprint SBR, Napoli 1994, pp 195–204

    Google Scholar 

  108. Markel MD, Chao EY (1993) Noninvasive monitoring techniques for quantitative description of callus mineral content and mechanical properties. Clin Orthop 293: 37–45

    PubMed  Google Scholar 

  109. Markel MD, Wikenheiser MA, Morin RL, Lewallen DG, Chao EYS (1990) Quantification of bone healing. Comparison of QCT, SPA, MRI and DEXA in dog osteotomies. Acta Orhtop Scand 61: 487–498

    Article  CAS  Google Scholar 

  110. Martin B (1993) Ageing and strengh of bone as a structural material. Calcif Tissue Int 53 [Suppl 1]: S34 - S40

    Article  PubMed  Google Scholar 

  111. Massari L, Mura P, Giancolo R, Biscione R, Bagni B, Villani C, Gallazzi MB (1994) Valutazione con DEXA dell’osteointegrazione nelle componenti protesiche rivestite con idrossiapatite. Ital J Orthop Traumatol 20 [Suppl 1]: 93–100

    Google Scholar 

  112. Mazess RB (1983) Noninvasive bone measurement. In: Kunin A (ed) Skeletal research II. Academic, New York, p 277

    Google Scholar 

  113. Mazess RB, Barden HS (1988) Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy X-ray absorptiometry ( DEXA ). Ann Chirur Gynaecol 77: 197–203

    CAS  Google Scholar 

  114. Mazess RB,Wahner HM (1988) Nuclear medicine and densitometry. In: Riggs BL, Melton LJ III (eds) Osteoporosis, aetiology, diagnosis and management. Raven, New York, pp 251–295

    Google Scholar 

  115. McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1989) Device-related osteoporosis with spinal instrumentation. Spine 14: 919–926

    Article  PubMed  CAS  Google Scholar 

  116. McCarthy CK, Steinberg GG,Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br 73: 774–778

    CAS  Google Scholar 

  117. McCaskie AW, Brown AR, Thompson JR, Gregg PJ (1996) Radiological evaluation of the interfaces after cemented total hip replacement: interobserver and intraobserver agreement. J Bone Joint Surg Br 78: 191–194

    PubMed  CAS  Google Scholar 

  118. McGovern TF, Engh CA, Zettl-Schaffer K, Hooten JP (1995) Cortical bone density of the proximal femur following total hip arthroplasty. Clin Orthop 306: 45–154

    Google Scholar 

  119. Miller JE, Kelebay LC (1981) Bone ingrowth-disuse osteoporosis. Trans Orthop Res Soc 5: 380–386

    Google Scholar 

  120. Minzer CM, Robertson DD, Rackemann S, Ewald FC, Scott RD, Spector M (1990) Bone loss in the distal anterior femur after total knee arthroplasty. Clin Orthop 260: 135–143

    Google Scholar 

  121. Mortimer ES, Rosenthall L, Paterson I, Bobyn JD (1996) Effect of rotation on periprosthetic bone mineral measurements in a hip phantom. Clin Orthop 324: 269–274

    Article  PubMed  Google Scholar 

  122. Niinimaki T, Jalovaara P (1995) Bone loss from the proximal femur after arthroplasty with an isoelastic femoral stem: BMD measurements in 25 patients after 9 years. Acta Orthop Scand 66: 347–351

    Article  PubMed  CAS  Google Scholar 

  123. Nilsson BE (1966) Post-traumatic osteopenia: a quantitative study of the bone mineral mass in the femur following fracture of the tibia in man using americium-241 as a photon source. Acta Orthop Scand 37 [Suppl]: 91

    Google Scholar 

  124. Nilsson BE, Westlin NE (1969) Osteoporosis following injury to the semilunar cartilage. Calcif Tissue Res 4: 185–187

    Article  PubMed  CAS  Google Scholar 

  125. Nilsson BE, Westlin NE (1977) Bone mineral content in the forearm after fracture of the upper limb. Calcif Tissue Res 22: 329–331

    Article  PubMed  CAS  Google Scholar 

  126. Noble PC, Box GG, Kamaric E, Fink MJ, Alexander JW, Tullos HS (1995) The effect of aging on the shape of the proximal femur. Clin Orthop 316: 31–44

    PubMed  Google Scholar 

  127. Oh I, Harris WH (1978) Proximal strain distribution in the loaded femur: an in vitro comparison of the distributions in the intact femur and after insertion of different hip replacement femoral components. J Bone Joint Surg Am 60: 75–83

    PubMed  CAS  Google Scholar 

  128. Orne D (1974) The in vivo driving point impedance of the human ulna: a viscoelastic beam model. J Biomech 7: 249–254

    Article  PubMed  CAS  Google Scholar 

  129. Ortolani S, Trevisan C, Montesano A, Gandolini G, Bianchi ML, Caraceni MP, Ulivieri FM (1990) Comparison between 153-Gd and X-ray dual photon absorptiometry. Ital J Miner Electrolyte Metab 4: 37–42

    Google Scholar 

  130. Peretti G, Memeo A, Paronzini A, Marinoni EC (1988) Methods for the study of bone regeneration in lengthening of the limbs. Ital J Orthop Traumatol 15: 217–221

    Google Scholar 

  131. Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E (1987) Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection? Clin Orthop 232: 139–151

    Google Scholar 

  132. Petersen MB, Kolthoff N, Eiken (1995) Bone mineral density around femoral stems: DXA measurements in 22 porous-coated implants after 5 years. Acta Orhtop Scand 66: 432–434

    CAS  Google Scholar 

  133. Petersen MM, Nilsen PT, Lauritzen JB, Lund B (1995) Changes in bone density of the proximal tibia following uncemented knee arthroplasty: a 3 years follow-up of 25 knees. Acta Orthop Scand 66: 513–516

    Article  PubMed  CAS  Google Scholar 

  134. Petersen MM, Lauritzen JB, Pedersen JG, Lund B (1996) Decreased bone density of the distal femur after uncemented knee arthroplasty. Acta Orthop Scand 67: 339–344

    Article  PubMed  CAS  Google Scholar 

  135. Pilliar RM, Cameron HU, Welsh RP, Binnington AG (1981) Radiographic and morphologic studies of load-bearing porous-surfaced structured implants. Clin Orthop 156: 249–254

    PubMed  Google Scholar 

  136. Poss R (1992) Natural factors that affect shape and strength of the ageing human femur. Clin Orthop 274: 194–201

    PubMed  Google Scholar 

  137. Pritchett JW (1995) Femoral bone loss following hip replacement. A comparative study. Clin Orthop 314: 156–161

    PubMed  Google Scholar 

  138. Richmond BJ, Bauer TW, Stulberg BN, Fox JS (1990) Bone mineral in patients undergoing uncemented total hip arthroplasty. Calcif Tissue Int 46: 145 (abstract)

    Google Scholar 

  139. Richmond BJ, Eberle RW, Stulberg BN, Deal CL (1991) DEXA measurement of peri-prosthetic bone mineral density in total hip arthroplasty. J Bone Miner Res 6 [Supp11]: S241 (abstract)

    Google Scholar 

  140. Robertson DD, Minzer CM, Weissman BN, Ewald FC, LeBoff M, Spector M (1994) Distal loss of femoral bone following total knee arthroplasty. J Bone Joint Surg Am 76: 66–76

    PubMed  CAS  Google Scholar 

  141. Rosenberg A (1989) Cementless total hip arthroplasty: femoral remodelling and clinical experience. Orthopaedics 12: 1223–1233

    CAS  Google Scholar 

  142. Rosenberg AG,Andriacchi TP, Barden R, Galante JO (1988) Patellar component failure in cementless total knee arthroplasty. Clin Orthop 236: 106–114

    Google Scholar 

  143. Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodelling of the human femur and tibia with ageing. Science 217: 945–946

    Article  PubMed  CAS  Google Scholar 

  144. Saha S, Lakes RS (1977) The effect of soft tissue on the wave-propagation and vibration tests for determining the in vivo properties of bone. J Biomech 10: 393–398

    Article  PubMed  CAS  Google Scholar 

  145. Sarangi PP, Ward AJ, Smith EJ, Staddon GE, Atkins RM (1993) Algodystrophy and osteoporosis after tibial fractures. J Bone Joint Surg Br 75: 450–452

    PubMed  CAS  Google Scholar 

  146. Sarmiento A (1973) Unstable intertrochanteric fractures of the femur. Clin Orthop 92: 77–85

    Article  PubMed  Google Scholar 

  147. Scott RD, Volatile TB (1986) Twelve years’ experience with posterior cruciate-retaining total knee arthroplasty. Clin Orthop 205: 100–114

    PubMed  Google Scholar 

  148. Seitz P, Ruegsegger P, Gschwend N, Dubs L (1987) Changes in local bone density after knee arthroplasty. J Bone Joint Surg Br 69: 407–411

    PubMed  CAS  Google Scholar 

  149. Skinner HB, Kilgus DJ, Keyak J, Shimaoka EE, Kim AS, Tipton JS (1994) Correlation of computed finite element stresses to bone density after remodelling around cementless femoral implant. Clin Orthop 305: 178–189

    PubMed  Google Scholar 

  150. Skinner HB, Kim AS, Keyak JH, Mote CD (1994) Femoral prosthesis implantation induces changes in bone stress that depend on the extent of porous coating. J Orthop Res 12: 553–563

    Article  PubMed  CAS  Google Scholar 

  151. Smith KR, Hunt TR, Asher MA, Anderson HC, Robinson R, Carson WL (1988) Study of bone stress shielding in the canine lumbar spine. Presented at the annual meeting of the Scoliosis Research Society, Baltimore, Maryland, 29 Sept-2 Oct

    Google Scholar 

  152. Smith RW, Walker RR (1964) Femoral expansion in ageing women: implication for osteoporosis and fractures. Science 145: 156–158

    Article  PubMed  Google Scholar 

  153. Smith SA,Abitbol JJ, Carlson GD,Anderson DR, Taggart KW, Garfin SR (1993) The effects of depth of penetration, screw orientation and bone density on sacral screw fixation. Spine 18: 1006–1010

    Article  Google Scholar 

  154. Soshi S, Shiba R, Kondo H, Murota H (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16: 1335–1341

    Article  PubMed  CAS  Google Scholar 

  155. Stulberg BN, Bauer TW, Watson JT, Richmond B (1989) Bone quality: roentgenographic versus histologic assessment of hip bone structure. Clin Orthop 240: 200–205

    PubMed  Google Scholar 

  156. Stulberg BN, Eberle RW, Fox JS, Richmond BJ (1989) The technical aspects of peri-prosthetic bone mineral density in uncemented total hip arthroplasty. In: 2nd International Symposium for C ustom Prostheses, Chicago, IL, p 23 (abstract 70)

    Google Scholar 

  157. Svesnikov AA, Oficerova NV (1985) Mineralstoffwechsel bei Knochenbrüchen nach den Ergebnissen Photonen-Absorptionsmessung. Radiol Diagn (Berl) 26: 407–412

    CAS  Google Scholar 

  158. Sychterz CJ, Engh CE (1996) The influence of clinical factors on periprosthetic bone remodeling. Clin Orthop 322: 285–292

    PubMed  Google Scholar 

  159. Terjesen T, Benum P (1983) The stress protecting effect of metal plates on the intact rabbit tibia. Acta Orthop Scand 54: 810–818

    Article  PubMed  CAS  Google Scholar 

  160. Thomas BJ, Salvati EA, Small RD (1986) The CAD hip arthroplasty: five to ten year follow-up. J Bone Joint Surg Am 68: 640–651

    PubMed  CAS  Google Scholar 

  161. Tissakht M, Ahmed AM, Chan KC (1993) Stress-shielding in the distal femur following TKR: effect of bone/implant interface condition. Trans Orthop Res Soc 18: 426

    Google Scholar 

  162. Trevisan C, Caraceni MP, Gandolini G, Montesano A, Ortolani S (1990) Bone density of dominant and nondominant hip measured by dual-energy X-ray absorptiometry. In: Christiansen C, Overgaard K (eds) Osteoporosis 9o. Handelstryldceriet Aalborg, Aalborg, pp 863–865

    Google Scholar 

  163. Trevisan C, Bigoni M, Cherubini R, Randelli G, Ortolani S (1992) Longitudinal assessment of periprosthetic bone mineral density by DXA in total hip arthroplasty. Bone Miner 17 [Suppl 1]: 225 (abstract)

    Google Scholar 

  164. Trevisan C, Bigoni M, Cherubini R, Steiger P, Randelli G, Ortolani S (1993). Dual X-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int 53: 158–161

    Article  PubMed  CAS  Google Scholar 

  165. Trevisan C, Bigoni M, Randelli G, Marinoni EC, Peretti G, Ortolani S (1997) Periprosthetic bone density around fullyhydrohyapatite coated femoral stem. Clin Orthop 340: 109–117

    Article  PubMed  Google Scholar 

  166. Trevisan C, Bigoni M, Benti M, Marinoni EC, Ortolani S (1997) Bone assessment after total knee arthroplasty by dual-energy X-ray absorptiometry: analysis protocol and reproducibility. Calcif Tissue Int (in press)

    Google Scholar 

  167. Uhthoff HK, Boisvert D, Finnegan M (1994) Cortical porosis under plates. J Bone Joint Surg Am 76: 1507–1512

    PubMed  CAS  Google Scholar 

  168. Ulivieri FM, Bossi E,Azzoni R, Ronzani C, Trevisan C, Montesano A, Ortolani S (1990) Quantification by dual photonabsorptiometry of local bone loss after fracture. Clin Orthop 250: 291–296

    Google Scholar 

  169. Van der Wiel HE, Lips P, Nauta J, Patka P, Haarman HJThM, Teule GJJ (1994) Loss of bone in the proximal part of the femur following unstable fractures of the leg. J Bone Joint Surg Am 76: 230–236

    PubMed  Google Scholar 

  170. Van Roermund PM, Ter Haar Romeny BM, Hoekstra A, Schoonderwoert GJ, Brandt CJ, van der Steen SP, Roelofs JMM, Scholten F, Visser WJ, Renoij W (1991) Bone growth and remodeling after distraction epiphysiolysis of the proximal tibia of the rabbit. Clin Orthop 266: 304–312

    PubMed  Google Scholar 

  171. Van Roermund PM, Ter Haar Romeny BM, Schoonderwoert GJ, Brandt CJ, Sijbrandij S, Renooij W (1987) The use of computed tomography to quantitate bone formation after distraction epiphysiolysis in the rabbit. Skeletal Radiol 16: 52–56

    Article  PubMed  Google Scholar 

  172. Walker PS, Granholm J, Lowrey R (1982) The fixation of femoral components of condylar knee prostheses. Eng Med 11: 135–140

    Article  PubMed  CAS  Google Scholar 

  173. Wendeberg B (1961) Mineral metabolism of fractures of the tibia in man studied with external counting of Srss. Acta Orthop Scand [Suppl] 52: 130

    Google Scholar 

  174. West JD, Mayor MB, Collier JP (1987) Potential erors inherent in quantitative densitometric analysis of orthopaedic radiographs: a study after total hip arthroplasty. J Bone Joint Surg Am 69: 58–64

    PubMed  CAS  Google Scholar 

  175. Westlin NE (1974) Loss of bone mineral after Colles’ fracture. Clin Orthop 102: 194–199

    Article  PubMed  Google Scholar 

  176. Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16: 647–652

    Article  PubMed  CAS  Google Scholar 

  177. Wrobleski BM (1986) 15–21 year results of the Charnley low-friction arthroplasty. Clin Orthop 211:30-42

    Google Scholar 

  178. Young JWR, Kostrubiak IS, Resnick CS, Paley D (1990) Sonographic evaluation of bone production at the distraction site in Ilizarov limb-lengthening procedures. AJR 154: 125–128

    PubMed  CAS  Google Scholar 

  179. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop 203: 99–112

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Trevisan, C., Ortolani, S. (1998). Periprosthetic Bone Mineral Density and Other Orthopedic Applications. In: Genant, H.K., Guglielmi, G., Jergas, M. (eds) Bone Densitometry and Osteoporosis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80440-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80440-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80442-7

  • Online ISBN: 978-3-642-80440-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics