Periprosthetic Bone Mineral Density and Other Orthopedic Applications

  • C. Trevisan
  • S. Ortolani


Bone quality is a crucial concept in orthopedic practice. When implanting a total hip prosthesis or placing a transpeduncular screw, one needs to know the mechanical consistency and biological reactivity of the host bone. These two components, the mass-related mechanical properties and the biological ability to remodel and adapt, are what have been called bone quality [155]. They have been studied extensively histologically, roentgenographically, and scintigraphically since fracture fixation devices, prosthetic implants, and limb lengthening instrumentaries were introduced into the orthopedic surgery [32, 83,106,155]. In this regard a noninvasive and quantitative measurement of bone mass should have been considered a major advance for further insight into bone quality. However, after its development bone densitometry found early but few applications in the orthopedic field.


Bone Mineral Density Bone Loss Total Knee Arthroplasties Bone Density Bone Mineral Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahl T, Sjoberg H, Dalen N (1988) Bone mineral content in the calcaneus after ankle fracture. Acta Orthop Scand 59: 173–175PubMedGoogle Scholar
  2. 2.
    Ahnfelt L, Herberts P, Malchau H, Andersson GBJ (1990) Prognosis of total hip replacement: a Swedish multicenter study of 4.664 revisions.Acta Orthop Scand 238 [Suppl 61]: 1–25Google Scholar
  3. 3.
    Akeson WH,Woo SL, Rutherford L et al (1976) The effects of rigidity of internal fixation plates on long bone remodeling. A biomechanical and quantitative histologic study. Acta Orthop Scand 47: 241–249PubMedCrossRefGoogle Scholar
  4. 4.
    Alho A (1993) Mineral and mechanics of bone fragility fractures. A review of fixation methods. Acta Orthop Scand 64: 227–232PubMedCrossRefGoogle Scholar
  5. 5.
    Andersson SM, Nilsson BE (1979) Changes in bone mineral content following ligamentous knee injuries. Med Sci Sports 11: 351–354PubMedCrossRefGoogle Scholar
  6. 6.
    Andersson SM, Nilsson BE (1979) Changes in bone mineral content following tibial shaft fractures. Clin Orthop 144: 226–229PubMedGoogle Scholar
  7. 7.
    Andersson SM, Nilsson BE (1979) Posttraumatic bone mineral loss in tibial shaft fractures treated with a weightbearing brace. Acta Orthop Scand 50: 689–691PubMedCrossRefGoogle Scholar
  8. 8.
    Angelides M, Chan M, Ahmed AM, Joly L (1988) Effect of total knee arthroplasty on distal femur stress. Trans Orthop Res Soc 13: 475–483Google Scholar
  9. 9.
    Aro HT, Wippermann BW, Hodgson SF, Wahner HW, Lewallen DG, Chao EYS (1989) Prediction of properties of fracture callus by measurement of mineral density using micro-bone densitometry. J Bone Joint Surg Am 71: 1020–1030PubMedGoogle Scholar
  10. 10.
    Aronson J, Harrison BH, Steward CL, Harp JH (1989) The histology of distraction osteogenesis using different external fixators. Clin Orthop 241: 106–116PubMedGoogle Scholar
  11. 11.
    Banks LM, Fowler CP, Robertson I, Thomas R, Whittle M, Strachan R (1994) DXA and total knee replacement - an initial experience. Bone Miner 25 [Suppl 2]:S3 (abstract)Google Scholar
  12. 12.
    Bartucci EJ, Gonzales MH, Cooperman DR, Freedberg HI, Barmada R, Laros GS (1985) The effect of adjunctive methylmethacrylate on failures of fixation and function in patients with intertrochanteric fractures and osteoporosis. J Bone Joint Surg Am 67: 1094–1107PubMedGoogle Scholar
  13. 13.
    Bauer GCH (1954) Rate of bone salt formation in healing fractures determined in rats by means of radiocalcium. Acta Orthop Scand 23:169–191Google Scholar
  14. 14.
    Beljan JR, Hellewell AB, Goldman M (1971) The effect of calcium deficiency on healing of experimental fractures in the avian tarsus as determined by the fracture repair ratio. Clin Orthop 78: 277–285PubMedCrossRefGoogle Scholar
  15. 15.
    Bickerstaff DR, O’Doherty DP, Kanis JA (1993) Changes in cortical and trabecular bone in algodystrophy. Br J Rheumatol 32: 46–51Google Scholar
  16. 16.
    Bjork L, Lemperg R (1967) Radiographic determination of the bone mineral content in amputation stumps. Acta Radiol Diagn (Stockh) 6: 575–578Google Scholar
  17. 17.
    Blane CE, Herzenberg JE, DiPietro MA (1991) Radiographic imaging for Ilizarov limb lengthening in children. Pediatr Radiol 21: 117–120PubMedCrossRefGoogle Scholar
  18. 18.
    Bloebaum RD, Bachus KN, Mitchell W, Hoffman G, Hofmann AA (1995) Analysis of the bone surface area in resected tibia. Clin Orthop 309: 2–10Google Scholar
  19. 19.
    Bobyn JD, Glassman AH, Goto H, Krygier JJ, Miller JE, Brooks CE (1990) The effects of stem stiffness after canine porous-coated total hip arthroplasty. Clin Orthop 261: 196–213PubMedGoogle Scholar
  20. 20.
    Bobyn JD, Mortimer ES, Glassman AH, Engh CA, Miller JE, Brooks CE (1992) Producing and avoiding stress shielding: laboratory and clinical observations of noncemented total hip arthroplasty. Clin Orthop 274: 79–96PubMedGoogle Scholar
  21. 21.
    Brand RA, Yoder SA, Pedersen DR (1985) Intraobserver variability in interpreting radiographic lucencies aboult total hip reconstructions. Clin Orthop 192: 237–239PubMedGoogle Scholar
  22. 22.
    Cameron HV, Cameron GI (1987) Stress relief osteoporosis of the anterior femoral condyles in total knee replacement. A study of 185 patients. Orthop Rev 16:449-456Google Scholar
  23. 23.
    Capello WN (1990) Technical aspects of cementless total hip arthroplasty. Clin Orthop 261: 102–106PubMedGoogle Scholar
  24. 24.
    Carlson GD,Abitbol JJ, Anderson DR et al. (1992) Screw fixation in the human sacrum: an in vitro study of the biomechanics of fixation. Spine 17: S1 - S8Google Scholar
  25. 25.
    Carter DR, Hayes WC (1976) Bone compressive strength: the influence of density and strain rate. Science 194: 1174–1176PubMedCrossRefGoogle Scholar
  26. 26.
    Coe JD, Warden KE, Herzig MA, McAfee PC (1990) Influence of bone mineral density on the fixation of thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine 15: 902–907PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen B, Rushton N (1994) A comparative study of peri-prosthetic bone mineral density measurement using two different dual-energy X-rayabsorptiometry systems. Br J Radiol 67: 852–855Google Scholar
  28. 28.
    Cohen B, Rushton N (1995) Accuracy of DEXA measurement of bone mineral density after total hip arthroplasty. J Bone Joint Surg Br 77:479-483Google Scholar
  29. 29.
    Cohen B, Rushton N (1995) Bone remodelling in the proximal femur after Charnley total hip arthroplasty. J Bone Joint Surg Br 77: 815–819Google Scholar
  30. 30.
    Dalenberg DD, Asher MA, Robinson RG, Jayaraman G (1993) The effect of a stiff spinal implant and its loosening on the bone mineral content in canines. Spine 18: 1862–1866PubMedCrossRefGoogle Scholar
  31. 31.
    Engh CA (1983) Hip arthroplasty with a Moore prosthesis with porous coating: a five year study. Clin Orthop 176: 53–66Google Scholar
  32. 32.
    Engh CA, Bobyn JD, Glassman AH (1987) Porous-coated hip replacement: the factors governing bone ingrowth, stress shielding, and clinical results. J Bone Joint Surg Br 69: 45–55PubMedGoogle Scholar
  33. 33.
    Engh CA, Bobyn JD (1988) The influence of stem size and extent of porous coating on femoral bone resorption after primary cementless hip arthroplasty. Clin Orthop 231: 7–28PubMedGoogle Scholar
  34. 34.
    Engh CA, Massin P, Suthers KE (1990) Roentgenographic assessment of the biologic fixation of porous-surfaced femoral component. Clin Orthop 257: 107–128PubMedGoogle Scholar
  35. 35.
    Engh CA, McGovern TF, Bobyn JD, Harris WH (1992) A quantitative evaluation of periprosthetic bone-remodeling after cementless total hip arthroplasty. J Bone Joint Surg Am 74: 1009–1020PubMedGoogle Scholar
  36. 36.
    Engh CA, McGovern TF, Schmidt LM (1993) Roentgenographic densitometry of bone adjacent to a femoral prosthesis. Clin Orthop 292: 177–190Google Scholar
  37. 37.
    Engh CA, Hooten Jr JP, Zettl-Schaffer KF, Ghaffarpour M, McGovern TF, Macalino GE, Zicat BA (1994) Porous coated total hip replacements. Clin Orthop 298: 89–96PubMedGoogle Scholar
  38. 38.
    Ewald FC (1989) The Knee Society total knee arthroplasty roentgenographic evaluation and scoring system. Clin Orthop 248: 9–12PubMedGoogle Scholar
  39. 39.
    Eyres KS, Bell MJ, Kanis JA (1993) New bone formation during leg lengthening. J Bone Joint Surg Br 75: 96–106PubMedGoogle Scholar
  40. 40.
    Eyres KS, Bell MJ, Kanis JA (1993) Methods of assessing new bone formation during limb lengthening: ultrasonography, dual energy X-ray absorptiometry and radiography compared. J Bone Joint Surg Br 75: 358–364PubMedGoogle Scholar
  41. 41.
    Eyres KS, Kanis JA (1995) Bone loss after tibial fracture: evaluated by dual-energy X-ray absorptiometry. J Bone Joint Surg Br 77: 473–478PubMedGoogle Scholar
  42. 42.
    Finsen V (1988) Osteopenia after osteotomy of the tibia. Calcif Tissue Int 42: 1–4PubMedCrossRefGoogle Scholar
  43. 43.
    Finsen V, Benum P (1986) Refracture rare after removal of fixation device from healed hip fractures. Acta Orthop Scand 57: 434–435PubMedCrossRefGoogle Scholar
  44. 44.
    Finsen V, Benum P (1986) The second hip fracture: an epidemiologic study. Acta Orthop Scand 57: 431–433PubMedCrossRefGoogle Scholar
  45. 45.
    Finsen V, Benum P (1987) The interrelationship of past and present fractures of the forearm and hand. Acta Orthop Scand 58: 370–372Google Scholar
  46. 46.
    Finsen V, Benum P (1989) Osteopenia after ankle fractures: the influence of early weight bearing and muscle activity. Clin Orthop 245: 261–268PubMedGoogle Scholar
  47. 47.
    Finsen V, Haave 0 (1987) Changes in bone-mass after tibial shaft fracture. Acta Orthop Scand 58: 369–371Google Scholar
  48. 48.
    Finsen V, Haave O, Benum P (1989) Fracture interaction in the extremities: the possible relevance of post-traumatic osteopenia. Clin Orthop 240: 244–249PubMedGoogle Scholar
  49. 49.
    Finsen V, Svenningsen S, Harnes OB, Nesse O, Benum P (1988) Osteopaenia after plated and nailed femoral shaft fractures. J Orthop Trauma 2: 13–17PubMedCrossRefGoogle Scholar
  50. 50.
    Frost HM (1989) The biology of fracture healing: an overview for clinicians, part. L Clin Orthop 248: 283–293Google Scholar
  51. 51.
    Frost HM (1990) Structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s Law: the bone modeling problem. Anat Rec 226: 403–413PubMedCrossRefGoogle Scholar
  52. 52.
    Galante JO, Rostoker W, Lueck R, Ray RD (1971) Sintered fiber composites as a basis for attachment of implants to bone. J Bone Joint Surg Am 53: 101–108PubMedGoogle Scholar
  53. 53.
    Gerlanc M, Haddad D, Hyatt GW, Langloh JT, St Hilaire P (1975) Ultrasonic study of normal and fractured bone. Clin Orthop 111: 175–184PubMedCrossRefGoogle Scholar
  54. 54.
    Gill PJ, Kernohan G, Mawhinney IN, Mollan RA, Mcllhagger R (1989) Investigation of the mechanical properties of bone using ultrasound. Proc Inst Mech Eng 203: 61–63Google Scholar
  55. 55.
    Glassman AH, Engh CA, Griffin WL (1990) Removal of porous coated femoral hip stem. In: Proceedings of AADS 57th Annual Meeting, New Orleans, Louisiana, p 199Google Scholar
  56. 56.
    Gristina AG (1994). Implant failure and the immuno-incompetent fibroinflammatory zone. Clin Orthop 298: 106–118PubMedGoogle Scholar
  57. 57.
    Gruen T (1987) Radiographic criteria for the clinical performance of uncemented total hip replacements. In: Lemons JE (ed) Quantitative characterization and performence of porous implants for hard tissue applications. American Society for Testing and Materials, Philadelphia, pp 207–218CrossRefGoogle Scholar
  58. 58.
    Gruen TA, McNeice GM, Amstutz HC (1979) “Modes of failure” of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop 141:17–27PubMedGoogle Scholar
  59. 59.
    Gundry CR, Miller CW, Ramos E (1990) Dual-energy radiographic absorptiometry of the lumbar spine: clinical experience with two different systems. Radiology 174: 539–541PubMedGoogle Scholar
  60. 60.
    Haddad RJ, Cook SD, Brinker MR (1990) A comparison of three varieties of uncemented porous-coated hip replacement. J Bone Joint Surg Br 72: 2–8PubMedGoogle Scholar
  61. 61.
    Hamanishi C, Kawabata T, Yoshii T, Tanaka S (1995) Bone mineral density changes in distracted callus stimulated by pulsed direct electrical current. Clin Orthop 312: 247–252PubMedGoogle Scholar
  62. 62.
    Hamanishi C, Yoshii T, Totani Y, Tanaka S (1994) Bone mineral density of lengthened rabbit tibia is enhanced by transplantation of fresh autologous bone marrow cells: an experimental study using dual X-ray absorptiometry. Clin Orthop 303: 250–255PubMedGoogle Scholar
  63. 63.
    Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5: 46–54PubMedCrossRefGoogle Scholar
  64. 64.
    Harrington KD (1975) The use of methylmethacrylate as an adjunct in the internal fixation of unstable comminuted intertrochanteric fractures in osteoporotic patients. J Bone Joint Surg Am 57: 744–750PubMedGoogle Scholar
  65. 65.
    Harris WH, Jasty M (1985) Bone ingrowth into porous coated canine acetabular replacements: the effect of pore size, apposition and dislocation. In: Fitzgerald RH (ed) The hip. Proceedings of the 13th open scientific meeting of the hip society. Mosby, St Louis, pp 214–234Google Scholar
  66. 66.
    Healy WL (1995) Economic considerations in total hip arthroplasty and implant standardization. Clin Orthop 311: 102–108PubMedGoogle Scholar
  67. 67.
    Hedley AK, Gruen TA, Borden LS (1986) Two year follow-up of the PCA non-cemented total hip replacement. In: Brand RA (ed) The hip. Proceedings of the 14th open scientific meeting of the hip society. Mosby, St Louis, pp 225–250Google Scholar
  68. 68.
    Hellewell AG (1980) Absorptiometric quantitation of experimental fracture mineralization. In: 4th International Conference on Bone Mineral Measurement. NIH publication 80–1938: 121–125Google Scholar
  69. 69.
    Hofmann AA, Wyatt RW, France EP, Bigler GT, Daniels AU, Hess WE (1987) Endosteal bone loss after total hip arthroplasty. Clin Orthop 245: 138–144Google Scholar
  70. 70.
    Hollis JM, Hofmann 0E, Steward CL, Flahiff CM, Nelson CL (1992) Effect of micromotion on ingrowth into porous coated implants using a transcortical model. In: Transactions of the 4th World Biomaterials Congress, p 258Google Scholar
  71. 71.
    Hozack WJ, Booth RE Jr (1990) Clinical and radiographic results with the trilock femoral component: a wedge-fit porous ingrowth stem design. Semin Arthroplasty 1: 64–69PubMedGoogle Scholar
  72. 72.
    Hughes SS, Furia JP, Smith P, Pellegrini VD Jr (1995) Atrophy of the proximal part of the femur after total hip arthroplasty without cement. J Bone Joint Surg Am 77: 231–239PubMedGoogle Scholar
  73. 73.
    Huiskes R (1980) Some fundamental aspects of human-joint replacement. Acta Orthop Scand 51 [Suppl 1]: 1CrossRefGoogle Scholar
  74. 74.
    Huiskes R (1990) The various stress patterns of press-fit, ingrown, and cemented femoral stems. Clin Orthop 261: 27–38PubMedGoogle Scholar
  75. 75.
    Huiskes R, Chao EYS (1989) A survey of finite element methods in orthopaedic biomechanics. J Biomech 16: 385–394CrossRefGoogle Scholar
  76. 76.
    Huiskes R,Weinans H, van Rietbergen B (1992) The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop 274: 124–134Google Scholar
  77. 77.
    Husby T, Hoiset A, Alho A (1987) Osteoporosis and stability of osteosynthesis of the femoral neck. Trans Orthop Res Soc 12: 236Google Scholar
  78. 78.
    Hvid I (1988) Trabecular bone strength of the knee. Clin Orthop 227: 210–222PubMedGoogle Scholar
  79. 79.
    Hvid I, Hansen SL (1985) Trabecular bone strength patterns at the proximal tibial epiphysis. J Orthop Res 3: 462–470CrossRefGoogle Scholar
  80. 80.
    Jasty M, O’Connor DO, Henshaw RM, Harrigan TP, Harris WH (1994) Fit of uncemented femoral component and the use of cement influence the strain transfer to the femoral cortex. J Orthop Res 12: 648–656PubMedCrossRefGoogle Scholar
  81. 81.
    Jiang CC, Insall JN (1989) Effect of rotation on the axial alignment of the femur. Clin Orthop 248: 50–56PubMedGoogle Scholar
  82. 82.
    Johnston RC, Crowninshield RD (1983) Roentgenologic results of total hip arthroplasty: a ten-year follow-up study. Clin Orthop 181: 92–102PubMedGoogle Scholar
  83. 83.
    Kantor SG, Schneider R, Insall JN, Becker MW (1990) Radionuclide imaging of asymptomatic versus syptomatic total knee arthroplasties. Clin Orthop 260: 118–123PubMedGoogle Scholar
  84. 84.
    Kaplan PA, Montesi SA, Jardon OM (1988) Bone-ingrowth hip prostheses in asymptomatic patients: radiographic features. Radiology 169: 221–227PubMedGoogle Scholar
  85. 85.
    Karlsson MK, Nilsson BE, Obrant KJ (1993) Bone mineral loss after lower extremity trauma. Acta Orthop Scand 64: 362–364PubMedCrossRefGoogle Scholar
  86. 86.
    Kattapuram SV, Lodwick GS, Chandler H (199o) Porous coated total hip prostheses: radiographic analysis and clinical correlation. Radiology 174: 861–864Google Scholar
  87. 87.
    Kenwright J, Goodship AE (1989) Controlled mechanical stimulation in the treatment of tibial fractures. Clin Orthop 241: 36–47PubMedGoogle Scholar
  88. 88.
    Kilgus DJ, Shimaoka EE, Tipton JS, Eberle RB (1993) Dual-energy X-ray absorptiometry measurement of bone mineral density around porous-coated cementless femoral implants. J Bone Joint Surg Br 75: 279–287PubMedGoogle Scholar
  89. 89.
    Kiratli BJ, Heiner JP, McBeath AA (1991) Bone mineral density response after total hip arthroplasty: one year follow up. J Bone Miner Res 6 [Suppl 1]S110 (abstract)Google Scholar
  90. 90.
    Kiratli BJ, Heiner JP, McKinley N, Wilson MA, McBeath AA (1991) Bone mineral density of the proximal femur after uncemented total hip arthroplasty. Trans Orthop Res Soc 16: 545Google Scholar
  91. 91.
    Kiratli BJ, Heiner JP, McBeath AA, Wilson MA (1992) Determination of bone mineral density by dual X-ray absorptiometry in patients with uncemented total hip arthroplasty. J Orthop Res 10: 836–844PubMedCrossRefGoogle Scholar
  92. 92.
    Kiratli BJ, Heiner JP, McKinley N, Wilson MA, McBeath AA (1992) Bone mineral density of the proximal femur after uncemented total hip arthroplasty. Trans Orthop Res Soc 17: 238Google Scholar
  93. 93.
    Kiratli JB, Checovic MM, McBeath AA, Wilson MA, Heiner JP (1996) Measurement of bone mineral density by dual-energy X-ray absorptiometry in patients with the Wisconsin hip, an uncemented femoral stem. J Arthroplasty 11: 184–192PubMedCrossRefGoogle Scholar
  94. 94.
    Korovessis P, Pip eros G, Michael A (1994) Prosthetic bone mineral density after Mueller and Zweymueller total hip arthroplasties. Clin Orthop 309: 214–221PubMedGoogle Scholar
  95. 95.
    Krackow KA, Jones MM, Teeny SM,Hungerford DS (1991) Primary total knee arthroplasty in patients with fixed valgus deformity. Clin Orthop 273: 9–18Google Scholar
  96. 96.
    Kumano K, Hirabayashi S, Ogawa Y, Aota Y (1994) Pedicle screws and bone mineral density. Spine 19: 1157–1161PubMedCrossRefGoogle Scholar
  97. 97.
    Kwong LM, Jasty M, Mulroy RD, Maloney WJ, Bragdon C, Harris WH (1992) The histology of the radiolucent line. J Bone Joint Surg Br 74: 67–73PubMedGoogle Scholar
  98. 98.
    Laros GS, Moore JF (1974) Complications of fixation in intertrochanteric fractures. Clin Orthop 101: 110–116PubMedGoogle Scholar
  99. 99.
    Laskey MA, Flaxman ME, Barber RW (1991) Comparative performance in vitro and in vivo of Lunar DPX and Hologic QDR woo dual energy X-ray absorptiometers. Br J Radiol 64: 1023–1029PubMedCrossRefGoogle Scholar
  100. 100.
    Lee RW,Volz RG, Sheridan DC (1991) The role of fixation and bone quality on the mechanical stability of tibial knee components. Clin Orthop 273: 177–189Google Scholar
  101. 101.
    Levitz CL, Lotke PA, Karp JS (1995) Long-term changes in bone mineral density following total knee replacement. Clin Orthop 321: 68–72PubMedGoogle Scholar
  102. 102.
    Lewis JL (1975) A dynamic model of a healing fractured long bone. J Biomech 8: 17–24PubMedCrossRefGoogle Scholar
  103. 103.
    Liu TK, Yang RS, Chieng PU, Shee BW (1995) Periprosthetic bone mineral density of the distal femur after total knee arthroplasty. Int Orthop 19: 346–351PubMedCrossRefGoogle Scholar
  104. 104.
    Lord J, Marotte JH, Guillamon JL, Blanchard JP (1988) Cementless revisions of failed aseptic cemented and cementless total hip arthroplasties: 284 cases. Clin Orthop 235: 67–74PubMedGoogle Scholar
  105. 105.
    Maffulli N, Hughes T, Fixsen JA (1992) Ultrasonographic monitoring of limb lengthening. J Bone Joint Surg Br 74: 130–132PubMedGoogle Scholar
  106. 106.
    Maloney WJ, Jasty M, Burke DW, O’Connor DO, Zalenski EB, Bragdon C, Harris WH (1989) Biomechanical and histologic investigation of cemented total hip arthroplasty: a study of autopsy-retrieved femurs after in vivo cycling. Clin Orthop 249: 129–140PubMedGoogle Scholar
  107. 107.
    Marinoni EC, Trevisan C, Bigoni M, Castellano S, Ortolani S, Peretti G (1994) Metodiche di valutazione strumentale nel follow-up delle protesi totali di ginocchio. In: Monteleone A (ed) International meeting knee prosthesis, microprint SBR, Napoli 1994, pp 195–204Google Scholar
  108. 108.
    Markel MD, Chao EY (1993) Noninvasive monitoring techniques for quantitative description of callus mineral content and mechanical properties. Clin Orthop 293: 37–45PubMedGoogle Scholar
  109. 109.
    Markel MD, Wikenheiser MA, Morin RL, Lewallen DG, Chao EYS (1990) Quantification of bone healing. Comparison of QCT, SPA, MRI and DEXA in dog osteotomies. Acta Orhtop Scand 61: 487–498CrossRefGoogle Scholar
  110. 110.
    Martin B (1993) Ageing and strengh of bone as a structural material. Calcif Tissue Int 53 [Suppl 1]: S34 - S40PubMedCrossRefGoogle Scholar
  111. 111.
    Massari L, Mura P, Giancolo R, Biscione R, Bagni B, Villani C, Gallazzi MB (1994) Valutazione con DEXA dell’osteointegrazione nelle componenti protesiche rivestite con idrossiapatite. Ital J Orthop Traumatol 20 [Suppl 1]: 93–100Google Scholar
  112. 112.
    Mazess RB (1983) Noninvasive bone measurement. In: Kunin A (ed) Skeletal research II. Academic, New York, p 277Google Scholar
  113. 113.
    Mazess RB, Barden HS (1988) Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy X-ray absorptiometry ( DEXA ). Ann Chirur Gynaecol 77: 197–203Google Scholar
  114. 114.
    Mazess RB,Wahner HM (1988) Nuclear medicine and densitometry. In: Riggs BL, Melton LJ III (eds) Osteoporosis, aetiology, diagnosis and management. Raven, New York, pp 251–295Google Scholar
  115. 115.
    McAfee PC, Farey ID, Sutterlin CE, Gurr KR, Warden KE, Cunningham BW (1989) Device-related osteoporosis with spinal instrumentation. Spine 14: 919–926PubMedCrossRefGoogle Scholar
  116. 116.
    McCarthy CK, Steinberg GG,Agren M, Leahey D, Wyman E, Baran DT (1991) Quantifying bone loss from the proximal femur after total hip arthroplasty. J Bone Joint Surg Br 73: 774–778Google Scholar
  117. 117.
    McCaskie AW, Brown AR, Thompson JR, Gregg PJ (1996) Radiological evaluation of the interfaces after cemented total hip replacement: interobserver and intraobserver agreement. J Bone Joint Surg Br 78: 191–194PubMedGoogle Scholar
  118. 118.
    McGovern TF, Engh CA, Zettl-Schaffer K, Hooten JP (1995) Cortical bone density of the proximal femur following total hip arthroplasty. Clin Orthop 306: 45–154Google Scholar
  119. 119.
    Miller JE, Kelebay LC (1981) Bone ingrowth-disuse osteoporosis. Trans Orthop Res Soc 5: 380–386Google Scholar
  120. 120.
    Minzer CM, Robertson DD, Rackemann S, Ewald FC, Scott RD, Spector M (1990) Bone loss in the distal anterior femur after total knee arthroplasty. Clin Orthop 260: 135–143Google Scholar
  121. 121.
    Mortimer ES, Rosenthall L, Paterson I, Bobyn JD (1996) Effect of rotation on periprosthetic bone mineral measurements in a hip phantom. Clin Orthop 324: 269–274PubMedCrossRefGoogle Scholar
  122. 122.
    Niinimaki T, Jalovaara P (1995) Bone loss from the proximal femur after arthroplasty with an isoelastic femoral stem: BMD measurements in 25 patients after 9 years. Acta Orthop Scand 66: 347–351PubMedCrossRefGoogle Scholar
  123. 123.
    Nilsson BE (1966) Post-traumatic osteopenia: a quantitative study of the bone mineral mass in the femur following fracture of the tibia in man using americium-241 as a photon source. Acta Orthop Scand 37 [Suppl]: 91Google Scholar
  124. 124.
    Nilsson BE, Westlin NE (1969) Osteoporosis following injury to the semilunar cartilage. Calcif Tissue Res 4: 185–187PubMedCrossRefGoogle Scholar
  125. 125.
    Nilsson BE, Westlin NE (1977) Bone mineral content in the forearm after fracture of the upper limb. Calcif Tissue Res 22: 329–331PubMedCrossRefGoogle Scholar
  126. 126.
    Noble PC, Box GG, Kamaric E, Fink MJ, Alexander JW, Tullos HS (1995) The effect of aging on the shape of the proximal femur. Clin Orthop 316: 31–44PubMedGoogle Scholar
  127. 127.
    Oh I, Harris WH (1978) Proximal strain distribution in the loaded femur: an in vitro comparison of the distributions in the intact femur and after insertion of different hip replacement femoral components. J Bone Joint Surg Am 60: 75–83PubMedGoogle Scholar
  128. 128.
    Orne D (1974) The in vivo driving point impedance of the human ulna: a viscoelastic beam model. J Biomech 7: 249–254PubMedCrossRefGoogle Scholar
  129. 129.
    Ortolani S, Trevisan C, Montesano A, Gandolini G, Bianchi ML, Caraceni MP, Ulivieri FM (1990) Comparison between 153-Gd and X-ray dual photon absorptiometry. Ital J Miner Electrolyte Metab 4: 37–42Google Scholar
  130. 130.
    Peretti G, Memeo A, Paronzini A, Marinoni EC (1988) Methods for the study of bone regeneration in lengthening of the limbs. Ital J Orthop Traumatol 15: 217–221Google Scholar
  131. 131.
    Perren SM, Cordey J, Rahn BA, Gautier E, Schneider E (1987) Early temporary porosis of bone induced by internal fixation implants. A reaction to necrosis, not to stress protection? Clin Orthop 232: 139–151Google Scholar
  132. 132.
    Petersen MB, Kolthoff N, Eiken (1995) Bone mineral density around femoral stems: DXA measurements in 22 porous-coated implants after 5 years. Acta Orhtop Scand 66: 432–434Google Scholar
  133. 133.
    Petersen MM, Nilsen PT, Lauritzen JB, Lund B (1995) Changes in bone density of the proximal tibia following uncemented knee arthroplasty: a 3 years follow-up of 25 knees. Acta Orthop Scand 66: 513–516PubMedCrossRefGoogle Scholar
  134. 134.
    Petersen MM, Lauritzen JB, Pedersen JG, Lund B (1996) Decreased bone density of the distal femur after uncemented knee arthroplasty. Acta Orthop Scand 67: 339–344PubMedCrossRefGoogle Scholar
  135. 135.
    Pilliar RM, Cameron HU, Welsh RP, Binnington AG (1981) Radiographic and morphologic studies of load-bearing porous-surfaced structured implants. Clin Orthop 156: 249–254PubMedGoogle Scholar
  136. 136.
    Poss R (1992) Natural factors that affect shape and strength of the ageing human femur. Clin Orthop 274: 194–201PubMedGoogle Scholar
  137. 137.
    Pritchett JW (1995) Femoral bone loss following hip replacement. A comparative study. Clin Orthop 314: 156–161PubMedGoogle Scholar
  138. 138.
    Richmond BJ, Bauer TW, Stulberg BN, Fox JS (1990) Bone mineral in patients undergoing uncemented total hip arthroplasty. Calcif Tissue Int 46: 145 (abstract)Google Scholar
  139. 139.
    Richmond BJ, Eberle RW, Stulberg BN, Deal CL (1991) DEXA measurement of peri-prosthetic bone mineral density in total hip arthroplasty. J Bone Miner Res 6 [Supp11]: S241 (abstract)Google Scholar
  140. 140.
    Robertson DD, Minzer CM, Weissman BN, Ewald FC, LeBoff M, Spector M (1994) Distal loss of femoral bone following total knee arthroplasty. J Bone Joint Surg Am 76: 66–76PubMedGoogle Scholar
  141. 141.
    Rosenberg A (1989) Cementless total hip arthroplasty: femoral remodelling and clinical experience. Orthopaedics 12: 1223–1233Google Scholar
  142. 142.
    Rosenberg AG,Andriacchi TP, Barden R, Galante JO (1988) Patellar component failure in cementless total knee arthroplasty. Clin Orthop 236: 106–114Google Scholar
  143. 143.
    Ruff CB, Hayes WC (1982) Subperiosteal expansion and cortical remodelling of the human femur and tibia with ageing. Science 217: 945–946PubMedCrossRefGoogle Scholar
  144. 144.
    Saha S, Lakes RS (1977) The effect of soft tissue on the wave-propagation and vibration tests for determining the in vivo properties of bone. J Biomech 10: 393–398PubMedCrossRefGoogle Scholar
  145. 145.
    Sarangi PP, Ward AJ, Smith EJ, Staddon GE, Atkins RM (1993) Algodystrophy and osteoporosis after tibial fractures. J Bone Joint Surg Br 75: 450–452PubMedGoogle Scholar
  146. 146.
    Sarmiento A (1973) Unstable intertrochanteric fractures of the femur. Clin Orthop 92: 77–85PubMedCrossRefGoogle Scholar
  147. 147.
    Scott RD, Volatile TB (1986) Twelve years’ experience with posterior cruciate-retaining total knee arthroplasty. Clin Orthop 205: 100–114PubMedGoogle Scholar
  148. 148.
    Seitz P, Ruegsegger P, Gschwend N, Dubs L (1987) Changes in local bone density after knee arthroplasty. J Bone Joint Surg Br 69: 407–411PubMedGoogle Scholar
  149. 149.
    Skinner HB, Kilgus DJ, Keyak J, Shimaoka EE, Kim AS, Tipton JS (1994) Correlation of computed finite element stresses to bone density after remodelling around cementless femoral implant. Clin Orthop 305: 178–189PubMedGoogle Scholar
  150. 150.
    Skinner HB, Kim AS, Keyak JH, Mote CD (1994) Femoral prosthesis implantation induces changes in bone stress that depend on the extent of porous coating. J Orthop Res 12: 553–563PubMedCrossRefGoogle Scholar
  151. 151.
    Smith KR, Hunt TR, Asher MA, Anderson HC, Robinson R, Carson WL (1988) Study of bone stress shielding in the canine lumbar spine. Presented at the annual meeting of the Scoliosis Research Society, Baltimore, Maryland, 29 Sept-2 OctGoogle Scholar
  152. 152.
    Smith RW, Walker RR (1964) Femoral expansion in ageing women: implication for osteoporosis and fractures. Science 145: 156–158PubMedCrossRefGoogle Scholar
  153. 153.
    Smith SA,Abitbol JJ, Carlson GD,Anderson DR, Taggart KW, Garfin SR (1993) The effects of depth of penetration, screw orientation and bone density on sacral screw fixation. Spine 18: 1006–1010CrossRefGoogle Scholar
  154. 154.
    Soshi S, Shiba R, Kondo H, Murota H (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16: 1335–1341PubMedCrossRefGoogle Scholar
  155. 155.
    Stulberg BN, Bauer TW, Watson JT, Richmond B (1989) Bone quality: roentgenographic versus histologic assessment of hip bone structure. Clin Orthop 240: 200–205PubMedGoogle Scholar
  156. 156.
    Stulberg BN, Eberle RW, Fox JS, Richmond BJ (1989) The technical aspects of peri-prosthetic bone mineral density in uncemented total hip arthroplasty. In: 2nd International Symposium for C ustom Prostheses, Chicago, IL, p 23 (abstract 70)Google Scholar
  157. 157.
    Svesnikov AA, Oficerova NV (1985) Mineralstoffwechsel bei Knochenbrüchen nach den Ergebnissen Photonen-Absorptionsmessung. Radiol Diagn (Berl) 26: 407–412Google Scholar
  158. 158.
    Sychterz CJ, Engh CE (1996) The influence of clinical factors on periprosthetic bone remodeling. Clin Orthop 322: 285–292PubMedGoogle Scholar
  159. 159.
    Terjesen T, Benum P (1983) The stress protecting effect of metal plates on the intact rabbit tibia. Acta Orthop Scand 54: 810–818PubMedCrossRefGoogle Scholar
  160. 160.
    Thomas BJ, Salvati EA, Small RD (1986) The CAD hip arthroplasty: five to ten year follow-up. J Bone Joint Surg Am 68: 640–651PubMedGoogle Scholar
  161. 161.
    Tissakht M, Ahmed AM, Chan KC (1993) Stress-shielding in the distal femur following TKR: effect of bone/implant interface condition. Trans Orthop Res Soc 18: 426Google Scholar
  162. 162.
    Trevisan C, Caraceni MP, Gandolini G, Montesano A, Ortolani S (1990) Bone density of dominant and nondominant hip measured by dual-energy X-ray absorptiometry. In: Christiansen C, Overgaard K (eds) Osteoporosis 9o. Handelstryldceriet Aalborg, Aalborg, pp 863–865Google Scholar
  163. 163.
    Trevisan C, Bigoni M, Cherubini R, Randelli G, Ortolani S (1992) Longitudinal assessment of periprosthetic bone mineral density by DXA in total hip arthroplasty. Bone Miner 17 [Suppl 1]: 225 (abstract)Google Scholar
  164. 164.
    Trevisan C, Bigoni M, Cherubini R, Steiger P, Randelli G, Ortolani S (1993). Dual X-ray absorptiometry for the evaluation of bone density from the proximal femur after total hip arthroplasty: analysis protocols and reproducibility. Calcif Tissue Int 53: 158–161PubMedCrossRefGoogle Scholar
  165. 165.
    Trevisan C, Bigoni M, Randelli G, Marinoni EC, Peretti G, Ortolani S (1997) Periprosthetic bone density around fullyhydrohyapatite coated femoral stem. Clin Orthop 340: 109–117PubMedCrossRefGoogle Scholar
  166. 166.
    Trevisan C, Bigoni M, Benti M, Marinoni EC, Ortolani S (1997) Bone assessment after total knee arthroplasty by dual-energy X-ray absorptiometry: analysis protocol and reproducibility. Calcif Tissue Int (in press)Google Scholar
  167. 167.
    Uhthoff HK, Boisvert D, Finnegan M (1994) Cortical porosis under plates. J Bone Joint Surg Am 76: 1507–1512PubMedGoogle Scholar
  168. 168.
    Ulivieri FM, Bossi E,Azzoni R, Ronzani C, Trevisan C, Montesano A, Ortolani S (1990) Quantification by dual photonabsorptiometry of local bone loss after fracture. Clin Orthop 250: 291–296Google Scholar
  169. 169.
    Van der Wiel HE, Lips P, Nauta J, Patka P, Haarman HJThM, Teule GJJ (1994) Loss of bone in the proximal part of the femur following unstable fractures of the leg. J Bone Joint Surg Am 76: 230–236PubMedGoogle Scholar
  170. 170.
    Van Roermund PM, Ter Haar Romeny BM, Hoekstra A, Schoonderwoert GJ, Brandt CJ, van der Steen SP, Roelofs JMM, Scholten F, Visser WJ, Renoij W (1991) Bone growth and remodeling after distraction epiphysiolysis of the proximal tibia of the rabbit. Clin Orthop 266: 304–312PubMedGoogle Scholar
  171. 171.
    Van Roermund PM, Ter Haar Romeny BM, Schoonderwoert GJ, Brandt CJ, Sijbrandij S, Renooij W (1987) The use of computed tomography to quantitate bone formation after distraction epiphysiolysis in the rabbit. Skeletal Radiol 16: 52–56PubMedCrossRefGoogle Scholar
  172. 172.
    Walker PS, Granholm J, Lowrey R (1982) The fixation of femoral components of condylar knee prostheses. Eng Med 11: 135–140PubMedCrossRefGoogle Scholar
  173. 173.
    Wendeberg B (1961) Mineral metabolism of fractures of the tibia in man studied with external counting of Srss. Acta Orthop Scand [Suppl] 52: 130Google Scholar
  174. 174.
    West JD, Mayor MB, Collier JP (1987) Potential erors inherent in quantitative densitometric analysis of orthopaedic radiographs: a study after total hip arthroplasty. J Bone Joint Surg Am 69: 58–64PubMedGoogle Scholar
  175. 175.
    Westlin NE (1974) Loss of bone mineral after Colles’ fracture. Clin Orthop 102: 194–199PubMedCrossRefGoogle Scholar
  176. 176.
    Wittenberg RH, Shea M, Swartz DE, Lee KS, White AA, Hayes WC (1991) Importance of bone mineral density in instrumented spine fusions. Spine 16: 647–652PubMedCrossRefGoogle Scholar
  177. 177.
    Wrobleski BM (1986) 15–21 year results of the Charnley low-friction arthroplasty. Clin Orthop 211:30-42Google Scholar
  178. 178.
    Young JWR, Kostrubiak IS, Resnick CS, Paley D (1990) Sonographic evaluation of bone production at the distraction site in Ilizarov limb-lengthening procedures. AJR 154: 125–128PubMedGoogle Scholar
  179. 179.
    Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW (1986) A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop 203: 99–112PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • C. Trevisan
  • S. Ortolani

There are no affiliations available

Personalised recommendations