Beyond Bone Densitometry: Assessment of Bone Architecture by X-Ray Computed Tomography at Various Levels of Resolution

  • K. Engelke
  • W. Kalender

Abstract

Osteoporosis is defined as a systemic skeletal disease characterized by low bone mass and microarchitectural deterioration of bone tissue. In analogy to well-known examples from mechanical engineering such as steel bridges, bone strength and fracture resistance are determined not only by the amount of material but also by its spatial distribution, i.e., by the architecture or structure of the trabecular network. Established methods of bone densitometry such as quantitative computed tomography (QCT) of the spine or forearm and dual X-ray absorptiometry (DXA) of spine, hip, and forearm focus on measurement of bone mass, i.e., on bone mineral content (BMC) or bone mineral density (BMD). Microarchitecture is generally assessed by histomorphometry of thin sections, a technique established for many years. While densitometry delivers accurate and precise results on the scale of individual bones, histomorphometry measures thickness and distance on the trabecular scale. Densitometry allows us to investigate the global picture in vivo while histomorphometry concentrates on fine details of trabecular structure, but it is destructive by nature and is generally applied only postmortem or to bone biopsies. Investigated volumes of interest range from several cubic centimeters in the case of densitometry to cubic millimeters in histomorphometry.

Keywords

Anisotropy Osteoporosis Eter Convolution Perforation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5: 46–55PubMedCrossRefGoogle Scholar
  2. 2.
    McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg Am 67: 1206–1214PubMedGoogle Scholar
  3. 3.
    Goldstein SA (1987) The mechanical properties of trabecular bone: Dependence on anatomic location and function. J Biomech 20 (11): 1055–1061PubMedCrossRefGoogle Scholar
  4. 4.
    Mosekilde L, Bentzen SM, Ortoft G, Jorgensen J (1989) The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone 10: 465–470PubMedCrossRefGoogle Scholar
  5. 5.
    Lang SM, Moyle DD, Berg EW, Detorie N, Gilpin AT, Pappan NJ Jr, Reynolds JC, Tkacik M, Waldron RL (1988) Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography. J Bone Joint Surg Am 70: 1531–1538PubMedGoogle Scholar
  6. 6.
    Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech 4 [Suppl 2]: S1 — S27Google Scholar
  7. 7.
    Ciarelli MJ, GoldsteinSA, Kuhn JL, Cody DD, Brown MB (1991) Evaluation of orthogonal mechanical properties and density of human trabecular bone from the major metaphyseal regions with materials testing and computed tomography. J Orthop Res 9: 674–682Google Scholar
  8. 8.
    Hayes WC, Piazza SJ, Zysset PK (1991) Biomechanics of fracture risk prediction of the hip and spine by quantitative computed tomography. Rad Clin North Am 29: 1–18Google Scholar
  9. 9.
    Lotz JC, Gerhart TN, Hayes WC (1990) Mechanical properties of trabecular bone from the proximal femur: a quantitative CT study. J Comput Assist Tomogr 14 (1): 107–114PubMedCrossRefGoogle Scholar
  10. 10.
    Keaveny TM, Hayes WC (1993) A 20 year perspective on the mechanical properties of trabecular bone. J Biomech Eng 115: 534–542PubMedCrossRefGoogle Scholar
  11. 11.
    Smith MD, Dickie-Cody D, Goldstein SA, Cooperman AM, Matthews LS, Flynn MJ (1992) Proximal femoral bone density and its correlation to fracture load and hip-screw penetration load. Clin Orthop Relat Res 283: 244–251PubMedGoogle Scholar
  12. 12.
    Alho A, Husby T, Hoiseth A (1988) Bone mineral content and mechanical strength. Clin Orthop Relat Res 227: 292–297PubMedGoogle Scholar
  13. 13.
    Hoiseth A, Stromsoe K, Alho A (1995) Comparison between femoral bone mineral parameters assessed by QCT and dual X-ray densitometry. Eur J Radio! 5: 264–268Google Scholar
  14. 14.
    Felsenberg D (1992) Klinische Anwendung der quantitativen Computertomographie. In: Schild HH, Heller M (eds) Osteoporose. Thieme, Stuttgart, pp 100–126Google Scholar
  15. 15.
    Heuck A, Block J, Glüer CC, Steiger P, Genant HK (1989) Mild versus definite osteoporosis: comparison of bone densitometry techniques using different statistical models J Bone Miner Res 4 (6): 891–900Google Scholar
  16. 16.
    Pacifici R, Rupich RC, Griffin M, Chines A, Susman N, Avioli LV (1990) Dual energy radiography versus quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab 70 (3): 705–710PubMedCrossRefGoogle Scholar
  17. 17.
    Ott S (1991) Methods of determining bone mass. J Bone Miner Res 6 [Suppl 2]: S71 - S75PubMedCrossRefGoogle Scholar
  18. 18.
    Yu W, Glüer C-C, Grampp S, Jergas M, Fuerst T, Wu CY, Lu Y, Fan B, Genant HK (1995) Spinal bone mineral assessment in postmenopausal women: a comparison between dual X-ray absorptiometry and quantitative computed tomography. Osteoporosis Int 5: 433–439CrossRefGoogle Scholar
  19. 19.
    Ito M, Hayashi K, Ishida Y, Uetani M, Yamada M, Ohki M, Nakamura T (1997) Discrimination of spinal fracture with various bone mineral measurements. Calcif Tissue Int 60: 11–15PubMedCrossRefGoogle Scholar
  20. 20.
    Sandor T, Felsenberg D, Kalender W, Brown E (1991) Global and regional variations in the spinal trabecular bone: single and dual energy examinations. J Clin Endocrinol Metab 72: 1157–1168PubMedCrossRefGoogle Scholar
  21. 21.
    Flynn MJ, Cody DD, Peterson E, Wang DC, Kleerekoper M (1992) Recognition of lower lumbar vertebral architecture patterns in osteoporosis. Radiology 185 (P): 126Google Scholar
  22. 22.
    Dickie-Cody D, Flynn MJ, Vickers DS (1989) A technique for measuring regional bone mineral density in human lumbar vertebral bodies. Med Phys 16 (5): 766–772CrossRefGoogle Scholar
  23. 23.
    Mazess RB (1990) Fracture risk: a role for compact bone. Calcif Tissue Int 47: 191–193PubMedCrossRefGoogle Scholar
  24. 24.
    Snyder SM, Schneider E (1991) Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res 9: 422–431PubMedCrossRefGoogle Scholar
  25. 25.
    Vesterby A, Mosekilde L, Gunderson HJG, Melsen F, Mosekilde L, Holme K, Sorenson S (1991) Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12: 219–224PubMedCrossRefGoogle Scholar
  26. 26.
    Louis O, Van den Winkel P, Covens P, Schoutens A, Osteaux M (1993) Size of cortical bone and relationship to bone mineral density assessed by quantitative computed tomography image segmentation. Invest Radiol 28: 802–805PubMedGoogle Scholar
  27. 27.
    Spadaro JA, Werner FW, Brenner RA, Fortino MD, Fay LA, Edwards WT (1994) Cortical and trabecular bone contribute strength to the osteopenic distal radius. J Orthop Res 12: 211–218PubMedCrossRefGoogle Scholar
  28. 28.
    Ferretti JL, Frost HM, Gasser JA, High WB, Jee WS, Jerome C, Mosekilde L, Thompson DD (1995) Perspectives on osteoporosis research: its focus and some insights from a new paradigm. Calcif Tissue Int 57:399–404Google Scholar
  29. 29.
    Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical vertebral bone density in single and dual-energy quantitative computed tomography. Eur J Radiol 9:75–80PubMedGoogle Scholar
  30. 30.
    Pacifici R, Rupich RC, Avioli LV (1990) Vertebral cortical bone mass measurement by a new quantitative computed a tomography method: correlations with vertebral trabecular bone measurements. Calcif Tissue Int 47: 215–220PubMedCrossRefGoogle Scholar
  31. 31.
    Sandor T, Felsenberg D, Kalender WA, Clain A, Broen E (1992) Compact and trabecular components of the spine using quantitative computed tomography. Calcif Tissue Int 50: 502–506PubMedCrossRefGoogle Scholar
  32. 32.
    Sumner DR, Olson CL, Freeman PM, Lobick JJ, Andriacchi TP (1989) Computed tomography measurement of cortical bone geometry. J Biomech 22:649–653Google Scholar
  33. 33.
    Rüegsegger P, Durand E, Dambacher MA (1991) Localization of regional forearm bone loss from high resolution computed tomographic images. Osteoporosis Intl(2): 76–80CrossRefGoogle Scholar
  34. 34.
    Grampp S, Lang P, Jergas M, Glüer CC, Mathur A, Engelke K, Genant HK (1995) Assessment of the skeletal status by peripheral quantitative computed tomography of the forearm: short-term precision in vivo and comparison to dual X-ray absorptiometry. J Bone Miner Res 10: 1566–1576PubMedCrossRefGoogle Scholar
  35. 35.
    Ritzel H, Amling M, Pösl M, Hahn M (1997) The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy cases. J Bone Miner Res 12:89–95Google Scholar
  36. 36.
    Silva MJ,Wang C, Keaveny TM, Hayes WC (1994) Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 4: 409–414Google Scholar
  37. 37.
    Hangartner TN, Gilsanz V (1996) Evaluation of cortical bone by computed tomography. J Bone Miner Res 11: 1518–1525PubMedCrossRefGoogle Scholar
  38. 38.
    Courtney AC, Wachtel EF, Myers ER, Hayes WC (1994) Effects of loading rate on strength of the proximal femur. Calcif Tissue Int 55: 53–58PubMedCrossRefGoogle Scholar
  39. 39.
    Beck TJ, Christopher BR, Warden KE, Scott WW, Rao GU (1990) Predicting femoral neck strength from bone mineral data: a structural approach. Invest Radiol 25: 6–18PubMedCrossRefGoogle Scholar
  40. 40.
    Yoshikawa T, Turner CH, Peacock M, Slemenda CW, Weaver CM, Teegarden D, Markwardt P, Burr DB (1994) Geometric structure of the femoral neck measured using dual-energy X-ray absorptiometry. J Bone Miner Res 9(7): 1053–1064PubMedCrossRefGoogle Scholar
  41. 41.
    Beck TJ, Ruff CB, Bisseur K (1993) Age-related changes in femoral neck geometry: Implications for bone strength. Calcif Tissue Int 53 [Suppl 1]:S41–S46PubMedCrossRefGoogle Scholar
  42. 42.
    Bhasin S, Sartoris DJ, Fellingham L, Zlatkin MB, Andre M, Resnick D (1988) Three-dimensional quantitative CT of the proximal femur: relationship to vertebral trabecular bone density in postmenopausal women. Radiology 167: 145–149PubMedGoogle Scholar
  43. 43.
    Glüer CC, Genant HK (1987) Quantitative computed tomography of the hip. In: Genant HK (ed) Osteoporosis Update 1987. University of California Printing Services, San Francisco, pp 187–196Google Scholar
  44. 44.
    Sartoris DJ, Andre M, Resnick C, Resnick D (1986) Trabecular bone density in the proximal femur: quantitative CT assessment. Radiology 160: 707–712PubMedGoogle Scholar
  45. 45.
    Heitz M, Kalender WA (1994) Evaluation of femoral mineral density and strength using volumetric CT and anatomical coordinate systems. loth International Bone Densitometry Workshop 1994 Venice, Italy. Bone Miner 25 [Suppl 2]:S11Google Scholar
  46. 46.
    Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Min Res 11: 707–730CrossRefGoogle Scholar
  47. 47.
    Prevrhal S, Heitz M, Lowet G, Engelke K, Kalender WA (1997) Quantitative CT am proximalen Femur: in vitro-Studie. Z Med Phys (submitted)Google Scholar
  48. 48.
    Faulkner KG, Cummings SR, Glüer CC, Palermo L, Black D, Genant HK (1993) Simple measurement of femoral geometry predicts hip fracture: the study of osteopotic fractures. J Bone Min Res 8: 1211–1217CrossRefGoogle Scholar
  49. 49.
    Glüer CC, Cummings SR, Pressman A, Li J, Glüer K, Faulkner KG, Grampp S, Genant HK (1994) Prediction of hip fractures from pelvic radiographs: the study of osteoporotic fractures. J Bone Miner Res 9: 671–677PubMedCrossRefGoogle Scholar
  50. 50.
    Flicker L, Faulkner KG, Hopper JL, Green RM, Kaymacki B, Nowson CA, Young D, Wark JD (1996) Determinants of hip axis length in women aged 10–89: a twin study. Bone 18:41–45Google Scholar
  51. 51.
    Cummings SR, Cauley JA, Palermo L, Ross PD, Wasnich RD, Black D, Faulkner KG (1994) Racial differences in hip axis lengths might explain racial differences in rates of hip fractures. Osteoporosis Int 4: 226–229CrossRefGoogle Scholar
  52. 52.
    Nelson DA, Jacobsen F, Barondess DA, Parfit AM (1995) Ethnic differences in regional bone density, hip axis length and lifestyle variables among healthy balck and white men. J Bone Miner Res 10: 782–787PubMedCrossRefGoogle Scholar
  53. 53.
    Mikhail MB, Vaswani AN, Aloia JF (1996) Racial differences in femoral dimensions and their relation to hip fracture. Osteoporosis Int 6: 22–24CrossRefGoogle Scholar
  54. 54.
    Cummings SR, Black DM, Nevitt MC et al (1990) Appendicular bone density and age predict hip fracture in women. JAMA 263 (5): 665–668Google Scholar
  55. 55.
    Klotz E, Kalender W, Henschke F, Bayer T (1985) Dual energy CT and morphometric analysis of high resolution CT images for the diagnosis of bone mineral diseases in CAR. Springer, Berlin Heidelberg New York, pp 438–442Google Scholar
  56. 56.
    Klotz E, Henschke F, Kalender W (1986) Morphometrische Analyse hochauflösender CT-Bilder der Wirbelsäule. In:17th meeting of the Deutsche Gesellschaft für Medizinische Physik (DGMP), Lübeck, pp 45–51Google Scholar
  57. 57.
    Kalender W, Klotz E, Brestowsky H (1989) Automatische Auswertung von CT Bildern in der Diagnose der Osteoporose. Electromedica 57: 20–24Google Scholar
  58. 58.
    Graeff W, Engelke K (1991) Microradiography and microtomography. In: Ebashi S, Koch M, Rubenstein E (eds) Handbook on synchrotron radiation. North-Holland, Amsterdam, pp 361–405Google Scholar
  59. 59.
    Braillon PM, Bochu M, Meunier PJ (1993) Quantitative computed tomography (QCT). A new analysis of bone quality in osteoporosis and osteomalacia. 9th International Workshop of Bone Densitometry, Traverse City. Calcif Tissue Int 52: 166Google Scholar
  60. 60.
    Engelke K, Grampp S, Glüer CC, Jergas M, Yang S-O, Genant HK (1995) significance of QCT bone mineral density and its standard deviation as parameters to evaluate osteoporosis. J Comput Assist Tomogr 19: 111–116Google Scholar
  61. 61.
    Müller R, Koller B, Hildebrand T, Laib A, Gianolini S, Rüegsegger P (1996) -Resolution dependency of microstructural properties of cancellous bone based on three-dimensional pt-tomography. Technol Health Care 4: 113–119Google Scholar
  62. 62.
    Durand EP, Rüegsegger P (1991) Cancellous bone structure: analysis of high-resolution CT images with the run-length method. J Comput Assist Torno-gr 15(1):133–139Google Scholar
  63. 63.
    Ito M, Ohki M, Hayashi K, Yamada M, Uetani M, Nakamura T (1995) Trabecular texture analysis of CT images in the relationship with spinal fracture. Radiology 194: 55–59Google Scholar
  64. 64.
    Engelke K, Graeff W, Meiss L, Hahn M, Delling G (1993) High spatial resolution imaging of bone mineral using computed microtomography. Invest Radiol 28:341–349Google Scholar
  65. 65.
    Caligiuri PC, Giger ML, Favus MJ, Jia H, Doi K, Dixon LB (1993) Computerized radiographic analysis of osteoporosis: preliminary evaluation. Radiology 186: 471–474PubMedGoogle Scholar
  66. 66.
    Caldwell CB, Willett K, Cuncins AV, Hearn TC (1995) Characterization of vertebral strength using digital radiographic analysis of bone structure. Med Phys 22: 611–615Google Scholar
  67. 67.
    Chang C-L, Chan H-P, Niklason LT, Cobby M, Crabbe J, Adler RS (1993) Computer-aided diagnosis: detection and characterization of hyperparathyroidism in digital hand radiographs. Med Phys 20:983–992 PubMedCrossRefGoogle Scholar
  68. 68.
    Cheng SNC, Chan H-P, Niklason LT, Adler RS (1994) Automated segmentation of regions of interest on hand radiographs. Med Phys 21(8):1293–1300PubMedCrossRefGoogle Scholar
  69. 69.
    Geraets WGM, Van der Stelt PF, Elders PJM (1993) The radiographic trabecular bone pattern during menopause. Bone 14: 859–864PubMedCrossRefGoogle Scholar
  70. 70.
    Korstjens CM, Geraets WGM, van Ginkel FC, Prahl-Andersen B, van der Stelt PF, Burger EH (1995) Longitudinal analysis of radiographic trabecular pattern by image processing. Bone 17: 527–532PubMedCrossRefGoogle Scholar
  71. 71.
    Chevalier F, Laval-Jeantet AM, Laval-Jeantet M, Bergot C (1992) CT image analysis of the vertebral trabecular network in vivo. Calcif Tissue Int 51: 8–13PubMedCrossRefGoogle Scholar
  72. 72.
    Durand EP, Rüegsegger P (1992) High-contrast resolution of CT images for bone structure analysis. Med Phys 19: 569–573PubMedCrossRefGoogle Scholar
  73. 73.
    Müller R, Hildebrand T, Rüegsegger P (1994) Non-invasive bone biopsy: a new method to analyze and display the three-dimensional structure of trabecular bone. Phys Med Biol 39: 145 - i64PubMedCrossRefGoogle Scholar
  74. 74.
    Müller R, Hildebrand T, Häuselmann HJ, Rüegsegger P (1996) In vivo reproducibility of noninvasive bone biopsies using 3d-pQCT. J Bone Miner Res 11:1745–1750PubMedCrossRefGoogle Scholar
  75. 75.
    Rosenthal H, Thulborn KR, Rosenthal DI, Rosen BR (1990) Magnetic susceptibility effects of trabecular bone on magnetic resonance bone marrow imaging. Invest Radiol 25 (2): 173–178PubMedCrossRefGoogle Scholar
  76. 76.
    Majumdar S (1991) Magnetic field inhomogeneity effects induced by inherent tissue susceptibility differences in gradient echo magnetic resonance imaging: computer simulations. Magn Reson Med 22:101-noGoogle Scholar
  77. 77.
    Majumdar S, Genant HK (1992) In vivo relationship between marrow T2* and trabecular bone density determined with a chemical shift-selective asymmetric spin-echo sequence. J Magn Res Imaging 2: 209–219CrossRefGoogle Scholar
  78. 78.
    Grampp S, Majumdar S, Jergas M, Lang P, Gies A, Genant HK (1995) MRI of bone marrow in the distal radius: in vivo precision of effective transverse relaxation times. Eur Radiol 5(1):43–48PubMedCrossRefGoogle Scholar
  79. 79.
    Ford JC, Wehrli FW, Chung H (1993) Magnetic field distribution in models of trabecular bone. Magn Reson Med 30: 373–379PubMedCrossRefGoogle Scholar
  80. 80.
    Engelke K, Majumdar S, Genant HK (1994) Impact of trabecular structure on marrow relaxation time, T2*: phantom studies. Magn Reson Med 31:380387Google Scholar
  81. 81.
    Majumdar S, Genant HK (1992) In vivo relationship between marrow relaxation time T2* and trabecular bone density using a chemical shift selective asymmetric spin-echo sequence. J Magn Res Imaging 2: 209–219CrossRefGoogle Scholar
  82. 82.
    Sugimoto H, Kimura T, Ohsawa T (1993) Susceptibility effects of bone trabeculae quantification in vivo using an asymmetric spin-echo technique. Invest Radiol 28(3):208–213PubMedCrossRefGoogle Scholar
  83. 83.
    Jara H, Wehrli FW, Chung H, Ford JC (1993) High-resolution variable flip angle 3D MR imaging of trabecular microstructure in vivo. Magn Reson Med 29: 528–539PubMedCrossRefGoogle Scholar
  84. 84.
    Foo TKF, Shellock FG, Hayes CE, Schenck JF, Slayman BE (1992) High-resolution MR imaging of the wrist and eye with short TR, short TE, and partial-echo acqusition. Radiology 183: 227–281Google Scholar
  85. 85.
    Majumdar S, Newitt D, Jergas M, Gies A, Chiu D, Osman D, Keltner J, Keyak J, Genant H (1995) Evaluation of technical factors affecting the quantification of trabecular bone structure using magnetic resonance imaging. Bone 17: 417–430PubMedCrossRefGoogle Scholar
  86. 86.
    Ouyang X, Selby K, Lang P, Engelke K, Klifa C, Fan B, Zucconi F, Hottya G, Chen M, Majumdar S et al (1997) High resolution magnetic resonance imaging of the calcaneus: age related changes in trabecular structure and comparision with dual X-ray absorptiometry measurements. Calcif Tissue Int 60:139–147Google Scholar
  87. 87.
    Majumdar S, Genant HK, Grampp S, Newitt DC, Truong V-H, Lin JC, Mathur A (1997) Correlation of trabecular bone structure with age, bone mineral density and osteoporotic status: in vivo studies in the distal radius using high resolution magnetic resonance imaging. J Bone Miner Res 12: 111–118PubMedCrossRefGoogle Scholar
  88. 88.
    Münch B, Rüegsegger P (1993) 3-D repositioning and differential images of volumetric CT measurements. IEEE Trans Med Imaging 12:509-514Google Scholar
  89. 89.
    Kalender WA, Klotz E, Süss C (1987) Vertebral bone mineral analysis: an integrated approach with CT. Radiology-164: 419–423Google Scholar
  90. 90.
    Steiger P, Block JE, Steiger S, Heuck A, Friedlander A, Ettinger B, Harris ST, Glüer CC, Genant HK (1990) Spinal bone mineral density by quantitative computed tomography: effect of region of interest, vertebral level, and technique. Radiology 175: 537–543PubMedGoogle Scholar
  91. 91.
    Odgaard A, Gundersen HJG (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14: 173–182PubMedCrossRefGoogle Scholar
  92. 92.
    Boyde A, Jones SJ (1996) Scanning electron microscopy of bone: instrument, specimen, and issues. Microsc Res Techn 33: 92–120CrossRefGoogle Scholar
  93. 93.
    Hahn M, Vogel M, Pompesius-Kempa M, Delling G (1991) Undecalcified preparation of bone tissue: report of technical experience and development of new methods. Virchows Arch [A] 418: 1–7CrossRefGoogle Scholar
  94. 94.
    Parfitt AM (1983) Stereologic basis of bone histomorphometry; theory of quantitative microscopy and reconstruction of the third dimension. In: Recker R (ed) Bone histomerphometry: techniques and interpretations. CRC, Boca Raton, pp 53–87Google Scholar
  95. 95.
    Compston JE (1994) Connectivity of cancellous bone: assessment and mechanical implications. Bone 15:463–466PubMedCrossRefGoogle Scholar
  96. 96.
    Amling M, Grote HJ, Pösl M, Hahn M, Delling G (1994) Polyostotic heterogeneity of the spine in osteoporosis. Quantitative analysis and three dimensional morphology. Bone Miner 27: 193–208PubMedCrossRefGoogle Scholar
  97. 97.
    Parfitt AM, Matthews C, Villanueva A (1983) Relationships between surface, volume, and thickness of iliac trabecular bone in aging and in osteoporosis. J Clin Invest 72: 1396–1409PubMedCrossRefGoogle Scholar
  98. 98.
    Bonse U, Busch F (1996) X-ray computed microtomography (µCT) using synchrotron radiation ( SR ). Prog Biophys Mol Biol 65: 133–169Google Scholar
  99. 99.
    Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M (1989) The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res 4 (1): 3–11PubMedCrossRefGoogle Scholar
  100. 100.
    Kuhn JL, Goldstein SA, Feldkamp LA, Goulet RW, Jesion G (1990) Evaluation of a micro computed tomography system to study trabecular bone structure. J Orthop Res 8: 833–842PubMedCrossRefGoogle Scholar
  101. 101.
    Goldstein SA, Goulet R, McCubbrey D (1993) Measurement and significance of three-dimensional architecture in the mechanical integrity of trabecular bone. Calcif Tissue Int 53(S1):S127–133PubMedCrossRefGoogle Scholar
  102. 102.
    Kinney JH, Lane NE, Haupt DL (1995) In vivo, three-dimensional microscopy of trabecular bone. J Bone Miner Res 10(2):264–270PubMedCrossRefGoogle Scholar
  103. 103.
    Rüegsegger P, Koller B, Müller R (1996) A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int 58: 24–29PubMedCrossRefGoogle Scholar
  104. 104.
    Hildebrand T, Rüegsegger P (1997) A new method for the model independent assessment of thickness in three-dimensional images. J Microsc 185:67–75Google Scholar
  105. 105.
    Bonse U, Busch F, Günnewig O, Beckman F, Delling G, Hahn M, Graeff W (1994) 3D computed X-ray tomography of human cancellous bone at 8 tm spatial and 10–4 energy resolution. Bone Miner 25: 25–38Google Scholar
  106. 106.
    Wehrli FW, Ford JC, Chung H-W, Wehrli SL, Williams JL, Grimm MJ, Kugelmass SD, Jara H (1993) Potential role of nuclear magnetic resonance for the evaluation of trabecular bone quality. Calcif Tissue 53 [Suppl i]: S162 - S169CrossRefGoogle Scholar
  107. 107.
    Chung H, Wehrli FW, Williams JL, Kugelmass SD (1993) Relationship between NMR transverse relaxation, trabecular bone architecture, and strength. Proc Natl Acad Sci USA 90: 10250–10254PubMedCrossRefGoogle Scholar
  108. 108.
    Chung H, Wehrli FW, Williams JL, Wehrli SL (1995) Three-dimensional nuclear magnetic resonance microimaging of trabecular bone. J Bone Miner Res 10: 1452–1461PubMedCrossRefGoogle Scholar
  109. 109.
    Hipp JA, Jansujwicz A, Simmons CA, Snyder BD (1996) Trabecular bone morphology from micro-magnetic resonance imaging. J Bone Miner Res 11: 286–292PubMedCrossRefGoogle Scholar
  110. 110.
    Jensen KS, Mosekilde L, Mosekilde L (1990) A model of vertebral trabecu- lar bone architecture and its mechanical properties. Bone 11:417–423Google Scholar
  111. 111.
    Engelke K, Song SM, Glüer CC, Genant HK (1996) A digital model of trabecular bone. J Bone Miner Res 11: 480–489PubMedCrossRefGoogle Scholar
  112. 112.
    Takada M, Engelke K, Hagiwara S, Grampp S, Jergas M, Glüer CC, Genant HK (1997) Assessment of Osteoporosis: Comparison of radiographic absorptiometry of the phalanges and dual X-ray absorptiometry of the radius and lumbar spine. Radiology 202: 759–763Google Scholar
  113. 113.
    Ross P, Huang C, Davis J, Imose K, Yates J, Vogel J, Wasnich R (1995) Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone 16: 325–332PubMedCrossRefGoogle Scholar
  114. 114.
    Kühn B, Stampa B, Heller M, Glüer C-C (1997) High spatial resolution magnetic resonance imaging of the phalangeal bone structure. In: European Congress of Radiology. Springer, Vienna New York, p 137Google Scholar
  115. 115.
    Majumdar S, Weinstein RS, Prasad RR (1993) Application of fractal geometry techniques to the study of trabecular bone. Med Phys 20: 1611–1619PubMedCrossRefGoogle Scholar
  116. 116.
    Benhamou CL, Lespessailles E, Jacquet G, Harba R, Jennane R, Loussot T, Tourliere D, Ohley W (1994) Fractal organization of trabecular bone images on calcaneus radiographs. J Bone Miner Res 9(12):1909–1918PubMedCrossRefGoogle Scholar
  117. 117.
    Buckland-Wright JC, Lynch JA, Rymer J, Fogelman I (1994) Fractal signature analysis of macroradiographs measures trabecular organization in lumbar vertebrae of postmenopausal women. Calcif Tissue Int 54: 106–112PubMedCrossRefGoogle Scholar
  118. 118.
    Rogers S, Silcocks PB, Gross SS, Cotton DWK (1993) Trabecular bone does not have a fractal structure on light microscopic examination. J Pathol 170: 311–313PubMedCrossRefGoogle Scholar
  119. 119.
    Chung HW, Chu C-C, Underweiser M, Wehrli FW (1994) On the fractal nature of trabecular structure. Med Phys 21: 1535–1540PubMedCrossRefGoogle Scholar
  120. 120.
    Chen Y, Dougherty ER, Totterman SM, Hornak JP (1993) Classification of trabecular structure in magnetic resonance images based on morphological granulometries. Magn Reson Med 29: 358–370PubMedCrossRefGoogle Scholar
  121. 121.
    Engelke K, Prevrhal S, Coman J, Süß C, Kalender W (1997) A 3D stereolithographic spongiosa model to quantify the potential if high resolution QCT and MR in the analysis of structural parameters of trabecular bone. In: European Congress of Radiology. Springer, Vienna New YorkGoogle Scholar
  122. 122.
    Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology 179: 669–674PubMedGoogle Scholar
  123. 123.
    Keyak JH, Skinner HB (1992) Three-dimensional finite element modelling of bone: effects of element size. J Biomech Eng 14: 483–489Google Scholar
  124. 124.
    Lotz JC, Cheal EJ, Hayes WC (1991) Fracture predicion for the proximal femur using finite element models. I. Linear analysis. J Biomech Eng 113: 353–360Google Scholar
  125. 125.
    Müller R, Rüegsegger P (1995) Three-dimensional finite element modelling of non-invasively assessed trabecular bone structures. Med Eng Phys 17: 126–133Google Scholar
  126. 126.
    von Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micro-mechanical finite-element models. J Biomech 28: 69–81PubMedCrossRefGoogle Scholar
  127. 127.
    Sandor T, Kalender WA, Hanlon WB, Weissman BN, Rumbaugh C (1985) Spinal bone mineral determination using automated contour detection: application to single and dual energy CT. SPIE Med Imaging Instrum 555: 188–194Google Scholar
  128. 128.
    Laib A, Hildebrand T, Rüegsegger P (1996) In vivo assessment of trabecular bone structure with 3D computed tomography and local reconstruction. Bone 19: 147SGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • K. Engelke
  • W. Kalender

There are no affiliations available

Personalised recommendations