Advertisement

Quantitative Ultrasound for Assessing Bone Properties

  • D. Hans
  • T. Fuerst
  • G. Guglielmi
  • H. K. Genant

Abstract

Osteoporosis is a systemic skeletal disease characterized by low bone mass and structural deterioration of bone tissue, with a consequent decrease in the mechanical competence of bone and thus an increase in the susceptibility to fracture [1]. It most commonly presents as vertebral fractures. Colle’s fractures of the forearm and low-trauma fractures at other sites are also associated with this disease. However, the most severe complications of osteoporosis are hip fractures. Today the lifetime risk of hip fracture for a 50-year old woman is about 18% [2], and the continuing rise in life expectancy is expected to cause a threefold rise in worldwide fracture incidence over the next 60 years [2]. It is clear that osteoporosis represents a major worldwide public health problem that will grow in importance in the coming decades as the population ages. The associated increase in the financial burden to the public health system is an additional concern. In the United States alone the combined public health costs from osteoporosis were 10 billion dollars in 1989 [3–5]. Such forecasts have lead to the search for new, cost-effective methods for early detection, prevention, and treatment.

Keywords

Femoral Neck Bone Mineral Density Quantitative Ultrasound Trochanteric Fracture Ultrasound Velocity Broadband Ultrasound Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Consensus Development Conference (1993) Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94: 646–650Google Scholar
  2. 2.
    Melton LJ, Chrischilles EA, Cooper C, Lane AW, Riggs BL (1992) Perspective: how many women have osteoporosis? J Bone Miner Res 7: 1005–1010PubMedGoogle Scholar
  3. 3.
    Cummings SR, Kelsey JL, Nevitt MC, O’Dowd KJ (1985) Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 7: 178–208PubMedGoogle Scholar
  4. 4.
    Cummings SR, Rubin MPH, Black D (1990) The future of hip fractures in the United States. Clin Orthop Relat Res 252: 163–166PubMedGoogle Scholar
  5. 5.
    Cooper C, Campion G, Melton LJ III (1992) Hip fractures in the elderly: a word-wide projection. Osteoporosis Int 2: 285–289Google Scholar
  6. 6.
    Chevalley T, Rizzoli R, Nydegger V et al (1991) Preferential low bone mineral density of the femoral neck in patients with a recent fracture of the proximal femur. Osteoporosis Int 1: 147–154Google Scholar
  7. 7.
    Duboeuf F, Braillon P, Chapuy MC et al (1991) Bone mineral density of the hip measured with dual-energy X-ray absorptiometry in normal elderly women and in patients with hip fracture. Osteoporosis Int 1: 242–249Google Scholar
  8. 8.
    Cummings SR, Black DM, Nevitt MC et al (1993) Bone density at various sites for prediction of hip fractures. Lancet 341: 72–75PubMedGoogle Scholar
  9. 9.
    Melton LJ, Wahner HW, Richelson LS et al (1986) Osteoporosis and the risk of hip fracture. Am J Epidemiol 124: 254–261PubMedGoogle Scholar
  10. 10.
    Cummings SR, Black DM, Nevitt MC et al (1990) Appendicular bone density and age predict hip fracture in women. JAMA 263: 665–668PubMedGoogle Scholar
  11. 11.
    Kleerekoper M, Villaneuva AR, Stanciu J, Rao DS, Parfitt AM (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fracture. Calcif Tissue Int 37: 594–597PubMedGoogle Scholar
  12. 12.
    Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure–biomechancal consequences. Bone 10: 425–432PubMedGoogle Scholar
  13. 13.
    Langton CM (1992) Recent advances in the ultrasonic assessment of bone. Proceeding of current research in osteoporosis and bone mineral measurement II. Bath conference, p44Google Scholar
  14. 14.
    Genant HK, Engelke K, Fuerst T et al (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11: 707–730PubMedGoogle Scholar
  15. 15.
    Mosekilde L, Bentzen SM, Ortoft G, Jorgensen J (1989) The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone 10: 465–470PubMedGoogle Scholar
  16. 16.
    Melton LJ, Riggs BL (1985) Risk factors for injury after a fall. Clin Geriatr Med 1 (3): 525–536PubMedGoogle Scholar
  17. 17.
    Kaufman JJ, Einhorn TA (1993) Perspective: ultrasound assessment of bone. Osteoporosis Int 8: 517–525Google Scholar
  18. 18.
    Hans D, Schott, Meunier PJ (1993) Ultrasonic assessment of bone: a review. Eur J Med 2: 157–163PubMedGoogle Scholar
  19. 19.
    Glüer C, Genant H, Hans D, Langton C, the Consensus Group (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: consensus on current status. J Bone Miner Res (submitted)Google Scholar
  20. 20.
    Abendschein W, Hyatt GW (1970) Ultrasonics and selected physical properties of bone. Clin Orthop Relat Res 69: 294–301PubMedGoogle Scholar
  21. 21.
    Ashman RB, Corin JD, Turner CH (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20: 979–986PubMedGoogle Scholar
  22. 22.
    Grimm MJ, Williams JL (1993) Use of ultrasound attenuation and velocity to estimate Young’s modulus in trabecular bone. Proceedings of the IEEE 19th Northeast Bioengineering Conference, pp 62–63Google Scholar
  23. 23.
    Ashman B, Cowin SC, Van Buskirk WC, Rice JC (1984) A continuous wave technique for the measurement of the elastic properties of cortical bone. J Biomech 17: 349–361PubMedGoogle Scholar
  24. 24.
    Njeh CF (1995) The dependence of ultrasound velocity and attenuation on the material properties of cancellous bone. PhD thesis, Sheffield Hallam UniversityGoogle Scholar
  25. 25.
    Rho JY, Ashman RB, Turner CH (1993) Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech 26: 111–119PubMedGoogle Scholar
  26. 26.
    Kinsler LE, Frey AR, Coppens AB, Sanders JV (1992) Fundamentals of acoustics. Wiley, New YorkGoogle Scholar
  27. 27.
    Bamber JC, Tristam M (1988) Diagnostic ultrasound. In: Webb S (ed) The physics of medical imaging. Hilger, Bristol, pp 319–386Google Scholar
  28. 28.
    Langton CM, Palmer SB, Porter RW (1984) The measurement of broadband ultrasound attenuation in cancellous bone. Eng Med 13: 89–91PubMedGoogle Scholar
  29. 28.
    Hans D, Schott A M, Arlot ME, Sornay E, Delmas PD, Meunier PJ (1995) Influence of anthropometric parameters on ultrasound measurements of calcaneus. Osteoporosis Int 5: 371–376Google Scholar
  30. 29.
    Kotzki PO, Buyck D, Hans D, Thomas E, Bonnel F, Favier F, Meunier PJ, Rossi M (1994) Influence of fat on ultrasound measurements of the calcaneus. Cal-cif Tissue Int 54: 91–95Google Scholar
  31. 30.
    Miller CG, Herd RJM, Ramalingarn T, Fogelman I, Blake GM (1993) Ultrasonic velocity measurements through the calcaneus: which velocity should be measured? Osteoporosis Int 3: 31–35Google Scholar
  32. 31.
    Vogel JM, Wasnich RD, Ross PD (1988) The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner 5: 35–58PubMedGoogle Scholar
  33. 32.
    Wasnich RD, Ross PD, Heilbrun LK, Vogel JM (1987) Selection of the Optimal skeletal site for fracture prediction. Clin Orthop Relat Res 216: 262–269PubMedGoogle Scholar
  34. 33.
    Black DM, Cummings SR, Genant H K, Nevitt M C, Palermo L, Browner W (1992) Axial and appendicular bone density predict fractures in older women. J Bone Miner Res 7 (6): 633–638PubMedGoogle Scholar
  35. 34.
    Hans D, Dargent P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348: 511–514PubMedGoogle Scholar
  36. 35.
    Bauer DC, Gluer CC, Cauley JA et al (1997) Bone ultrasound predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med 157: 629–634PubMedGoogle Scholar
  37. 36.
    Langton CM, Ali AV, Riggs CM, Evans GP, Bonfield W (1990) A contact method for the assessment of ultrasonic velocity and broadband attenuation in cortical and cancellous bone. Clin Phys Physiol Metab 11: 243–249Google Scholar
  38. 37.
    Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 54: 83–86PubMedGoogle Scholar
  39. 38.
    Roux C, Fournier B, Laugier P et al (1996) Ultrasound bone imaging: clini-cal evaluation of skeletal status. Osteoporosis Int 6: 84Google Scholar
  40. 39.
    Orgee JM, Foster H, McCloskey EV, Khan S, Coombes G, Kanis JA (1996) A precise method for the assessment of tibial ultrasound velocity. Osteoporosis Int 6: 1–7Google Scholar
  41. 40.
    Foldes AJ, Rimon A, Keinan DD, Popovtzer MM (1995) Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 17: 363–367PubMedGoogle Scholar
  42. 41.
    Fan B, Zucconi F, Fuerst T, Glüer CC, Genant HK (1995) Precision assessment: ultrasonic velocity measurement of the mid-tibia versus other techniques. J Bone Miner Res 10 [Suppl 1]: S368Google Scholar
  43. 42.
    Stegman MR, Heaney RP, Travers-Gustafson D, Leist J (1995) Cortical ultrasound velocity as an indicator of bone status. Osteoporosis Int 5: 349–353Google Scholar
  44. 44.
    Guglielmi G, Giannantempo GM, Scillitani A, Chiodini I, Liuzzi A, Cammisa M (1996) Phalangeal QUS and computed X-ray images of hand radiographs. Osteoporosis Int 6 [Suppl 1]: 493Google Scholar
  45. 45.
    Cadossi R, Cané V (1996) Pathways of transmission of ultrasound energy through the distal metaphysis of the second phalanx of pigs: an in vitro study. Osteoporosis Int 6 (3): 196–206Google Scholar
  46. 46.
    Mauloni M, Mura M, Paltrinieri F, Ventura V, Isani R (1995) Bone health evaluated in the female population by an ultrasound instrument on proximal phalanxes. J Bone Miner Res 10 [Suppl 1]: S471Google Scholar
  47. 47.
    Duboeuf F, Hans D, Dchott A, Giraud S, Delmas PD, Meunier PJ (1996) Ultrasound velocity measured at the proximal phalanges: precision and age related changes in normal females. Rev Rhum 63 (6)427–434Google Scholar
  48. 48.
    Alenfeld FE, Wüster C, Beck C, Meeder P-J, Ziegler R (1995) Quantitative Ultrasound at the phalanges: separation of osteoporotic and non-osteoporotic fractures. J Bone Miner Res 10 [Suppl 1]: S273Google Scholar
  49. 49.
    Benitez CL, Schneider DL (1996) QUS assessment of bone in normal and osteoporotic subjects: ability to distinguish between those with and without HRT. Osteoporosis Int 6 [Suppl 1]: 184Google Scholar
  50. 50.
    Alenfeld FE, Eggens U, Diessel E, Müller C, Braun J, Sieper J, Gowin W, Felsenberg D (1996) Quantitative ultrasound and bone mineral density measurements at the proximal phalanges in rheumatoid arthritis. Osteoporosis Int 6 [Suppl 1]: 347Google Scholar
  51. 51.
    Ventura V, Mauloni M, Mura M, Patrinieri F, de Aloysio D (1996) Ultrasound velocity changes at the proximal phalanges of the hand in pre-, peri-, and postmenopausal women. Osteoporosis Int 6: 368–375Google Scholar
  52. 52.
    Rico H, Aguado F, Revilla M et al (1994) Ultrasound bone velocity and metacarpal radiogrammetry in hemodialyzed patients. Miner Electrolyte Metab 20: 103–106PubMedGoogle Scholar
  53. 53.
    Kleerekoper M, Nelson DA, Flynn MJ, Pawluszka AS, Jacobsen G, Peterson EL (1994) Comparison of radiographic absorptiometry with dual-energy X-ray absorptiometry and quantitative computed tomography in normal older white and black women. J Bone Miner Res 9 (11): 1745–1749PubMedGoogle Scholar
  54. 54.
    Heaney RP, Avioli LV, Chesnut CH, Lappe J, Recker RR, Brandenburger GH (1995) Ultrasound velocity through bone predicts incident vertebral deformity. J Bone Miner Res 10: 341–345PubMedGoogle Scholar
  55. 55.
    Stegman MR, Heaney RP, Recker RR (1995) Comparison of speed of sound ultrasound with single photon absorptiometry for determining odds ratio. J Bone Miner Res 10(3)346–352PubMedGoogle Scholar
  56. 56.
    Lehmann R, Wapniarz M, Kvasnicka HM, Klein K, Allolio B (1993) Velocity of ultrasound at the patella: Influence of age, menopause and estrogen replacement therapy. Osteoporosis Int 3: 308–313Google Scholar
  57. 57.
    Zerwekh JE, Antich PP, Sakhaee K, Gonzales J, Gottschalk F, Pak CYC (1991) Assessment by reflection ultrasound method of the effect of intermittent slow-release sodium fluoride-calcium citrate therapy on material strengh of bone. J Bone Min Res 6: 239–244Google Scholar
  58. 58.
    Evans WD, Jones EA, Owen GM (1995) Factors affecting the in vivo precision of broadband ultrasonic attenuation. Phys Med Biol 40: 407–151Google Scholar
  59. 59.
    Gnudi S, Malavolta N, Ripamonti C, Caudarella R (1995) Ultrasound in the evaluation of osteoporosis: a comparison with bone mineral density at distal radius. Br J Radiol 68: 476–480PubMedGoogle Scholar
  60. 60.
    Ross P, Huang C, Davis J et al (1995) Predicting vertebral deformity using bone densitometry at various skeletal sites and calcaneus ultrasound. Bone 16: 325–332PubMedGoogle Scholar
  61. 61.
    Funke M, Kopka L, Vosshenrich R, Fischer U, Ueberschaer A, Oestmann JW, Grabbe E (1995) Broadband ultrasound attenuation in the diagnosis of osteoporosis: correlation with osteodensitometry and fracture. Radiology 194: 77–81PubMedGoogle Scholar
  62. 62.
    Rosenthall L, Tenenhouse A, Caminis J (1995) A correlative study of ultrasound calcaneal and dual-energy X-ray absorptiometry bone measurements of the lumbar spine and femur in 100 women. Eur J Nucl Med 22: 402–406PubMedGoogle Scholar
  63. 63.
    Schott AM, Weill-Engerer S, Hans D, Duboeuf F, Delmas PD, Meunier PJ (1995) Ultrasound discriminates patients with hip fracture equally well as dual energy X-ray absorptiometry and independently of bone mineral density. J Bone Miner Res 10: 243–249PubMedGoogle Scholar
  64. 64.
    Tavakoli MB, Evans JA (1991) Dependence of the velocity and attenuation of ultrasound in bone on the mineral content. Phys Med Biol 36: 1529–1537PubMedGoogle Scholar
  65. 65.
    Wu C, Glüer CC, Fuerst T, Gindele A, Genant HK (1995) Ultrasound characterization of bone demineralization. J Bone Miner Res 10 [Suppl 1]: S374Google Scholar
  66. 66.
    Smeets AJ, Kuiper JW, Slis HW (1995) A comparison of site-matched ultrasound, QDR and DXA measurements in the os calcis in vitro: a pilot study. Osteoporosis Int 5:303Google Scholar
  67. 67.
    Droin P, Laugier P, Laval-Jeantet AM, Berger G (1995) Relationships between acoustic parameters and BMD assessed in vitro ultrasound parametric imaging. Program and abstracts of the nth International Bone Densitometry Workshop, p28Google Scholar
  68. 68.
    Nicholson PHF, Haddaway MJ, Davie MW (1994) The dependence of ultrasonic properties on orientation in human vertebral bone. Phys Med Biol 39: 1013–1024PubMedGoogle Scholar
  69. 69.
    Wu C, Glüer C-C, Jergas M, Bendavid E, Genant HK (1995) The impact of bone size on broadband ultrasound attenuation. Bone 16: 137–141PubMedGoogle Scholar
  70. 70.
    Bauer DC, Gluer CC, Genant HK, Stone K (1995) Quantitative ultrasound and vertebral fracture in postmenopausal women. J Bone Miner Res 10: 353–358PubMedGoogle Scholar
  71. 71.
    Bouxsein ML, Radloff SE, Hayes WC (1995) Quantitative ultrasound reflects the anisotropy of calcaneal trabecular bone. Program and abstracts of the nth International Bone Densitometry Workshop, p 29Google Scholar
  72. 72.
    Gluer CC, Wu CY, Jergas M, Goldstein SA, Genant HK (1994) Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 55: 46–52PubMedGoogle Scholar
  73. 73.
    Langton CM, Evans GP, Hodgskinson R, Riggs CM (1990) Ultrasonic, elastic and structural properties of cancellous bone. In: Ring EFG (ed) Current research in osteoporosis and bone mineral measurement. British Institute of Radiology, BathGoogle Scholar
  74. 74.
    Glüer CC, Wu CY, Genant HK (1993) Broadband ultrasound attenuation signals depend on trabecular orientation: an in vitro study. Osteoporosis Int 3: 185–191Google Scholar
  75. 75.
    Bouxsein ML, Radloff SE, Hayes WC (1995) Quantitative ultrasound of the calcaneus reflects trabecular bone strength, modulus, and morphology. J Bone Miner Res 10 [Suppl 1]: S175Google Scholar
  76. 76.
    Hans D,Arlot ME, Schott AM, Roux JP, Kotzki PO, Meunier PJ (1995) Do ultrasound measurements on the os calcis reflect more the bone microarchitecture than the bone mass? A two-dimensional histomorphometric study. Bone 16: 295–300Google Scholar
  77. 77.
    Serpe L, Rho J (1994) Broadband ultrasound attenuation values depend on bone path length: an in vitro study. J Bone Miner Res 9 [Suppl 1]: S278Google Scholar
  78. 78.
    Bouxsein ML, Radloff SE, Toledano TR, Hayes WC (1994) Calcaneal ultrasound measurements are moderately correlated with trabecular bone density and independent of foot geometry. J Bone Miner Res 9 [Suppl 1]: S208Google Scholar
  79. 79.
    Blake GM, Herd RJM, Miller CG, Fogelman I (1994) Should broadband ultrasonic attenuation be normalized for width of the calcaneus? Br J Radiol 67: 1206–1209PubMedGoogle Scholar
  80. 80.
    Bouxsein ML, Courtney AC, Hayes WC (1995) Ultrasound and densitometry of the calcaneus correlate with the failure loads of cadaveric femurs. Cal-cif Tissue Int 56: 99–103Google Scholar
  81. 81.
    Njeh CF, Langton CM (1995) Prediction of bone strength from ultrasound velocity and apparent density. Program and abstracts of the nth International Bone Densitometry Workshop, p 30Google Scholar
  82. 82.
    Mautalen C, Vega E, Gonzales D, Carrilero P, Otano A, Silberman B (1995) Ultrasound and dual X-ray absorptiometry densitometry in women with hip fracture. Calcif Tissue Int 57: 165–168PubMedGoogle Scholar
  83. 83.
    Turner CH, Peacock M, Timmerman L, Neal JM, Johnston CC Jr (1995) Calcaneal ultrasonic measurements discriminate hip fractures independently of bone mass. Osteoporosis Int 5: 400–405Google Scholar
  84. 84.
    Naessen T, Mallmin H, Ljunghall S (1995) Heel ultrasound in women after long-term ERT compare with bone densities in the forearm, spine and hip. Osteoporosis Int 5: 205–210Google Scholar
  85. 85.
    Van Daele PLA, Burger H, Algra D, Hofman A, Grobbee DE, Birkenhäger JC, Pols HAP (1994) Age-associated changes in ultrasound measurements of the calcaneus in men and women: the Rotterdam study. J Bone Miner Res 9: 1751–1757PubMedGoogle Scholar
  86. 86.
    Funck C, Wuster C, Alenfeld FE, Pereira-Lima JSF, Fritz T, Meeder PJ, Gotz M, Ziegler R (1996) Ultrasound velocity of the tibia in normal German women and hip fracture patients. Calcif Tissue Int 58: 390–394PubMedGoogle Scholar
  87. 87.
    Moris M, Peretz A, Tjeka R, Negaban N,Wouters M, Bergmann P (1995) Quantitative ultrasound bone measurements: normal values and comparison with bone mineral density by dual X-ray absorptiometry. Calcif Tissue Int 57: 6–10PubMedGoogle Scholar
  88. 88.
    Faulkner KG, McClung MR, Coleman LJ, Kingston-Sandahl E (1994) Quantitative ultrasound of the heel: correlation with densitometric measurements at different skeletal sites. Osteoporosis Int 4: 42–47Google Scholar
  89. 89.
    Gluer CC,Vahlensieck M, Faulkner KG, Engelke K, Black D, Genant HK (1992) Site-matched calcaneal measurement of broadband ultrasound attenuation and single X-ray absorptiometry: do they measure different skeletal properties? J Bone Miner Res 7 (9): 1071–1079PubMedGoogle Scholar
  90. 90.
    Salamone LM, Krall EA, Harris S, Dawson-Hughes B (1994) Comparison of broadband ultrasound attenuation to single X-ray absorptiometry measurements at the calcaneus in postmenopausal women. Calcif Tissue Int 54: 87–90PubMedGoogle Scholar
  91. 91.
    Heaney RP, Avioli LV, Chestnut CH, Lappe J, Rescker RR, Brandenburger GH (1989) Osteoporotic bone fragility, detection by ultrasound transmission velocity. J Am Assoc 261: 2986–2990Google Scholar
  92. 92.
    Schott AM, Hans D, Sornay-Rendu E, Delmas PD, Meunier PJ (1993) Ultrasound measurements on os calcis: precision and age-related changes in a normal female population. Osteoporosis Int 3: 249–254Google Scholar
  93. 93.
    Schott AM, Hans D, Garnero P, Sornay E, Delmas PD, Meunier PJ (1995) Age-related changes in os calcis ultrasonic indices: a two-year prospective study. Osteoporosis Int 5: 478–483Google Scholar
  94. 94.
    Krieg MA, Thiebaud D, Burckhardt P (1996) Quantitative ultrasound of bone in institutionalized elderly women: a cross-sectional and longitudinal study. Osteoporosis Int 6: 189–195Google Scholar
  95. 95.
    Porter RW, Miller CG, Grainger D, Palmer SB (1990) Prediction of hip fracture in elderly women: a prospective study. BMJ 301: 638–641PubMedGoogle Scholar
  96. 96.
    Dretakis EK, Kontakis GM, Steriopoulos K, Dretakis K, Kouvidis G (1995) Broadband ultrasound attenuation of the os calcis in female postmenopausal patients with cervical and trochanteric fracture. Calcif Tissue Int 57 (6): 419–421PubMedGoogle Scholar
  97. 97.
    Gluer CC, Fuerst T, Wu CY et al (1995) Diagnostic sensitivity of various quantitative ultrasound and dual X-ray absorptiometry approaches. J Bone Miner Res 10 [Suppl 1]: S373Google Scholar
  98. 98.
    Stewart A, Felsenberg D, Kalidis L, Reid DM (1995) Vertebral fractures in men and women: how discriminative are bone mass measurements? Br J Radiol 68: 614–620PubMedGoogle Scholar
  99. 99.
    Wuster C, Paetzold W, Scheidt-Nave C, Brandt K, Ziegler R (1994) Equivalent diagnostic validity of ultrasound and dual X-ray absorptiometry in a clinical case-comparison study of women with vertebral osteoporosis. J Bone Miner Res 9 [Suppl 1]: S211Google Scholar
  100. 100.
    Dretakis EC, Kontakis GM, Steriopoulos CA, Dretakis CE (1994) Decreased broadband ultrasound attenuation of the calcaneus in women with fragility fracture. Acta Orthop Scand 65: 305–308PubMedGoogle Scholar
  101. 101.
    Kroger H, Jurvelin J, Amala I et al (1995) Ultrasound attenuation of the calcaneus in normal subjects and in patients with wrist fracture. Acta Orthop Scand 66: 47–52PubMedGoogle Scholar
  102. 102.
    Uffmann M, Bauer DC, Fuerst TP et al (1996) Is tibial ultrasound velocity associated with previous fractures? J Bone Miner Res 11 [Suppl 1, S631]: 247Google Scholar
  103. 103.
    Alenfeld F, Wüster C, Goetz M, Beck C, Ziegler R (1995) Diagnostic value of ultrasound measurements of bone mineral density on the metacarpals in healthy and osteoporotic subjects. Bone 16: 1475Google Scholar
  104. 104.
    Hans D, Dargent P, Schott AM, Breart G, Meunier PJ, EPIDOS Group (1996) Ultrasound parameters are better predictors of trochanteric than cervical hip fracture: the EPIDOS Prospective Study. Osteoporosis Int 6 [Suppl 1]: 24Google Scholar
  105. 105.
    Glueer CC, Cummings SR, Bauer DC et al (1996) Osteoporosis: association of recent fractures with quantitative US findings. Radiology 199: 725–732Google Scholar
  106. 106.
    Jones PRM, Hardman AE, Hudson A, Norgan NG (1991) Influence of brisk walking on the broadband ultrasonic attenuation of the calcaneus in previously sedentary women aged 30–61 years. Calcif Tissue Int 49: 112–115PubMedGoogle Scholar
  107. 107.
    Gonnelli S, Cepollaro C, Pondrelli C, Martini S, Rossi S, Gennari C (1996) Ultrasound parameters in osteoporotic patients treated with salmon calcitonin: a longitudinal study. Osteoporosis Int 6: 303–307Google Scholar
  108. 108.
    Acotto C, Schott AM, Hans D, Njepomniszeze H, Mautalen CA, Meunier PJ (1995) Hyperthyroidism influences ultrasound bone measurements of the calcaneus. J Bone Miner Res 10 [Suppl 1]: S400Google Scholar
  109. 109.
    Giorgino R, Paparella P, Lorusso D, Mancuso S (1996) Effects of oral alendronate treatment and discontinuance on ultrasound measurements of the heel in postmenopausal osteoporosis. J Bone Miner Res 11 [Suppl 1]: M639Google Scholar
  110. 110.
    Ryan P, Herd R, Blake CC, Fogelman I (1996) Calcaneal BUA changes in a 2 year placebo controlled study of pamidronate in post menopausal osteoporosis. Osteoporosis Int 6 [Suppl 1]: 516Google Scholar
  111. 111.
    Giorgino R, Lorusso D, Paparella P (1996) Ultrasound bone densitometry and 2-year hormonal replacement therapy efficacy in the prevention of early postmenopausal bone Loss. Osteoporosis Int 6 [Suppl 1]: 569Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • D. Hans
  • T. Fuerst
  • G. Guglielmi
  • H. K. Genant

There are no affiliations available

Personalised recommendations