The Steady State for Dendrite Growth with Nonzero Surface Tension

  • Jian-Jun Xu
Part of the Springer Series in Synergetics book series (SSSYN, volume 68)

Abstract

In the last chapter we derived the steady asymptotic solution which we called the RPE solution. However, so far we have not specified the steady state solution itself. How to specify the steady state solution in dendrite growth is an important subject which must be approached with great caution. In the literature, many researchers have looked for the classic, steady needle solution for dendrite growth. Such efforts have not been successful for the case of isotropic surface tension.

Keywords

Anisotropy Nash Rium Cose sinO 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 5.1
    G. E. Nash, and M. E. Glicksman, “Capillarity-limited Steady-State Dendritic Growth I. Theoretical Development”, Acta Metall. 22, pp. 1283–1299, (1974).CrossRefGoogle Scholar
  2. 5.2
    M. Kruskal and H. Segur, “Asymptotics Beyond All Orders in a Model of Crystal Growth”, Stud. in Appl. Math. No. 85, pp. 129–181, (1991).Google Scholar
  3. 5.3
    J. S. Langer, ‘Lectures in the Theory of Pattern Formation’ USMG NATO AS Les Houches Session XLVI 1986 - Le hasard et la matiere/ chance and matter. Ed. by J. Souletie, J. Vannimenus and R. Stora, (Elsevier Science, Amsterdam 1986)Google Scholar
  4. 5.4
    D. A. Kessler, J. Koplik and H. Levine, “Pattern Formation Far from Equilibrium: the free space dendritic crystal”, in ‘Proc. NATO A.R. W. on Patterns, Defects and Microstructures in Non-equilibrium Systems’ Austin, TX, March 1986.Google Scholar
  5. 5.5
    P. Peke, ‘Dynamics of Curved Front’ (Academic, New York 1988).Google Scholar
  6. 5.6
    E. A. Brener and V. L. Melnikov, “Pattern Selection in Two Dimensional Dendritic Growth”, Adv. Phys. 40, pp. 53–97, (1991).MathSciNetADSCrossRefGoogle Scholar
  7. 5.7
    H. Segur, S. Tanveer and H. Levine (Eds.), ‘Asymptotics Beyond All Orders’ NATO ASI Series, Series B: Physics, Vol. 284, (Plenum, New York 1991).Google Scholar
  8. 5.8
    Y. Pomeau, M. Ben Amer, “Dendrite Growth and Related Topics” in ‘Solids Far Prom Equilibrium’ Ed. by C. Godreche, (Cambridge University Press, Cambridge, New York 1991).Google Scholar
  9. 5.9
    J. J. Xu, “Interfacial Wave Theory of Solidification - Dendritic Pattern Formation and Selection of Tip Velocity”, Phys. Rev. A15 43, No: 2, pp. 930–947, (1991).CrossRefGoogle Scholar
  10. 5.10
    J. Kevorkian, J. D. Cole, ‘Multiple Scale and Singular Perturbation Methods’ Applied Mathematical Sciences, Vol. 114, (Springer, Berlin, Heidelberg 1996).Google Scholar
  11. 5.11
    J. K. Hale, L. T. Magalhaes and W. M. Oliva ‘An Introduction to Infinite Dimensional Dynamical Systems- Geometric Theory’ Series of Applied Mathematical Sciences, Vol. 47, Ed. by F. John, J. E. Marsden, L. Sirovich, (Springer, New York 1984).Google Scholar
  12. 5.12
    S. Wiggins, ‘Global Bifurcations and Chaos: Analytical Methods’ Series of Applied Mathematical Sciences, Vol. 73, Ed. by F. John, J. E. Marsden, L. Sirovich, (Springer, New York 1988).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jian-Jun Xu
    • 1
  1. 1.Department of Mathematics and StatisticsMcGill UniversityMontrealCanada

Personalised recommendations