The Use of Extracorporeal Shock Wave Fronts for Treatment of Muscle Dysfunction of Various Etiologies: An Overview of First Results

  • H. Lohse-Busch
  • M. Kraemer
  • U. Reime


Focused extracorporeal shock waves (ESW) are used to soothe local juxta-ar-ticular, ligamental and tendinal pain or to treat pseudarthrosis (2, 3, 7, 15). Discussions dealing with the mode of action of ESW generally distinguish between two different mechanisms (2, 4, 14, 16, 20): pressure and tractive forces when the impedance changes between two different mediums on the one hand and the phenomenon of cavitation on the other hand. Cavitation is characterized by nondirectional forces being set free as a result of the adia-batic deformation and change in volume of gas bubbles. These forces lead to microstructural changes of membranes and mitochondria.


Shock Wave Shock Wave Front Extracorporeal Shock Wave Therapy Erector Spinae Arthrogryposis Multiplex Congenita 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumann JU, Baumann JB (1997) Extracorporeal Shock Waves in Orthopaedics. Chapter 15, Springer Berlin Heidelberg New YorkGoogle Scholar
  2. 2.
    Chaussy C, Eisenberger F, Jocham D, Wilbert D (eds) (1995) Stoßwellenlithotripsie, Aspekte und Prognosen. Standortbestimmung der Arbeitsgruppe “Experimentelle ESWL” — Übersicht und Perspektiven. Attempto, Tübingen, 93–103Google Scholar
  3. 3.
    Dahmen GP, Meiss L, Nam VC, Skruodies B (1992) Extracorporale Stoßwellentherapie (ESWT) im knochennahen Weichteilbereich an der Schulter. Extracta Orthopaedica 11:25Google Scholar
  4. 4.
    Delius M (1994) Medical applications and bioeffects of extracorporal shock waves. Shock Waves 4:55–72CrossRefGoogle Scholar
  5. 5.
    Eiden KJ (1990) Therapy of the atlas compared with traditional manipulation in sacroiliac dysfunction. in Paterson JK, Burn L (eds) Back pain, Kluwer Academic, Dordrecht, pp 404–409CrossRefGoogle Scholar
  6. 6.
    Frisch H (1995) Programmierte Therapie am Bewegungsapparat: Chirotherapie. Springer, Berlin Heidelberg New York, pp 47–69Google Scholar
  7. 7.
    Haist J (1995) Einsatzmöglichkeiten der analgetisch wirksamen extracorporalen Stoßwellentherapie (ESWT) an der Schulter. Orthop Praxis 9(95):591–593Google Scholar
  8. 8.
    Hummelsheim H, Mauritz K (1993) Neurophysiological mechanisms of spasticity -modification by physiotherapy. In: Thilman AF, Burke DJ, Rymer WZ (eds.) Spasticity: mechanisms and management. Springer, Berlin Heidelberg New York, pp 426–438Google Scholar
  9. 9.
    Janda V (1988) Muscles and cervicogenic pain syndromes. In: Grant R (ed) Physical therapy of the cervical and thoracic spine. Churchill Livingstone, Edingburgh, pp 153–165Google Scholar
  10. 10.
    Jankowska E (1993) Monoaminergic inhibitory control of spinal interneurons. In: Thilman AF, Burke DJ, Rymer WZ (eds) Spasticity: mechanisms and management. Springer, Berlin Heidelberg New York, pp 222–232Google Scholar
  11. 11.
    Lohse-Busch H (1990) Symptomatische Verbesserung der Muskelfunktion bei neuromuskulären Erkrankungen der Reflexe der oberen HWS. Orthop Prax 12:775–781Google Scholar
  12. 12.
    Lohse-Busch H, Kraemer M, Reime U (1996) A pilot investigation into the action of low-energy shock waves on impaired muscular dysfunction in children with cerebral palsy and low back pain in adults. MITAT 5 [Suppl. 1], p 87Google Scholar
  13. 13.
    Lohse-Busch H, Kraemer M, Reime U (1997) Pilotuntersuchung zur Wirkung von niedrigenergetischen, extracorporalen Stoßwellen auf Muskelfunktionsstörungen bei spastischen Bewegungsstörungen von Kindern. Schmerz 11:108–112PubMedCrossRefGoogle Scholar
  14. 14.
    Mihran RT, Barnes FS, Wachtel H (1990) Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med Biol. 16(3):297–309PubMedCrossRefGoogle Scholar
  15. 15.
    Russo S, Gigliotti S, De Durante C, Corrado B (1996) Diagnosis and early treatment of aseptic bone necrosis with high energy shock waves: preliminary notes. MITAT 5 [Suppl. l]: p 87Google Scholar
  16. 16.
    Schelling G, Delius M, Gschwender M, Grafe P, Gambihler S (1994) Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophys 66:133–140CrossRefGoogle Scholar
  17. 17.
    Schlack HG (1996) Stimulation der Körperwahrnehmung — ein wichtiges Konzept in der Behandlung zerebralparetischer Kinder. Sozialpäd KiPra 18(5):274–276Google Scholar
  18. 18.
    Seitz R (1993) Analyse von stoßwelleninduzierten Zell- und Gewebeschäden. Thesis, Regensburg.Google Scholar
  19. 19.
    Staubesand J, Yi L (1996) Zum Feinbau der Fascia cruris mit besonderer Berücksichtigung epi- und intrafaszialer Nerven. Man Med 34:196–200Google Scholar
  20. 20.
    Steinbach P, Work K, Seidl M, Seitz R, Hofstädter F (1995) Effekte hochenergetischer Ultraschallstoßwelleri auf Tumorzellen in vitro und humane EndothelzeUen. In: Chaussy C, Eisenberger F, Jocham D, Wilbert D (eds) Stoßwellenlithotripsie, Aspekte und Prognosen. Attempto, Tübingen, pp 1995, 104–109Google Scholar
  21. 21.
    Thilmann AF (1993) Spasticity: definitions, and usage of the term. In Thilman AF, Burke DJ, Rymer WZ (eds) Spasticity: Mechanisms and Management. Springer, Berlin Heidelberg New York, pp 1–5Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • H. Lohse-Busch
  • M. Kraemer
  • U. Reime

There are no affiliations available

Personalised recommendations