In this chapter, currently known effects and side effects are presented. We first present a lecture held by Dr. Pia Steinbach at the First Shock Wave Symposium in Kassel in April 1996. It especially features the results she achieved with regard to a dosis-effect relationship at the endothelium of the blood vessels, as well as the influence of shock waves on the membrane potential of the neuron.


Shock Wave Rotator Cuff Calcium Deposit Extracorporal Shock Wave Lithotripsy Constant Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aglietti P, Buzzi R et al.: Il gomito del tennisata, aspetti clinici ed anatomici. Int J Sports Traumatol 113ffGoogle Scholar
  2. Arcq M, Pfeiffer L, Die operative Behandlung der Epikondylopathie durch Fascia — lata —Plastik. Orthop Praxis, 12/92, 841ffGoogle Scholar
  3. Ark JW, Flock TJ et al.: Arthroscopic treatment of calcific tendinitis of the shoulder. Arthroscopy 8 (2):183–188Google Scholar
  4. Assimos DG et al.: Urinary enzyme levels after extracorporal shock wave lithotripsy (abstract). J Urol 137:45 A, 1987Google Scholar
  5. Barrios R, Solchaga L et al.: Effect of high energy shock waves on bone: An experimental study on sheep. J Bone Joint Surg (Br), 1993; 75 — B; SUPP IIGoogle Scholar
  6. Biedert R, Kentsch A: Arthroskopische Revision des subakromialen Raumes bei Impingement — Syndrom.Unfallchirurg (1989) 92: 500–504PubMedGoogle Scholar
  7. Bomanji J et al: Radionuclid evaluation pre and post extracorporal shock wave lithtoripsy for renal caliculi. J Nucl Med; 28, 1284, 1987PubMedGoogle Scholar
  8. Bosworth D.: Surgical treatment of tennis elbow. J Bone Joint Surg 47 A, No. 8, December 1965Google Scholar
  9. Boyd H.: Tennis elbow. J Bone Joint Surg 55 A, No. 6, September 1973, 1183ffGoogle Scholar
  10. Braun, W, Claes L, Rüter A: Untersuchungen zur Wirksamkeit von Stoßwellen auf die Festigkeit des Verbundes von Knochen und Polymethyl-Metacrylat. Orthop 130 (1992) 236–43Google Scholar
  11. Brendel W: Effect of shock waves on canine kidney. In: Gravenstein JS (ed) Extracorporal shock wave lithotripsy for renal stone disease: Technical and clinical aspects, Stoneham, Butterworth, 1986, p 141Google Scholar
  12. Brümmer F, Suhr D: Standardisierte in vitro Modelle zur Charakterisierung von Stoßwellen. Biomed Tech 35, Ergänzungsband 1990, 237ffGoogle Scholar
  13. Brümmer F, Bräuner T, Hülser D: Biological effects of shock waves. World J Urol (1990) 8:224ffGoogle Scholar
  14. Buch M.: Unpublished summary of the results presented during the 1st Kasseler Shock Wave SymposiumGoogle Scholar
  15. Bürger RA, Witzsch U et al: Extracorporal shock wave therapy of pseudo — arthrosis and aseptic osteonecrosis. AbstractGoogle Scholar
  16. Caspari R, Raymond R: A technique for arthroscopic subacromial decompression. Arthroscopy 8 (1): 23–30Google Scholar
  17. Cass AS: Colon injury with ESWL for an upper ureteral calculus. In: Newman DM (ed) Shock wave lithotripsy. New York, Plenum, 1988Google Scholar
  18. Chaussy C, Eisenberger F, Jocham D, Wilbert D: Die Stoßwelle Attempto Verlag 1995Google Scholar
  19. Chaussy C, Eisenberger F, Jocham D, Wilbert D: Stoßwellenlithotripsie. Attempto Verlag 1993Google Scholar
  20. Chaussy C: ESWL for kidney stones: an alternative to surgery? Urol Radiol 6:80, 1984PubMedGoogle Scholar
  21. Chaussy C: ESWL in treatment of urolithiasis. Urology 23 (Suppl), 59, 1984PubMedGoogle Scholar
  22. Chaussy C: Extracorporal shock wave lithotripsy: Technical concept, Experimental research and clinical application. Basel S Karger, 1986Google Scholar
  23. Chaussy C: The in vitro and In vivo effects of extracorporal shock waves on malignant cells. Urol Res 1988, 16, 419ffPubMedGoogle Scholar
  24. Chaussy C, Fuchs G: Eswl: Die Evolution einer Revolution. Urologe A, 1989, 28, 126ffPubMedGoogle Scholar
  25. Cloward RB: Cervical dicography. Ann Surg, Dec 1959 150 No 6 1052ff.PubMedGoogle Scholar
  26. Coenen W: Über ein diagnostisches Zeichen bei der sogenannten Epikondylitis humeri radialis. Orthop, 124, (1986) 323–26.Google Scholar
  27. Coleman A, Choi M: Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med Biol 18, No 3, 267ff.Google Scholar
  28. Coleman A, Saunders J: Acoustic cavitation generated by an extracorporal shock wave lithotripter. Ultrasound Med Biol 13, No 2, 69ff.Google Scholar
  29. Constant CR.: A clinical method of functional assessment of the shoulder. Clin Orthop, No. 214, January 1987, 160ff.PubMedGoogle Scholar
  30. Coonrad R, Hooper R: Tennis elbow: Its course, natural history, conservative and surgical management. J Bone Joint Surg 55 A, No. 6, September 1973, 1177ff.Google Scholar
  31. Dahmen GP, Meiss L et. al.: Extrakorporale Stoßwellentherapie (ESWT) im knochennahen Weichteilbereich an der Schulter. Extr Orthop 15, Heft 11, 25ff.Google Scholar
  32. Deam RK: Neurological damage resulting from extracorporal shock wave lithotripsy when air is used to locate the epidural space. Anaesthaesia Intensive Care 21 (4), 1993 Aug, 455ff.Google Scholar
  33. Debeyre J, Patte D, Elmelik E: Repair of ruptures of the rotator cuff of the shoulder. J Bone Joint Surg 47 B, No 1; February 1965.Google Scholar
  34. Delius M et al: Biological effects of shock waves: kidney damage by shock waves in dogs -dose dependence. Ultrasound Med Biol 14:177–22, 1988.Google Scholar
  35. Delius M: Biologische Wirkung von Stoßwellen — mehr als “nur” Steinzertrümmerung? Zentralbl Chir 120, (1995) 259–73.PubMedGoogle Scholar
  36. Delius M, Hofschneider P: Extracorporal shock waves for gene therapy? Lancet 345, No 8961, pp 1377.Google Scholar
  37. Delius M, Weiss N: Tumor therapy with shock waves requires modified Lithotripter shock waves. Naturwissenschaften 76; 573–74; (1989).PubMedGoogle Scholar
  38. Delius M, Denk R: Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16, No 5, 467ff.Google Scholar
  39. Delius M, Enders G: Biological effects of shock waves. Lung hemorrage by shock waves in dogs- pressure dependence. Ultrasound Med Biol 13, No 2, 61ff.Google Scholar
  40. Delius M, Gambihler S: Sonographic imaging of extracorporal shock wave effects in the liver and galbladder of dogs. Digestion, 1992, 52, 55ff.PubMedGoogle Scholar
  41. Delius M, Ueberle F: Destruction of galstones and model stones by extracorporal shock waves. Ultrasound Med Biol 20, No 3, 251ff.Google Scholar
  42. Delius M, Draenert K: Biological effects of shock waves: In vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol. 21; No 9, 1219ff.Google Scholar
  43. Delius M, Hoffmann E: Biological effects of shock waves: Induction of arrythmia in piglet hearts. Ultrasound Med Biol 20, No 3, 1994, 279ff.PubMedGoogle Scholar
  44. Dellian M, Walenta S: High energy shock waves enhance hyperthermic response of tumors. J Nat Cancer Inst 86, No 4, Feb. 16, 1996.Google Scholar
  45. Di Silverio F, Gallucci M: Blood cellular and biochemical changes After extracorporal shock wave lithotrypsie. Urol Res, 1990, 18, 49ff.PubMedGoogle Scholar
  46. Doerr: Krankheiten der Sehnen — Knochen — Insertion. in: Doerr: Spezielle Pathologische Anatomie, Band 19, 203ff.Google Scholar
  47. Doukas A, McAuliffe D: Biological effects of laser induced shock waves: Structural and functional cell damage in vitro. Ultrasound Med Biol 19, No 2, 137ff.Google Scholar
  48. Drach GW: Report of the united states cooperative study of ESWL. J Urol., 135, 1127, 1986.PubMedGoogle Scholar
  49. Ekkernkamp A, Haupt G et al.: Der Einfluß der extracorporalen Stoßwellen auf die Standardisierte Tibiafraktur am Schaf. in: Ittel, Siebert, Matthiaß: Aktuelle Aspekte der Osteologie. Springer Verlag 1992, 307ff.Google Scholar
  50. Ellman H: Arthroscopic Subacromial Decompression: Analysis of one to three year results. Arthroscopy: 3(3): 173–181.Google Scholar
  51. Endl E, Steinbach P et al.: Flow cytometric analysis of cell suspensions exposed to shock waves in the presence of the radical sensitive dye hydroethidine. Ultrasound Med. Biol. 21:569–577, 1995PubMedGoogle Scholar
  52. Endl E, Steinbach P et al.: Cell type specific response to shock waves of suspended or pelleted cells as analysed by flow cytometry or electricl cell volume determination. Ultrasound Med. Biol. 22 (4):515, 1996PubMedGoogle Scholar
  53. Endl E, Steinbach P et al.: Cell type specific response to shock waves of suspended or pelleted cells as analysed by flow cytometry or electricl cell volume determination. Ultrasound Med. Biol. 22 (4):525, 1996Google Scholar
  54. Engel WJ: Hypertension due to renal compression resulting from subcapsular hematoma. J Urol, 73: 735, 1955.PubMedGoogle Scholar
  55. Esch, J, Ozerkis L et al.: Arthroscopic subacromial decompression: Results according to dgree of rotator cuff tear. Arthroscopy 4 (4): 241–49.Google Scholar
  56. Filipczynski L, Piechocki M: An attempt to reconstruct the lithotripter shock wave pulse in kidney: Possible temperature effects? Ultrasound Med Biol 18, Nos 6/7, 569ff.Google Scholar
  57. Filipczynski L, Piechocki M: Estimation of the temperature increase in the focus of a lithotripter for the case of high rate administration. Ultrasound Med Biol 16, No 2, 149ff.Google Scholar
  58. Finlayson B: A favourable commenton the practice of outpatient ESWL. Endourol Newsletter 1 (2): 1, 1986.Google Scholar
  59. Finney R, Halliwell M: Measurement of lithotripsy pulses through biological media. Phys Med Biol, 1991 36, No 11, 1485ff.PubMedGoogle Scholar
  60. Folberth W, Köhler G et al.: Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources. J Stone Dise 4, No1,1992, 1ff.Google Scholar
  61. Forriol F: The effect of shock waves on mature and healing cortical bone. Int Orthop (SICOT), 1994, 18: 325–29.Google Scholar
  62. Gächter A, Seelig W: Arthroscopy of the shoulder. Arthroscopy 8 (1): 89–97.Google Scholar
  63. Gamarra, F.; Speisberg, F.: Complete local tumor remission after therapy with extra corporally applied high energy shock waves. Int. J Cancer: 55, 153 –56, (1993).PubMedGoogle Scholar
  64. Gambhiler S, Delius M: In vitro interaction of lithotripter shock waves and cytotoxic drugs. Br J Cancer, 1992, 66, 69ff.Google Scholar
  65. Gambhiler S, Delius M: Influence of dissolved and free gases on iodine releasend cell killing by shock waves in vitro. Ultrasound Med Biol 18, Nos 6/7, 617ff.Google Scholar
  66. Gambihler S, Delius M: Biological effects of shock waves: cell disruption, viability, and proliferation of L1210 cells exposed to shock waves in vitro. Ultrasound Med Biol 16, No 6, 587ff.Google Scholar
  67. Gärtner J: Tendinosis calcarea — Behandlungsergebnisse mit dem Needling. Z. Orthop 131 (1993) 461ff.PubMedGoogle Scholar
  68. Godolias G, Pfeiffer I: Endoskopisch kontrollierte Erweiterung des subakromialen Raumes beim Impingementsyndrom. Orthp. Praxis 2/94; 84ff.Google Scholar
  69. Graff J, Richter KD: Wirkung von hochenergetischen Stoßwellen auf Knochengewebe. Abstract, Urol Res 16, 1988, 252ff.Google Scholar
  70. Graff Jürgen: Die Wirkung hochenergetischer Stoßwellen auf Knochen- und Weichteilgewebe. Habilitationsschrift Bochum 1989.Google Scholar
  71. Gray J: Effects of strech on single myelinated nerve fibers. Journal of physiology, Band 124, 1954, 84ff.PubMedGoogle Scholar
  72. Haist J, Reichel W et al: Die extrakorporale Stoßwellenbehandlung der gestörten Frakturheilung — eine Alternative zu operativen Verfahren? Orthop Praxis, 12/93, 842ff.Google Scholar
  73. Haist J, Reichel W et al.: Einsatz der extrakorporalen Stoßwelle bei der osteosynthetisch versorgten Pseudarthrose — eine experimentelle Studie. Orthop Praxis, 5/93, 345ff.Google Scholar
  74. Haist J, Steeger D: Die ESWT der Epikondylopathia radialis et ulnaris. Ein neues Behandlungskonzept knochennaher Weichteilschmerzen. Orthop Mitteilungen 3/1994, 173ff.Google Scholar
  75. Harmon PH: Methods and results in the treatment of 2580 painful shoulders. (special referrence to T. C.) Am J Surg 95, April 1958.Google Scholar
  76. Haucke S, Scholz J: Epikondylitis humeri radialis — ätiopathogenetische Faktoren und operative Behandlungsergebnisse. Orthop Praxis, 12/94, 776ff.Google Scholar
  77. Haupt G, Haupt A et al.: Influence of shock waves on fracture healing. Endourology, June 1992 XXXIX, No. 6, 529ff.Google Scholar
  78. Haupt G, Chvapil M: Effect of shock waves on the healing of partial thickness wounds in piglets. J Surg Res 49, (1990) 45ff.PubMedGoogle Scholar
  79. Haupt G, Haupt A et al.: Influence of shock waves on fracture healing. Urology, june 1992 34, No 6, 529ff.Google Scholar
  80. Haupt G, Haupt A et al.: Wound and fracture healing: New indication for extracorporal shock waves? Abstract.Google Scholar
  81. Haupt G, Senge T: Extracorporal shock waves outside Urology-new concepts. Poster Session 38, 869.Google Scholar
  82. Hedtmann A, Fett H: Die sogenannte Periarthropathia humeroskapularis. Orthop 127 (1989) 643ff.Google Scholar
  83. Hesselschwerdt H-J, Siebel T, Heisel J: Behandlungsergebnisse nach Rezidiveingriffen bei Epikondylitis Humeri. Orthop Praxis 12/92 851ff.Google Scholar
  84. Hynynen K: The threshold for thermally significant cavitation in dog’s thigh muscle In vivo. Ultrasound in Med & Biol 17, No 2, 157ff.Google Scholar
  85. Janda J, Koudela K: Skelettmuskelbeteiligung bei der Enthesopathie des Epikondylus lateralis humeri. Orthop, (1988), 105–107.Google Scholar
  86. Jansson V, Breitner S: Verlaufsbeobachtung einer aseptischen Spätlockerung eines PCA Hüftendoprothesenschaftes. Z.Orthop 131 (1993) 135ff.PubMedGoogle Scholar
  87. Jocham D, Liedl B: Langzeiterfahrungen nach ESWL von Harnsteinpatienten. Urologe A, 1989, 28: 134ff.PubMedGoogle Scholar
  88. Johannes E, Dinesh E et al.: High energy shock waves for the treatment of non-unions: an experiment on dogs. J Surg Res 57, (1994) 246ff..PubMedGoogle Scholar
  89. Julian F, Goldman D: The effects of mechanical stimulation on some electrical properties of axons. J General Physiol 46, 1962, 297ff. \Google Scholar
  90. Karpman R, Magee F: The lithotryptor and ist potential use in the revision of total hip arthroplasty. Orthop Rev 16, 1987, 38/81.Google Scholar
  91. Kater W, Meyer WW, Wehrmann T et al.: Efficiacy, risks and limits of extracorporal shock wave lithtrypsie for salivary gland stones. Journal of endourology 8, No 1, 1994, 21ff. \PubMedGoogle Scholar
  92. Kenwright J, Richardson J: Effect of controlled axial micromovement on healing of tibial fractures. The Lancet: November, 22, 1986, 1185ff.Google Scholar
  93. Kim JK: Effect of shock wave treatment on femoral prothesis and cement removal. Biomed Mater Eng 4 (6), 1994, 451ff.PubMedGoogle Scholar
  94. Klein W, Gassen A, Laufenberg P: Endoskopische subakromiale Dekompression und Tendinitis calcarea. Arthroskopie (1992) 5: 247–51.Google Scholar
  95. Klug W, Franke W: Tierexperimentelle szintigrafische Verlaufsbeobachtungen der sekundären Knochenbruchheilung ohne und mit Ultraschallstimulation. Z Exp Chir Transplant Künstl Organe 19, 1986 Heft 3, 185ff.Google Scholar
  96. Köster D, Schwesinger G: Operative Behandlungsergebnisse und histologische Befunde bei der Epikondylopathia humeri radialis. Orthop Praxis, 12/92, 849ff.Google Scholar
  97. Kroovand R, Harrison L: Extracorporal shock wave lithotrypsie in childhood. J Urol 138, October, 1987, 1106ff.PubMedGoogle Scholar
  98. Kuhr M, Arnold H: Langzeitergebnisse der Diszision nach G. Hohmann und ihre Wertigkeit für die Ätiopathogenese der Epikondylopathie des Ellbogens. Orthop Praxis, 12/92, 837ff.Google Scholar
  99. Lewis G: Effect of lithotripter treatment on the fracture toughness of acrylic bone cement. Biomaterials 1992 13 No 4 225ff.PubMedGoogle Scholar
  100. Liedl B, Jocham D: Prävalenz und Inzidenz der arteriellen Hypertonie bei ESWL behandelten Patienten. Urologe A, 1989, 28, 130ffPubMedGoogle Scholar
  101. Lingeman JE, Mcateer JE et al.: Bioeffects of extracorporal shock wave lithotrypsie. Urol Clin North Am 15, No 3, August 1988, 507ff.PubMedGoogle Scholar
  102. Loew M, Jurgowski W: Erste Erfahrungen mit der Extrakorporalen Stoßwellenlithotrypsie in der Behandlung der Tendinosis calcarea der Schulter. Z. Orthop, 131, (1993) 470–473.PubMedGoogle Scholar
  103. Loew M, Jurgowski W, Thomsen M: Die Wirkung extracorporaler Stoßwellen auf die Tendinosis calcarea der Schulter. Urologe(A) (1995) 34: 49–53.Google Scholar
  104. Mach J, Vick St: Zur Überlebenszeit von gelockerten zementierten Hüftgelenksendoprothe-sen. Z Orthop 131 (1993) 130ff.PubMedGoogle Scholar
  105. May T, Krause W: Use of high energx shock waves for bone cement removal. J Arthroplasty 5, No 1, March 1990, 19ff.PubMedGoogle Scholar
  106. Mendoza E, Beer M et al: ESWL during pregnancy? Abstract.Google Scholar
  107. Mohr W: Kalzifizierende Tendopathie. Tagung der DGOT 12.- 15. 10. 1994, Wiesbaden.Google Scholar
  108. Morgan T, Laudone V: Free radical Production by high energy shock waves — comparison with ionizing irradiation. J Urology, 139, January, 186ff.Google Scholar
  109. Müller M: Dornier Lithotripter im Vergleich; Vermessung der Stoßwellenfelder und Frag-mentationswirkung. Biomed Tech 35 (1990), 250ff.Google Scholar
  110. Neer C.: Anterior Acromioplasty for the chronic Impingement — Syndrome in the shoulder. J Bone Joint Surg 54 A, No. 1, January 1972, 41ff.Google Scholar
  111. Newman D, Coury T: Extracorporal shock wave lithotrypsie experience in children. J Urology 136, July, 238ff.Google Scholar
  112. Newman RC: ESWL Effect on canine spinal cord. Urology, Jan 1987 24, No 1, 116ff.Google Scholar
  113. Nijman R, Ackaert K: Long term results of extracorporal shock wave lithotrypsie in children. J Urology 142, August 1989, 609ff.Google Scholar
  114. Nirschl R, Pettrone F: Tennis elbow. J Bone Joint Surg 61 A, No. 6, September 1979, 832ff.Google Scholar
  115. Ohmori K, Matsuda T: Effects of shock waves on mouse fetuses. Abstract.Google Scholar
  116. Okutsu I, Ninomiya S: Coracoacromial ligament release for shoulder impingement syndrome using the universal subcutaneous endoscope system. Arthroscopy 8 (1): 2–9.Google Scholar
  117. Oosterhof G, Cornel, E: The influence of high energy shock waves on the development of metastases. Ultrasound Med Biol 22, No 3, pp 339–44, 1996.PubMedGoogle Scholar
  118. Pfister J, Gerber H: Behandlung der Periarthropathia humero — scapularis calcarea mittels Schulterkalkspülung: Retrospektive Fragebogenanalyse. Z. Orthop 132 (1994) 300ff.PubMedGoogle Scholar
  119. Rathbun James, Macnab Ian: The mikrovascular pattern of the rotator cuff. J Bone Joint Surg 52 B No. 3, August 1970.Google Scholar
  120. Rassweiler J, Kohrmann KU et al.: Experimental basis of shock wave induced renal trauma in the model of the canine kidney. World-J-Urol. 1993: 11(1):43–53PubMedGoogle Scholar
  121. Reichelt A: Konservative versus operative Therapie der Tendinosis calcarea. Tagung der DGOT 12.–15. 10. 1994, Wiesbaden.Google Scholar
  122. Richard K, Ryu R: Arthroscopic subacromial decompression: A clinical review. Arthroscopy: 8 (2): 141–47.Google Scholar
  123. Richter D, Ekkernkamp A, Muhr G: Die extrakorporale Stoßwellentherapie — ein alternatives Behandlungskonzept zur Behandlung der Epikondylopathia humeri radialis? Orthopäde (1995) 24: 303–306.PubMedGoogle Scholar
  124. Riedlinger R, Ueberle F: Die Zertrümmerung von Nierensteinen durch piezoelektrisch erzeugte Hochenergie-schallpulse. Urologe A, 1986, 25, 188ff.PubMedGoogle Scholar
  125. Ritzenhoff J, Knapp D: Die Langzeitergebnisse der Epikond. hum. uln. nach Behandlung analog der Hohmannschen Einkerbung bei der Epikond. hum. rad. Orthop 130 (1992) 399ff.Google Scholar
  126. Ritzenhoff J, Knapp D: Die Behandlungsergebnisse der Epikondylitis humeri ulnaris durch die Hohmannsche Einkerbung. Orthop Praxis 12/92 855ff.Google Scholar
  127. Roles N, Maudsley R: Radial Tunnel Syndrome. J Bone Joint Surg 54 B, No. 3, August 1972, 499ff.Google Scholar
  128. Rompe JD, Rumler F, Hopf C et al.: Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop Rel Res. 321, dec 1995 196ff.Google Scholar
  129. Rompe JD, Hopf C, Nafe B, Bürger R: Low energy extracorporal shock wave therapy for painful heel: a prospective controlled single blind study. Arch Orthop Trauma Surg (1996) 115 75–79.PubMedGoogle Scholar
  130. Rompe JD, Hopf C, Küllmer K et al.: Low energy extracorporal shock wave therapy for persistent tennis elbow. Int ortop (SICOT) (1996) 20: 23–27.Google Scholar
  131. Rompe JD, Hopf C, Küllmer K et al.: Analgesic effect of extracorporal shock wave therapy on chronic tennis elbow. J Bone Joint Surg 78 B No 2, March 1996, 233ff.Google Scholar
  132. Rompe JD, Hopf C, Küllmer K et al.: Extracorporale Stoßwellentherapie der Epikondylopathia humeri radialis — ein alternatives Behandlungskonzept. Z Orthop 134 (1996) 63ff.PubMedGoogle Scholar
  133. Rompe JD: Stoßwellentherapie: Therapeutische Wirkung bei spekulativem Mechanismus. Z Orthop 134, 1996 Heft 4.Google Scholar
  134. Rompe JD, Hopf C, Rumler F: 2 Jahre extrakorporale Stoßwellentherapie in der Orthopädie-Indikationen und Resultate? Orthop Mitteilungen 3/1994 173ff.Google Scholar
  135. Rüdiger K, Wetterauer U et al.: Histomorphological changes of rat testicle After exposure to high energy shock wave therapy. Abstract.Google Scholar
  136. Rudolph M, Hochheim B: Unsere Erfahrung mit der operativen Behandlung der Epikondylitis humeri radialis. Orthp. Praxis, 12/92, 844ff.Google Scholar
  137. Russo P, Stephenson A: High energy shock waves suppress tumor growth In vivo and in vitro. J Urol 135 March, 1986, 626ff.PubMedGoogle Scholar
  138. Sass W, Bräunlich M: The mechanism of stone desintegration by shock waves. Ultrasound Med Biol 17, No 3, 239ff.Google Scholar
  139. Schelling G, Delius M: Pain during shock wave lithtrypsieis not a direct shock wave effect but results from cavitationmediated stimulation of nerve fibres. Anesthesiology 79, No 3a, Sep 1993, A824ff.Google Scholar
  140. Schelling G, Delius M, Gschwender M et al.: Extracorporal shock waves stimulate sciatic frog nerves indirectly via a cavitation mediated mechanism. Biophys J 66, Jan 1994, 133ff.PubMedGoogle Scholar
  141. Schelling G, Mendl G: Patient controlled analgesia for extracorporal shock wave lithotripsy of galstones. Pain, 48, 1992, 355ff.PubMedGoogle Scholar
  142. Schleberger R, Senge T: Non invasive treatment of long bone pseudarthrosis by shock waves. Arch Orthop Trauma Surg (1992), 111, 224–227.PubMedGoogle Scholar
  143. Seemann O, Rassweiler J: Effect of low dose shock wave energy on fracture healing: An experimental study. J Endourol.6, No. 3, 1992, 219ff.Google Scholar
  144. Seidl M, Steinbach P et al.: Induction of stress fibers and intercellular gaps in human vascular endothelium by shock waves. Ultrasonics 1994 32, No 5, 397ff.PubMedGoogle Scholar
  145. Seidl M, Steinbach P: Shock wave induced endothelial damage — in situ analysis by confocal laser scanning microscopy. Ultrasound Med Biol 20, No 6, 1994, 571ff.PubMedGoogle Scholar
  146. Seitz R, Seidl M, Steinbach P et al.: The effects of high energy shock waves on cell membranes and mitochondria. Ultrasonics International 93 conference proceedings, 643ff.Google Scholar
  147. Smits G, Jap P: Biological effects of high energy shock waves in mouse skeletal muscle: Correlation between P Magnetic resonance Spectroscopic and microscopic alterations. Ultrasound Med Biol 19, No 5, 399ff.Google Scholar
  148. Steinbach P, Hofstaedter F: Determination of energy dependent extent of vascular damage caused by high energy shock waves in an umbilical cord model. Urol Res 1993, 21, 279ff.PubMedGoogle Scholar
  149. Steinbach P, Hofstaedter F: In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med Biol 18, No 8, 691ff.Google Scholar
  150. Stranne S, Callaghan J: The effect of extracorporal shock wave lithotrypsieon the prothesis interface in cementless arthroplasty. J Arthroplasty, Band 7, 1992, 173ff.PubMedGoogle Scholar
  151. Stranne S, Callaghan J: Would revision arthroplasty be facilitated by extracorporal shock wave lithotripsy? An evaluation including whole bone strength in dogs. Clin Orthop Related Res 287 1993 Feb, 252ff.Google Scholar
  152. Strauss JM, Rüther W: Tendinosis calcarea — Differentialdiagnose und operative Therapie. 80. Tagung der DGOT 12.–15. 10. 1994, Wiesbaden.Google Scholar
  153. Sucul Kaulesa,; Johannes EJ: Extracorporal shock waves for treatment of Non unions. Hefte zu Der Unfallchirurg Heft 232, 392ff.Google Scholar
  154. Suhr D, Brümmer F: Cavitation generated free radicals during shock wave exposure: Investigations with cell free solutions and suspended cells. Ultrasound Med Biol 17, No 8, 761ff.Google Scholar
  155. Sukul K, Johannes E: The Effect of high energy shock waves focussed on cortical bone: An in vitro study. J Surg Res 54, (1993), 46ff.Google Scholar
  156. Thurner J: Deformierende Insertionstendopathie. In: Doerr: Spezielle pathologische Anatomie, Bd 18/1, 600ff.Google Scholar
  157. Vachalnov V, Michailov et al.: Extrakorporal exposure with shock waveson bone tissue as a Factor for local osteogenesis. Abstract.Google Scholar
  158. Vachalnov V, Michailov P: High energy shock waves in treatment of delayed and nonunion of fractures. Int Orthop (SICOT) 1991, 15: 181–184.Google Scholar
  159. Vahlensieck W, Kürz H: Side effects of extracorporal piezoelectric shock wave lithotrypsie. Urol Res, 1990, 18: 53ff.PubMedGoogle Scholar
  160. Vakil M, Everbach E: Transient acoustic cavitation in gallstone fragmentation: A study of galstones fragmented In vivo. Ultrasound Med Biol, 19, No 4, 331ff.Google Scholar
  161. Van Arsdalen K, Kurzweil S: Effect of Lithotripsy on immature rabbit bone and kidney development. J Urol 146, July 1991, 213ff.PubMedGoogle Scholar
  162. Van Holsbeek E, DeRycke J: Subacromial Impingement: Open versus arthroscopic decompression. Arthroscopy: 8 (2): 173–78.Google Scholar
  163. Van Rossum J, Buruma O: Tennis elbow — A radial tunnel syndrome. J Bone Joint Surg 60 B, No. 2, May 1978, 197ff.Google Scholar
  164. Von Hasselbach C: ESW Therapie am Bewegungsapparat. Pro Med News 1/96.Google Scholar
  165. Wanivenhaus A: Differentialdiagnose der Epicondylitis humeri radialis. Z. Orthop, 124 (1986) 775–79.PubMedGoogle Scholar
  166. Wehner H, Sellier K: Shockwave induced compound action potentials in the peripheral nerve. Z Rechtsmed, 1981, 86, 239ff.PubMedGoogle Scholar
  167. Weinstein J, Oster D et al.: The effect of the extracorporal schock wave lithotripter on the bone-cement interface in dogs. Clin Orthop Related Res (Philadelphia) 1988, No 235, oct. 1988 261ffGoogle Scholar
  168. Weirauch C, Skorpik G: Epikondylopathia humeri radialis — Eine Vergleichsstudie der einfachen Operation nach Hohmann mit der erweiterten Operation nach Hohmann.. Orthop Praxis, 12/92, 846ff.Google Scholar
  169. Weiss N, Delius M: Effect of shock waves and cisplatin on cisplatin sensitive and -resistant rodent tumors In vivo. Int J Cancer; 58, 693–99, 1994.PubMedGoogle Scholar
  170. Weiss N, Delius M: Influence of the shock wave application mode on the growth of A-mel 3 and SSK2 tumors In vivo. Ultrasound Med Biol, 16, No 6, 595–605, 1990.PubMedGoogle Scholar
  171. Werhan C: Biophysikalische Grundlagen der Anwendung elektromagnetischer Felder zur Beeinflussung der Osteogenese. Z Orthop, 129, 1991, 118ff.Google Scholar
  172. Williams C, Kaude J: Extracorporal shock wave lithotrypsie: Long term complications. Am J Radiol 150, Feb 1988, 311ff.Google Scholar
  173. Wolf T, Breitenfelder J: Erste Erfahrungen mit der ESWT bei Schmerzzuständen des Bewegungsapparates mit umschriebener Lokalisation. Orthop Praxis 32, 7 (1996) 480–83.Google Scholar
  174. Yang C, Heston W et al.: The effect of high energy shock waves on human bone marrow. Urol Res (1988) 16: 427–429.PubMedGoogle Scholar
  175. Yeaman LD: Effects of shock waves on the structure and growth of the immature rat epiphysis. J Urology 141, March 1989, 670ff.Google Scholar
  176. Zakharov S, Bogdanov K: The effect of acoustic cavitation on the contraction force and membrane potential of rat papillary muscle. Ultrasound Med Biol 15, No 6, 561ff.Google Scholar
  177. Zeman R, Davros W: Cavitation effects during lithotrypsie, Part 1 and 2. Radiology, October 1990, 157ff.Google Scholar
  178. Ziegler M, Kopper B: Die Zertrümmerung von Nierensteinen mit einem piezoelektrischen Gerätesystem. Urologe A, 1986, 25: 193ff.PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • M. Buch

There are no affiliations available

Personalised recommendations