Skip to main content

Review

  • Chapter

Abstract

In this chapter, currently known effects and side effects are presented. We first present a lecture held by Dr. Pia Steinbach at the First Shock Wave Symposium in Kassel in April 1996. It especially features the results she achieved with regard to a dosis-effect relationship at the endothelium of the blood vessels, as well as the influence of shock waves on the membrane potential of the neuron.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aglietti P, Buzzi R et al.: Il gomito del tennisata, aspetti clinici ed anatomici. Int J Sports Traumatol 113ff

    Google Scholar 

  • Arcq M, Pfeiffer L, Die operative Behandlung der Epikondylopathie durch Fascia — lata —Plastik. Orthop Praxis, 12/92, 841ff

    Google Scholar 

  • Ark JW, Flock TJ et al.: Arthroscopic treatment of calcific tendinitis of the shoulder. Arthroscopy 8 (2):183–188

    Google Scholar 

  • Assimos DG et al.: Urinary enzyme levels after extracorporal shock wave lithotripsy (abstract). J Urol 137:45 A, 1987

    Google Scholar 

  • Barrios R, Solchaga L et al.: Effect of high energy shock waves on bone: An experimental study on sheep. J Bone Joint Surg (Br), 1993; 75 — B; SUPP II

    Google Scholar 

  • Biedert R, Kentsch A: Arthroskopische Revision des subakromialen Raumes bei Impingement — Syndrom.Unfallchirurg (1989) 92: 500–504

    PubMed  CAS  Google Scholar 

  • Bomanji J et al: Radionuclid evaluation pre and post extracorporal shock wave lithtoripsy for renal caliculi. J Nucl Med; 28, 1284, 1987

    PubMed  CAS  Google Scholar 

  • Bosworth D.: Surgical treatment of tennis elbow. J Bone Joint Surg 47 A, No. 8, December 1965

    Google Scholar 

  • Boyd H.: Tennis elbow. J Bone Joint Surg 55 A, No. 6, September 1973, 1183ff

    Google Scholar 

  • Braun, W, Claes L, Rüter A: Untersuchungen zur Wirksamkeit von Stoßwellen auf die Festigkeit des Verbundes von Knochen und Polymethyl-Metacrylat. Orthop 130 (1992) 236–43

    CAS  Google Scholar 

  • Brendel W: Effect of shock waves on canine kidney. In: Gravenstein JS (ed) Extracorporal shock wave lithotripsy for renal stone disease: Technical and clinical aspects, Stoneham, Butterworth, 1986, p 141

    Google Scholar 

  • Brümmer F, Suhr D: Standardisierte in vitro Modelle zur Charakterisierung von Stoßwellen. Biomed Tech 35, Ergänzungsband 1990, 237ff

    Google Scholar 

  • Brümmer F, Bräuner T, Hülser D: Biological effects of shock waves. World J Urol (1990) 8:224ff

    Google Scholar 

  • Buch M.: Unpublished summary of the results presented during the 1st Kasseler Shock Wave Symposium

    Google Scholar 

  • Bürger RA, Witzsch U et al: Extracorporal shock wave therapy of pseudo — arthrosis and aseptic osteonecrosis. Abstract

    Google Scholar 

  • Caspari R, Raymond R: A technique for arthroscopic subacromial decompression. Arthroscopy 8 (1): 23–30

    Google Scholar 

  • Cass AS: Colon injury with ESWL for an upper ureteral calculus. In: Newman DM (ed) Shock wave lithotripsy. New York, Plenum, 1988

    Google Scholar 

  • Chaussy C, Eisenberger F, Jocham D, Wilbert D: Die Stoßwelle Attempto Verlag 1995

    Google Scholar 

  • Chaussy C, Eisenberger F, Jocham D, Wilbert D: Stoßwellenlithotripsie. Attempto Verlag 1993

    Google Scholar 

  • Chaussy C: ESWL for kidney stones: an alternative to surgery? Urol Radiol 6:80, 1984

    PubMed  CAS  Google Scholar 

  • Chaussy C: ESWL in treatment of urolithiasis. Urology 23 (Suppl), 59, 1984

    PubMed  CAS  Google Scholar 

  • Chaussy C: Extracorporal shock wave lithotripsy: Technical concept, Experimental research and clinical application. Basel S Karger, 1986

    Google Scholar 

  • Chaussy C: The in vitro and In vivo effects of extracorporal shock waves on malignant cells. Urol Res 1988, 16, 419ff

    PubMed  Google Scholar 

  • Chaussy C, Fuchs G: Eswl: Die Evolution einer Revolution. Urologe A, 1989, 28, 126ff

    PubMed  CAS  Google Scholar 

  • Cloward RB: Cervical dicography. Ann Surg, Dec 1959 150 No 6 1052ff.

    PubMed  CAS  Google Scholar 

  • Coenen W: Über ein diagnostisches Zeichen bei der sogenannten Epikondylitis humeri radialis. Orthop, 124, (1986) 323–26.

    CAS  Google Scholar 

  • Coleman A, Choi M: Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter. Ultrasound Med Biol 18, No 3, 267ff.

    Google Scholar 

  • Coleman A, Saunders J: Acoustic cavitation generated by an extracorporal shock wave lithotripter. Ultrasound Med Biol 13, No 2, 69ff.

    Google Scholar 

  • Constant CR.: A clinical method of functional assessment of the shoulder. Clin Orthop, No. 214, January 1987, 160ff.

    PubMed  Google Scholar 

  • Coonrad R, Hooper R: Tennis elbow: Its course, natural history, conservative and surgical management. J Bone Joint Surg 55 A, No. 6, September 1973, 1177ff.

    Google Scholar 

  • Dahmen GP, Meiss L et. al.: Extrakorporale Stoßwellentherapie (ESWT) im knochennahen Weichteilbereich an der Schulter. Extr Orthop 15, Heft 11, 25ff.

    Google Scholar 

  • Deam RK: Neurological damage resulting from extracorporal shock wave lithotripsy when air is used to locate the epidural space. Anaesthaesia Intensive Care 21 (4), 1993 Aug, 455ff.

    CAS  Google Scholar 

  • Debeyre J, Patte D, Elmelik E: Repair of ruptures of the rotator cuff of the shoulder. J Bone Joint Surg 47 B, No 1; February 1965.

    Google Scholar 

  • Delius M et al: Biological effects of shock waves: kidney damage by shock waves in dogs -dose dependence. Ultrasound Med Biol 14:177–22, 1988.

    Google Scholar 

  • Delius M: Biologische Wirkung von Stoßwellen — mehr als “nur” Steinzertrümmerung? Zentralbl Chir 120, (1995) 259–73.

    PubMed  CAS  Google Scholar 

  • Delius M, Hofschneider P: Extracorporal shock waves for gene therapy? Lancet 345, No 8961, pp 1377.

    Google Scholar 

  • Delius M, Weiss N: Tumor therapy with shock waves requires modified Lithotripter shock waves. Naturwissenschaften 76; 573–74; (1989).

    PubMed  CAS  Google Scholar 

  • Delius M, Denk R: Biological effects of shock waves: cavitation by shock waves in piglet liver. Ultrasound Med Biol 16, No 5, 467ff.

    Google Scholar 

  • Delius M, Enders G: Biological effects of shock waves. Lung hemorrage by shock waves in dogs- pressure dependence. Ultrasound Med Biol 13, No 2, 61ff.

    Google Scholar 

  • Delius M, Gambihler S: Sonographic imaging of extracorporal shock wave effects in the liver and galbladder of dogs. Digestion, 1992, 52, 55ff.

    PubMed  CAS  Google Scholar 

  • Delius M, Ueberle F: Destruction of galstones and model stones by extracorporal shock waves. Ultrasound Med Biol 20, No 3, 251ff.

    Google Scholar 

  • Delius M, Draenert K: Biological effects of shock waves: In vivo effect of high energy pulses on rabbit bone. Ultrasound Med Biol. 21; No 9, 1219ff.

    Google Scholar 

  • Delius M, Hoffmann E: Biological effects of shock waves: Induction of arrythmia in piglet hearts. Ultrasound Med Biol 20, No 3, 1994, 279ff.

    PubMed  CAS  Google Scholar 

  • Dellian M, Walenta S: High energy shock waves enhance hyperthermic response of tumors. J Nat Cancer Inst 86, No 4, Feb. 16, 1996.

    Google Scholar 

  • Di Silverio F, Gallucci M: Blood cellular and biochemical changes After extracorporal shock wave lithotrypsie. Urol Res, 1990, 18, 49ff.

    PubMed  Google Scholar 

  • Doerr: Krankheiten der Sehnen — Knochen — Insertion. in: Doerr: Spezielle Pathologische Anatomie, Band 19, 203ff.

    Google Scholar 

  • Doukas A, McAuliffe D: Biological effects of laser induced shock waves: Structural and functional cell damage in vitro. Ultrasound Med Biol 19, No 2, 137ff.

    Google Scholar 

  • Drach GW: Report of the united states cooperative study of ESWL. J Urol., 135, 1127, 1986.

    PubMed  CAS  Google Scholar 

  • Ekkernkamp A, Haupt G et al.: Der Einfluß der extracorporalen Stoßwellen auf die Standardisierte Tibiafraktur am Schaf. in: Ittel, Siebert, Matthiaß: Aktuelle Aspekte der Osteologie. Springer Verlag 1992, 307ff.

    Google Scholar 

  • Ellman H: Arthroscopic Subacromial Decompression: Analysis of one to three year results. Arthroscopy: 3(3): 173–181.

    Google Scholar 

  • Endl E, Steinbach P et al.: Flow cytometric analysis of cell suspensions exposed to shock waves in the presence of the radical sensitive dye hydroethidine. Ultrasound Med. Biol. 21:569–577, 1995

    PubMed  CAS  Google Scholar 

  • Endl E, Steinbach P et al.: Cell type specific response to shock waves of suspended or pelleted cells as analysed by flow cytometry or electricl cell volume determination. Ultrasound Med. Biol. 22 (4):515, 1996

    PubMed  CAS  Google Scholar 

  • Endl E, Steinbach P et al.: Cell type specific response to shock waves of suspended or pelleted cells as analysed by flow cytometry or electricl cell volume determination. Ultrasound Med. Biol. 22 (4):525, 1996

    Google Scholar 

  • Engel WJ: Hypertension due to renal compression resulting from subcapsular hematoma. J Urol, 73: 735, 1955.

    PubMed  CAS  Google Scholar 

  • Esch, J, Ozerkis L et al.: Arthroscopic subacromial decompression: Results according to dgree of rotator cuff tear. Arthroscopy 4 (4): 241–49.

    Google Scholar 

  • Filipczynski L, Piechocki M: An attempt to reconstruct the lithotripter shock wave pulse in kidney: Possible temperature effects? Ultrasound Med Biol 18, Nos 6/7, 569ff.

    Google Scholar 

  • Filipczynski L, Piechocki M: Estimation of the temperature increase in the focus of a lithotripter for the case of high rate administration. Ultrasound Med Biol 16, No 2, 149ff.

    Google Scholar 

  • Finlayson B: A favourable commenton the practice of outpatient ESWL. Endourol Newsletter 1 (2): 1, 1986.

    Google Scholar 

  • Finney R, Halliwell M: Measurement of lithotripsy pulses through biological media. Phys Med Biol, 1991 36, No 11, 1485ff.

    PubMed  CAS  Google Scholar 

  • Folberth W, Köhler G et al.: Pressure distribution and energy flow in the focal region of two different electromagnetic shock wave sources. J Stone Dise 4, No1,1992, 1ff.

    CAS  Google Scholar 

  • Forriol F: The effect of shock waves on mature and healing cortical bone. Int Orthop (SICOT), 1994, 18: 325–29.

    CAS  Google Scholar 

  • Gächter A, Seelig W: Arthroscopy of the shoulder. Arthroscopy 8 (1): 89–97.

    Google Scholar 

  • Gamarra, F.; Speisberg, F.: Complete local tumor remission after therapy with extra corporally applied high energy shock waves. Int. J Cancer: 55, 153 –56, (1993).

    PubMed  CAS  Google Scholar 

  • Gambhiler S, Delius M: In vitro interaction of lithotripter shock waves and cytotoxic drugs. Br J Cancer, 1992, 66, 69ff.

    Google Scholar 

  • Gambhiler S, Delius M: Influence of dissolved and free gases on iodine releasend cell killing by shock waves in vitro. Ultrasound Med Biol 18, Nos 6/7, 617ff.

    Google Scholar 

  • Gambihler S, Delius M: Biological effects of shock waves: cell disruption, viability, and proliferation of L1210 cells exposed to shock waves in vitro. Ultrasound Med Biol 16, No 6, 587ff.

    Google Scholar 

  • Gärtner J: Tendinosis calcarea — Behandlungsergebnisse mit dem Needling. Z. Orthop 131 (1993) 461ff.

    PubMed  Google Scholar 

  • Godolias G, Pfeiffer I: Endoskopisch kontrollierte Erweiterung des subakromialen Raumes beim Impingementsyndrom. Orthp. Praxis 2/94; 84ff.

    Google Scholar 

  • Graff J, Richter KD: Wirkung von hochenergetischen Stoßwellen auf Knochengewebe. Abstract, Urol Res 16, 1988, 252ff.

    Google Scholar 

  • Graff Jürgen: Die Wirkung hochenergetischer Stoßwellen auf Knochen- und Weichteilgewebe. Habilitationsschrift Bochum 1989.

    Google Scholar 

  • Gray J: Effects of strech on single myelinated nerve fibers. Journal of physiology, Band 124, 1954, 84ff.

    PubMed  CAS  Google Scholar 

  • Haist J, Reichel W et al: Die extrakorporale Stoßwellenbehandlung der gestörten Frakturheilung — eine Alternative zu operativen Verfahren? Orthop Praxis, 12/93, 842ff.

    Google Scholar 

  • Haist J, Reichel W et al.: Einsatz der extrakorporalen Stoßwelle bei der osteosynthetisch versorgten Pseudarthrose — eine experimentelle Studie. Orthop Praxis, 5/93, 345ff.

    Google Scholar 

  • Haist J, Steeger D: Die ESWT der Epikondylopathia radialis et ulnaris. Ein neues Behandlungskonzept knochennaher Weichteilschmerzen. Orthop Mitteilungen 3/1994, 173ff.

    Google Scholar 

  • Harmon PH: Methods and results in the treatment of 2580 painful shoulders. (special referrence to T. C.) Am J Surg 95, April 1958.

    Google Scholar 

  • Haucke S, Scholz J: Epikondylitis humeri radialis — ätiopathogenetische Faktoren und operative Behandlungsergebnisse. Orthop Praxis, 12/94, 776ff.

    Google Scholar 

  • Haupt G, Haupt A et al.: Influence of shock waves on fracture healing. Endourology, June 1992 XXXIX, No. 6, 529ff.

    Google Scholar 

  • Haupt G, Chvapil M: Effect of shock waves on the healing of partial thickness wounds in piglets. J Surg Res 49, (1990) 45ff.

    PubMed  CAS  Google Scholar 

  • Haupt G, Haupt A et al.: Influence of shock waves on fracture healing. Urology, june 1992 34, No 6, 529ff.

    Google Scholar 

  • Haupt G, Haupt A et al.: Wound and fracture healing: New indication for extracorporal shock waves? Abstract.

    Google Scholar 

  • Haupt G, Senge T: Extracorporal shock waves outside Urology-new concepts. Poster Session 38, 869.

    Google Scholar 

  • Hedtmann A, Fett H: Die sogenannte Periarthropathia humeroskapularis. Orthop 127 (1989) 643ff.

    CAS  Google Scholar 

  • Hesselschwerdt H-J, Siebel T, Heisel J: Behandlungsergebnisse nach Rezidiveingriffen bei Epikondylitis Humeri. Orthop Praxis 12/92 851ff.

    Google Scholar 

  • Hynynen K: The threshold for thermally significant cavitation in dog’s thigh muscle In vivo. Ultrasound in Med & Biol 17, No 2, 157ff.

    Google Scholar 

  • Janda J, Koudela K: Skelettmuskelbeteiligung bei der Enthesopathie des Epikondylus lateralis humeri. Orthop, (1988), 105–107.

    Google Scholar 

  • Jansson V, Breitner S: Verlaufsbeobachtung einer aseptischen Spätlockerung eines PCA Hüftendoprothesenschaftes. Z.Orthop 131 (1993) 135ff.

    PubMed  CAS  Google Scholar 

  • Jocham D, Liedl B: Langzeiterfahrungen nach ESWL von Harnsteinpatienten. Urologe A, 1989, 28: 134ff.

    PubMed  CAS  Google Scholar 

  • Johannes E, Dinesh E et al.: High energy shock waves for the treatment of non-unions: an experiment on dogs. J Surg Res 57, (1994) 246ff..

    PubMed  CAS  Google Scholar 

  • Julian F, Goldman D: The effects of mechanical stimulation on some electrical properties of axons. J General Physiol 46, 1962, 297ff. \

    CAS  Google Scholar 

  • Karpman R, Magee F: The lithotryptor and ist potential use in the revision of total hip arthroplasty. Orthop Rev 16, 1987, 38/81.

    Google Scholar 

  • Kater W, Meyer WW, Wehrmann T et al.: Efficiacy, risks and limits of extracorporal shock wave lithtrypsie for salivary gland stones. Journal of endourology 8, No 1, 1994, 21ff. \

    PubMed  CAS  Google Scholar 

  • Kenwright J, Richardson J: Effect of controlled axial micromovement on healing of tibial fractures. The Lancet: November, 22, 1986, 1185ff.

    Google Scholar 

  • Kim JK: Effect of shock wave treatment on femoral prothesis and cement removal. Biomed Mater Eng 4 (6), 1994, 451ff.

    PubMed  CAS  Google Scholar 

  • Klein W, Gassen A, Laufenberg P: Endoskopische subakromiale Dekompression und Tendinitis calcarea. Arthroskopie (1992) 5: 247–51.

    Google Scholar 

  • Klug W, Franke W: Tierexperimentelle szintigrafische Verlaufsbeobachtungen der sekundären Knochenbruchheilung ohne und mit Ultraschallstimulation. Z Exp Chir Transplant Künstl Organe 19, 1986 Heft 3, 185ff.

    CAS  Google Scholar 

  • Köster D, Schwesinger G: Operative Behandlungsergebnisse und histologische Befunde bei der Epikondylopathia humeri radialis. Orthop Praxis, 12/92, 849ff.

    Google Scholar 

  • Kroovand R, Harrison L: Extracorporal shock wave lithotrypsie in childhood. J Urol 138, October, 1987, 1106ff.

    PubMed  CAS  Google Scholar 

  • Kuhr M, Arnold H: Langzeitergebnisse der Diszision nach G. Hohmann und ihre Wertigkeit für die Ätiopathogenese der Epikondylopathie des Ellbogens. Orthop Praxis, 12/92, 837ff.

    Google Scholar 

  • Lewis G: Effect of lithotripter treatment on the fracture toughness of acrylic bone cement. Biomaterials 1992 13 No 4 225ff.

    PubMed  CAS  Google Scholar 

  • Liedl B, Jocham D: Prävalenz und Inzidenz der arteriellen Hypertonie bei ESWL behandelten Patienten. Urologe A, 1989, 28, 130ff

    PubMed  CAS  Google Scholar 

  • Lingeman JE, Mcateer JE et al.: Bioeffects of extracorporal shock wave lithotrypsie. Urol Clin North Am 15, No 3, August 1988, 507ff.

    PubMed  CAS  Google Scholar 

  • Loew M, Jurgowski W: Erste Erfahrungen mit der Extrakorporalen Stoßwellenlithotrypsie in der Behandlung der Tendinosis calcarea der Schulter. Z. Orthop, 131, (1993) 470–473.

    PubMed  CAS  Google Scholar 

  • Loew M, Jurgowski W, Thomsen M: Die Wirkung extracorporaler Stoßwellen auf die Tendinosis calcarea der Schulter. Urologe(A) (1995) 34: 49–53.

    CAS  Google Scholar 

  • Mach J, Vick St: Zur Überlebenszeit von gelockerten zementierten Hüftgelenksendoprothe-sen. Z Orthop 131 (1993) 130ff.

    PubMed  CAS  Google Scholar 

  • May T, Krause W: Use of high energx shock waves for bone cement removal. J Arthroplasty 5, No 1, March 1990, 19ff.

    PubMed  CAS  Google Scholar 

  • Mendoza E, Beer M et al: ESWL during pregnancy? Abstract.

    Google Scholar 

  • Mohr W: Kalzifizierende Tendopathie. Tagung der DGOT 12.- 15. 10. 1994, Wiesbaden.

    Google Scholar 

  • Morgan T, Laudone V: Free radical Production by high energy shock waves — comparison with ionizing irradiation. J Urology, 139, January, 186ff.

    Google Scholar 

  • Müller M: Dornier Lithotripter im Vergleich; Vermessung der Stoßwellenfelder und Frag-mentationswirkung. Biomed Tech 35 (1990), 250ff.

    Google Scholar 

  • Neer C.: Anterior Acromioplasty for the chronic Impingement — Syndrome in the shoulder. J Bone Joint Surg 54 A, No. 1, January 1972, 41ff.

    Google Scholar 

  • Newman D, Coury T: Extracorporal shock wave lithotrypsie experience in children. J Urology 136, July, 238ff.

    Google Scholar 

  • Newman RC: ESWL Effect on canine spinal cord. Urology, Jan 1987 24, No 1, 116ff.

    Google Scholar 

  • Nijman R, Ackaert K: Long term results of extracorporal shock wave lithotrypsie in children. J Urology 142, August 1989, 609ff.

    CAS  Google Scholar 

  • Nirschl R, Pettrone F: Tennis elbow. J Bone Joint Surg 61 A, No. 6, September 1979, 832ff.

    Google Scholar 

  • Ohmori K, Matsuda T: Effects of shock waves on mouse fetuses. Abstract.

    Google Scholar 

  • Okutsu I, Ninomiya S: Coracoacromial ligament release for shoulder impingement syndrome using the universal subcutaneous endoscope system. Arthroscopy 8 (1): 2–9.

    Google Scholar 

  • Oosterhof G, Cornel, E: The influence of high energy shock waves on the development of metastases. Ultrasound Med Biol 22, No 3, pp 339–44, 1996.

    PubMed  CAS  Google Scholar 

  • Pfister J, Gerber H: Behandlung der Periarthropathia humero — scapularis calcarea mittels Schulterkalkspülung: Retrospektive Fragebogenanalyse. Z. Orthop 132 (1994) 300ff.

    PubMed  CAS  Google Scholar 

  • Rathbun James, Macnab Ian: The mikrovascular pattern of the rotator cuff. J Bone Joint Surg 52 B No. 3, August 1970.

    Google Scholar 

  • Rassweiler J, Kohrmann KU et al.: Experimental basis of shock wave induced renal trauma in the model of the canine kidney. World-J-Urol. 1993: 11(1):43–53

    PubMed  CAS  Google Scholar 

  • Reichelt A: Konservative versus operative Therapie der Tendinosis calcarea. Tagung der DGOT 12.–15. 10. 1994, Wiesbaden.

    Google Scholar 

  • Richard K, Ryu R: Arthroscopic subacromial decompression: A clinical review. Arthroscopy: 8 (2): 141–47.

    Google Scholar 

  • Richter D, Ekkernkamp A, Muhr G: Die extrakorporale Stoßwellentherapie — ein alternatives Behandlungskonzept zur Behandlung der Epikondylopathia humeri radialis? Orthopäde (1995) 24: 303–306.

    PubMed  CAS  Google Scholar 

  • Riedlinger R, Ueberle F: Die Zertrümmerung von Nierensteinen durch piezoelektrisch erzeugte Hochenergie-schallpulse. Urologe A, 1986, 25, 188ff.

    PubMed  CAS  Google Scholar 

  • Ritzenhoff J, Knapp D: Die Langzeitergebnisse der Epikond. hum. uln. nach Behandlung analog der Hohmannschen Einkerbung bei der Epikond. hum. rad. Orthop 130 (1992) 399ff.

    CAS  Google Scholar 

  • Ritzenhoff J, Knapp D: Die Behandlungsergebnisse der Epikondylitis humeri ulnaris durch die Hohmannsche Einkerbung. Orthop Praxis 12/92 855ff.

    Google Scholar 

  • Roles N, Maudsley R: Radial Tunnel Syndrome. J Bone Joint Surg 54 B, No. 3, August 1972, 499ff.

    Google Scholar 

  • Rompe JD, Rumler F, Hopf C et al.: Extracorporal shock wave therapy for calcifying tendinitis of the shoulder. Clin Orthop Rel Res. 321, dec 1995 196ff.

    Google Scholar 

  • Rompe JD, Hopf C, Nafe B, Bürger R: Low energy extracorporal shock wave therapy for painful heel: a prospective controlled single blind study. Arch Orthop Trauma Surg (1996) 115 75–79.

    PubMed  CAS  Google Scholar 

  • Rompe JD, Hopf C, Küllmer K et al.: Low energy extracorporal shock wave therapy for persistent tennis elbow. Int ortop (SICOT) (1996) 20: 23–27.

    CAS  Google Scholar 

  • Rompe JD, Hopf C, Küllmer K et al.: Analgesic effect of extracorporal shock wave therapy on chronic tennis elbow. J Bone Joint Surg 78 B No 2, March 1996, 233ff.

    Google Scholar 

  • Rompe JD, Hopf C, Küllmer K et al.: Extracorporale Stoßwellentherapie der Epikondylopathia humeri radialis — ein alternatives Behandlungskonzept. Z Orthop 134 (1996) 63ff.

    PubMed  CAS  Google Scholar 

  • Rompe JD: Stoßwellentherapie: Therapeutische Wirkung bei spekulativem Mechanismus. Z Orthop 134, 1996 Heft 4.

    Google Scholar 

  • Rompe JD, Hopf C, Rumler F: 2 Jahre extrakorporale Stoßwellentherapie in der Orthopädie-Indikationen und Resultate? Orthop Mitteilungen 3/1994 173ff.

    Google Scholar 

  • Rüdiger K, Wetterauer U et al.: Histomorphological changes of rat testicle After exposure to high energy shock wave therapy. Abstract.

    Google Scholar 

  • Rudolph M, Hochheim B: Unsere Erfahrung mit der operativen Behandlung der Epikondylitis humeri radialis. Orthp. Praxis, 12/92, 844ff.

    Google Scholar 

  • Russo P, Stephenson A: High energy shock waves suppress tumor growth In vivo and in vitro. J Urol 135 March, 1986, 626ff.

    PubMed  CAS  Google Scholar 

  • Sass W, Bräunlich M: The mechanism of stone desintegration by shock waves. Ultrasound Med Biol 17, No 3, 239ff.

    Google Scholar 

  • Schelling G, Delius M: Pain during shock wave lithtrypsieis not a direct shock wave effect but results from cavitationmediated stimulation of nerve fibres. Anesthesiology 79, No 3a, Sep 1993, A824ff.

    Google Scholar 

  • Schelling G, Delius M, Gschwender M et al.: Extracorporal shock waves stimulate sciatic frog nerves indirectly via a cavitation mediated mechanism. Biophys J 66, Jan 1994, 133ff.

    PubMed  CAS  Google Scholar 

  • Schelling G, Mendl G: Patient controlled analgesia for extracorporal shock wave lithotripsy of galstones. Pain, 48, 1992, 355ff.

    PubMed  CAS  Google Scholar 

  • Schleberger R, Senge T: Non invasive treatment of long bone pseudarthrosis by shock waves. Arch Orthop Trauma Surg (1992), 111, 224–227.

    PubMed  CAS  Google Scholar 

  • Seemann O, Rassweiler J: Effect of low dose shock wave energy on fracture healing: An experimental study. J Endourol.6, No. 3, 1992, 219ff.

    Google Scholar 

  • Seidl M, Steinbach P et al.: Induction of stress fibers and intercellular gaps in human vascular endothelium by shock waves. Ultrasonics 1994 32, No 5, 397ff.

    PubMed  CAS  Google Scholar 

  • Seidl M, Steinbach P: Shock wave induced endothelial damage — in situ analysis by confocal laser scanning microscopy. Ultrasound Med Biol 20, No 6, 1994, 571ff.

    PubMed  CAS  Google Scholar 

  • Seitz R, Seidl M, Steinbach P et al.: The effects of high energy shock waves on cell membranes and mitochondria. Ultrasonics International 93 conference proceedings, 643ff.

    Google Scholar 

  • Smits G, Jap P: Biological effects of high energy shock waves in mouse skeletal muscle: Correlation between P Magnetic resonance Spectroscopic and microscopic alterations. Ultrasound Med Biol 19, No 5, 399ff.

    Google Scholar 

  • Steinbach P, Hofstaedter F: Determination of energy dependent extent of vascular damage caused by high energy shock waves in an umbilical cord model. Urol Res 1993, 21, 279ff.

    PubMed  CAS  Google Scholar 

  • Steinbach P, Hofstaedter F: In vitro investigations on cellular damage induced by high energy shock waves. Ultrasound Med Biol 18, No 8, 691ff.

    Google Scholar 

  • Stranne S, Callaghan J: The effect of extracorporal shock wave lithotrypsieon the prothesis interface in cementless arthroplasty. J Arthroplasty, Band 7, 1992, 173ff.

    PubMed  CAS  Google Scholar 

  • Stranne S, Callaghan J: Would revision arthroplasty be facilitated by extracorporal shock wave lithotripsy? An evaluation including whole bone strength in dogs. Clin Orthop Related Res 287 1993 Feb, 252ff.

    Google Scholar 

  • Strauss JM, Rüther W: Tendinosis calcarea — Differentialdiagnose und operative Therapie. 80. Tagung der DGOT 12.–15. 10. 1994, Wiesbaden.

    Google Scholar 

  • Sucul Kaulesa,; Johannes EJ: Extracorporal shock waves for treatment of Non unions. Hefte zu Der Unfallchirurg Heft 232, 392ff.

    Google Scholar 

  • Suhr D, Brümmer F: Cavitation generated free radicals during shock wave exposure: Investigations with cell free solutions and suspended cells. Ultrasound Med Biol 17, No 8, 761ff.

    Google Scholar 

  • Sukul K, Johannes E: The Effect of high energy shock waves focussed on cortical bone: An in vitro study. J Surg Res 54, (1993), 46ff.

    Google Scholar 

  • Thurner J: Deformierende Insertionstendopathie. In: Doerr: Spezielle pathologische Anatomie, Bd 18/1, 600ff.

    Google Scholar 

  • Vachalnov V, Michailov et al.: Extrakorporal exposure with shock waveson bone tissue as a Factor for local osteogenesis. Abstract.

    Google Scholar 

  • Vachalnov V, Michailov P: High energy shock waves in treatment of delayed and nonunion of fractures. Int Orthop (SICOT) 1991, 15: 181–184.

    Google Scholar 

  • Vahlensieck W, Kürz H: Side effects of extracorporal piezoelectric shock wave lithotrypsie. Urol Res, 1990, 18: 53ff.

    PubMed  Google Scholar 

  • Vakil M, Everbach E: Transient acoustic cavitation in gallstone fragmentation: A study of galstones fragmented In vivo. Ultrasound Med Biol, 19, No 4, 331ff.

    Google Scholar 

  • Van Arsdalen K, Kurzweil S: Effect of Lithotripsy on immature rabbit bone and kidney development. J Urol 146, July 1991, 213ff.

    PubMed  Google Scholar 

  • Van Holsbeek E, DeRycke J: Subacromial Impingement: Open versus arthroscopic decompression. Arthroscopy: 8 (2): 173–78.

    Google Scholar 

  • Van Rossum J, Buruma O: Tennis elbow — A radial tunnel syndrome. J Bone Joint Surg 60 B, No. 2, May 1978, 197ff.

    Google Scholar 

  • Von Hasselbach C: ESW Therapie am Bewegungsapparat. Pro Med News 1/96.

    Google Scholar 

  • Wanivenhaus A: Differentialdiagnose der Epicondylitis humeri radialis. Z. Orthop, 124 (1986) 775–79.

    PubMed  CAS  Google Scholar 

  • Wehner H, Sellier K: Shockwave induced compound action potentials in the peripheral nerve. Z Rechtsmed, 1981, 86, 239ff.

    PubMed  CAS  Google Scholar 

  • Weinstein J, Oster D et al.: The effect of the extracorporal schock wave lithotripter on the bone-cement interface in dogs. Clin Orthop Related Res (Philadelphia) 1988, No 235, oct. 1988 261ff

    Google Scholar 

  • Weirauch C, Skorpik G: Epikondylopathia humeri radialis — Eine Vergleichsstudie der einfachen Operation nach Hohmann mit der erweiterten Operation nach Hohmann.. Orthop Praxis, 12/92, 846ff.

    Google Scholar 

  • Weiss N, Delius M: Effect of shock waves and cisplatin on cisplatin sensitive and -resistant rodent tumors In vivo. Int J Cancer; 58, 693–99, 1994.

    PubMed  CAS  Google Scholar 

  • Weiss N, Delius M: Influence of the shock wave application mode on the growth of A-mel 3 and SSK2 tumors In vivo. Ultrasound Med Biol, 16, No 6, 595–605, 1990.

    PubMed  CAS  Google Scholar 

  • Werhan C: Biophysikalische Grundlagen der Anwendung elektromagnetischer Felder zur Beeinflussung der Osteogenese. Z Orthop, 129, 1991, 118ff.

    Google Scholar 

  • Williams C, Kaude J: Extracorporal shock wave lithotrypsie: Long term complications. Am J Radiol 150, Feb 1988, 311ff.

    CAS  Google Scholar 

  • Wolf T, Breitenfelder J: Erste Erfahrungen mit der ESWT bei Schmerzzuständen des Bewegungsapparates mit umschriebener Lokalisation. Orthop Praxis 32, 7 (1996) 480–83.

    Google Scholar 

  • Yang C, Heston W et al.: The effect of high energy shock waves on human bone marrow. Urol Res (1988) 16: 427–429.

    PubMed  CAS  Google Scholar 

  • Yeaman LD: Effects of shock waves on the structure and growth of the immature rat epiphysis. J Urology 141, March 1989, 670ff.

    CAS  Google Scholar 

  • Zakharov S, Bogdanov K: The effect of acoustic cavitation on the contraction force and membrane potential of rat papillary muscle. Ultrasound Med Biol 15, No 6, 561ff.

    Google Scholar 

  • Zeman R, Davros W: Cavitation effects during lithotrypsie, Part 1 and 2. Radiology, October 1990, 157ff.

    Google Scholar 

  • Ziegler M, Kopper B: Die Zertrümmerung von Nierensteinen mit einem piezoelektrischen Gerätesystem. Urologe A, 1986, 25: 193ff.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Buch, M. (1998). Review. In: Siebert, W., Buch, M. (eds) Extracorporeal Shock Waves in Orthopaedics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80427-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80427-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63092-0

  • Online ISBN: 978-3-642-80427-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics