Advertisement

Das koronare Gefäßendothel

  • R. R. Wenzel
  • G. Noll
  • T. F. Lüscher

Zusammenfassung

Die Koronarzirkulation wird von verschiedenen Systemen beeinflußt, deren Gleichgewicht unter pathophysiologischen Bedingungen gestört sein kann. Hierzu gehören das sympathische Nervensystem, zirkulierende Hormone und lokale, am Gefäß agierende Faktoren. Die entscheidende Bedeutung der lokalen Regulationsmechanismen von Gefäßendothel und glatten Gefäßmuskelzellen wurde erst in den letzten Jahren erkannt. Durch seine strategisch wichtige Lage zwischen Blut(produkten) und der glatten Gefäßmuskelzellschicht spielt das Gefäßendothel eine zentrale Rolle bei der Modulierung von Gefäßtonus und -wachstum sowie bei der Abwehr potentiell schädlicher Einflüsse. Damit ist das Gefäßendothel aber auch besonders stark diesen Einflüssen, wie z.B. Lipoproteinen und mechanischen Stimuli („Stretch“) ausgesetzt. Eine wichtige Rolle spielt das Endothel bei der Modulation des Gefäßtonus, der Thrombozytenaggregation, der Gerinnung und der Monozytenadhäsion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S (1990) Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348: 730–732PubMedCrossRefGoogle Scholar
  2. 2.
    Battegay EJ, Raines EW, Seifert RA, Bowen-Pope DF, Ross R (1990) TGF-beta induces bi- modal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 63: 515–524PubMedCrossRefGoogle Scholar
  3. 3.
    Baumgartner HR, Studer A (1963) Gezielte Ueberdehnung der Aorta abdominalis am normo- und hypercholesterinaemischen Kaninchen. Pathol Microbiol (Basel) 26: 129–148Google Scholar
  4. 4.
    Boulanger C, Lüscher TF (1990) Release of endothelin from the porcine aorta. Inhibition of endothelium-derived nitric oxide. J Clin Invest 85: 587–590Google Scholar
  5. 5.
    Boulanger CM, Tanner FC, Bea ML, Hahn AW, Werner A, Lüscher TF (1992) Oxidized low density lipoproteins induce mRNA expression and release of endothelin from human and porcine endothelium. Circ Res 70: 1191–1197PubMedGoogle Scholar
  6. 6.
    Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347: 768–770PubMedCrossRefGoogle Scholar
  7. 7.
    Cameron A, Davis KB, Green G, Schaff HV (1996) Coronary bypass surgery with internal thoracic artery grafts - effects on survival over a 15 year period. N Engl J Med 334: 216–219PubMedCrossRefGoogle Scholar
  8. 8.
    Castellot JJ, Jr, Beeler DL, Rosenberg RD, Karnovsky MJ (1984) Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. J Cell Physiol 120: 315–320PubMedCrossRefGoogle Scholar
  9. 9.
    Cockcroft JR, Chowienczyk PJ, Benjamin N, Ritter JM (1994) Preserved endothelium- dependent vasodilatation in patients with essential hypertension. N Engl J Med 330: 1036–1040PubMedCrossRefGoogle Scholar
  10. 10.
    Cohen RA, Shepherd JT, Vanhoutte PM (1983) Inhibitory role of the endothelium in the response of isolated coronary arteries to platelets. Science 221: 273–274PubMedCrossRefGoogle Scholar
  11. 11.
    Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME (1992) Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90: 1168–1172PubMedCrossRefGoogle Scholar
  12. 12.
    Coronary angioplasty versus coronary artery bypass surgery (1993) the Randomized Intervention Treatment of Angina (RITA) trial. Lancet 341:573–580Google Scholar
  13. 13.
    De Mey JG, Vanhoutte PM (1982) Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res 51: 439–447Google Scholar
  14. 14.
    DiCorleto PE, Hassid A (1990) Growth factor production by endothelial cells. In: Ryan U (ed) Endothelial cells, vol. II. CRC Press, Boca Raton, pp 51–62Google Scholar
  15. 15.
    Drexler H, Zeiher AM, Meinzer K, Just H (1991) Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 338: 1546–1550PubMedCrossRefGoogle Scholar
  16. 16.
    Feelisch M, Noack EA (1987) Correlation between nitric oxide formation during degradation of organic nitrates and activation of guanylate cyclase. Eur J Pharmacol 139: 19–30PubMedCrossRefGoogle Scholar
  17. 17.
    Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 299: 373–376CrossRefGoogle Scholar
  18. 18.
    Garg UC, Hassid A (1989) Nitric oxide-generating vasodilators and 8-bromo-cyclic guano- sine monophosphate inhibit mitogenesis and proproliferation of cultured rat vascular smooth muscle cells. J Clin Invest 83: 1774–1777PubMedCrossRefGoogle Scholar
  19. 19.
    Hahn AW, Resink TJ, Scott-Burden T, Powell J, Dohi Y, Buhler FR (1990) Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regul 1: 649–659PubMedGoogle Scholar
  20. 20.
    Hannan RL, Kourembanas S, Flanders KC et al. (1988) Endothelial cells synthesize basic fibroblast growth factor and transforming growth factor beta. Growth Factors 1: 7–17PubMedCrossRefGoogle Scholar
  21. 21.
    Harrison DG, Freiman PC, Armstrong ML, Marcus ML, Heistad DD (1987) Alterations of vascular reactivity in atherosclerosis. Circ Res 61: 1174–80Google Scholar
  22. 22.
    Haynes WG, Webb DJ (1994) Contribution of endogenous generation of endothelin-1 to basal vascular tone. Lancet 344: 852–854PubMedCrossRefGoogle Scholar
  23. 23.
    Kiowski W, Liischer TF, Linder L, Buhler FR (1991) Endothelin-1-induced vasoconstriction in humans. Reversal by calcium channel blockade but not by nitrovasodilators or endothelium-derived relaxing factor. Circulation 83: 469–475Google Scholar
  24. 24.
    Kiowski W, Sutsch G, Hunziker P et al. (1995) Evidence for endothelin-1-mediated vasocon-striction in severe chronic heart failure. Lancet 346: 732–736PubMedCrossRefGoogle Scholar
  25. 25.
    Küng CF, Lüscher TF (1995) Different mechanisms of endothelial dysfunction with aging and hypertension in rat aorta. Hypertension 25: 194–200PubMedGoogle Scholar
  26. 26.
    Lariviere R, Thibault G, Schiffrin EL (1993) Increased endothelin-1 content in blood vessels of deoxycorticosterone acetate-salt hypertensive but not in spontaneously hypertensive rats. Hypertension 21: 294–300PubMedGoogle Scholar
  27. 27.
    Lerman A, Edwards BS, Hallett J W, Heublein DM, Sandberg SM, Burnett J J (1991) Circulating and tissue endothelin immunoreactivity in advanced atherosclerosis. New Engl J Med 325: 997–1001PubMedCrossRefGoogle Scholar
  28. 28.
    Lichtlen PR, Hugenholtz PG, Rafflenbeul W, Hecker H, Jost S, Deckers JW (1990) Retardation of angiographic progression of coronary artery disease by nifedipine. Results of the Inter-national Nifedipine Trial on Antiatherosclerotic Therapy (INTACT). INTACT Group Investi-gators. Lancet 335: 1109–1113Google Scholar
  29. 29.
    Linder L, Kiowsky W, Buhler FR, Liischer TF (1990) Indirect evidence for release of endothe- lium-derived relaxing factor in human forearm circulation in vivo. Blunted response in es-sential hypertension. Circulation 81: 1762–1767Google Scholar
  30. 30.
    Loaldi A, Polese A, Montorsi P et al. (1989) Comparison of nifedipine, propranolol and isosorbide dinitrate on angiographic progression and regression of coronary arterial narrowings in angina pectoris. Am J Cardiol 64: 433–439PubMedCrossRefGoogle Scholar
  31. 31.
    de Lorgeril M, Renaud S, Mamelle N et al. (1994) Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. Lancet 343: 1454–1459PubMedCrossRefGoogle Scholar
  32. 32.
    Ludmer PL, Selwyn AP, Shook TL et al. (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315: 1046–1051PubMedCrossRefGoogle Scholar
  33. 33.
    Lüscher TF (1993) Do we need endothelin antagonists? Cardiovasc Res 27: 2089–2093PubMedCrossRefGoogle Scholar
  34. 34.
    Lüscher TF, Noll G (1996) The endothelium in coronary vascular control. In: Braunwald E (ed) Heart disease, vol 1. Saunders, Philadelphia, pp 1–10Google Scholar
  35. 35.
    Lüscher TF, Vanhoutte PM (1990) The endothelium: modulator of cardiovascular function. CRC Press, Boca RantonGoogle Scholar
  36. 36.
    Lüscher TF, Vanhoutte PM, Raij L (1987) Antihypertensive treatment normalizes decreased endothelium-dependent relaxations in rats with salt-induced hypertension. Hypertension 9 [Suppl III]: 193–197Google Scholar
  37. 37.
    Lüscher TF, Diederich D, Siebenmann R et al. (1988) Difference between endothelium- dependent relaxation in arterial and in venous coronary bypass grafts. N Engl J Med 319: 462–467PubMedCrossRefGoogle Scholar
  38. 38.
    Lüscher TF, Richard V, Yang ZH (1989) Interaction between endothelium-derived nitric oxide and SIN-1 in human and porcine blood vessels. J Cardiovasc Pharmacol 14 [Suppl 11]: S76–80PubMedGoogle Scholar
  39. 39.
    Minor R, Jr, Myers PR, Guerra R, Jr, Bates JN, Harrison DG (1990) Diet-induced athero-sclerosis increases the release of nitrogen oxides from rabbit aorta. J Clin Invest 86: 2109–2116PubMedCrossRefGoogle Scholar
  40. 40.
    Moncada S, Vane VR (1979) Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmaol Rev 30: 293–331Google Scholar
  41. 41.
    Ng KK, Vane JR (1967) Conversion of angiotensin I to angiotensin II. Nature 216: 762–766PubMedCrossRefGoogle Scholar
  42. 42.
    Noll G, Wenzel RR, De Marchi S, Liischer TF (1997) Differential modulation of the sympathetic nervous system by captopril and nitroglycerin. Circulation 95: 2286–2292PubMedGoogle Scholar
  43. 43.
    Ohnaka K, Takayanagi R, Nishikawa M, Haji M, Nawata H (1993) Purification and characte-rization of a phosphoramidon-sensitive endothelin-converting enzyme in porcine aortic endothelium. J Biol Chem 268: 26759–26766PubMedGoogle Scholar
  44. 44.
    Opgenorth TJ, Wu-Wong JR, Shiosaki K (1992) Endothelin-converting enzymes. Faseb J 6: 2653–2659PubMedGoogle Scholar
  45. 45.
    Panza JA, Quyyumi AA, Brush JJ, Epstein SE (1990) Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med 323: 22–27PubMedCrossRefGoogle Scholar
  46. 46.
    Rapoport RM, Draznin MB, Murad F (1983) Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMP-dependent protein phosphorylation. Nature 306: 174–176PubMedCrossRefGoogle Scholar
  47. 47.
    Rees DD, Palmer RMJ, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci 86: 3375–3378PubMedCrossRefGoogle Scholar
  48. 48.
    Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S (1990) Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol 101: 746–752PubMedGoogle Scholar
  49. 49.
    Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801–809PubMedCrossRefGoogle Scholar
  50. 50.
    Sakurai T, Yanagisawa M, Takuwa Y et al. (1990) Cloning of a cDNA encoding a non-isopep- tide-selective subtype of the endothelin receptor. Nature 348: 732–735PubMedCrossRefGoogle Scholar
  51. 51.
    Seo B, Oemar BS, Siebenmann R, von Segesser L, Liischer TF (1994) Both ETA and ETB receptors mediate contraction to endothelin-1 in human blood vessels. Circulation 89: 1203–1208PubMedGoogle Scholar
  52. 52.
    Shimokawa H, Vanhoutte PM (1989) Impaired endothelium-dependent relaxation to aggregating platelets and related vasoactive substances in porcine coronary arteries in hypercho-lesterolemia and atherosclerosis. Circ Res 64: 900–914PubMedGoogle Scholar
  53. 53.
    Shimokawa H, Aarhus LL, Vanhoutte PM (1987) Porcine coronary arteries with regenerated endothelium have a reduced endothelium-dependent responsiveness to aggregating platelets and serotonin. Circ Res 61: 256–270PubMedGoogle Scholar
  54. 54.
    Shimokawa H, Flavahan NA, Vanhoutte PM (1989) Natural course of the impairment of endothelium dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G drotein. Circ Res 65: 740–753Google Scholar
  55. 55.
    Sparrow CP, Doebber TW, Olszewski J et al. (1992) Low density lipoprotein is protected from oxidation and the progression of atherosclerosis is slowed in cholesterol-fed rabbits by the antioxidant N,N′-diphenyl-phenylenediamine. J Clin Invest 89: 1885–1891PubMedCrossRefGoogle Scholar
  56. 56.
    Stewart DJ, Langleben D, Cernacek P, Cianflone K (1990) Endothelin release is inhibited by coculture of endothelial cells with cells of vascular media. Am J Physiol 259: H1928–1932PubMedGoogle Scholar
  57. 57.
    Taddei S, Virdis A, Mattei P, Salvetti A (1993) Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension 21: 929–933PubMedGoogle Scholar
  58. 58.
    Takada J, Hata M, Okada K, Matsuyama K, Yano M (1992) Biochemical properties of endo-thelin converting enzyme in renal epithelial cell lines. Biochem Biophys Res Commun 182: 1383–1388PubMedCrossRefGoogle Scholar
  59. 59.
    Takahashi M, Matsushita Y, lijima Y, Tanzawa K (1993) Purification and characterization of endothelin converting enzyme from rat lung. J Biol Chem 268: 21394–21398PubMedGoogle Scholar
  60. 60.
    Tanner FC, Noll G, Boulanger CM, Lüscher TF (1991) Oxidized low density lipoproteins in-hibit relaxations of porcine coronary arteries. Role of scavenger receptor and endothelium- derived nitric oxide. Circulation 83: 2012–2020Google Scholar
  61. 61.
    Toyo-oka T, Aizawa T, Suzuki N et al. (1991) Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasopastic angina pectoris. Circulation 83: 476–483Google Scholar
  62. 62.
    Tschudi M, Richard V, Buhler FR, Lüscher TF (1991) Importance of endothelium-derived nitric oxide in porcine coronary resistance arteries. Am J Physiol 260:H 13–20Google Scholar
  63. 63.
    Vallance P, Collier J, Moncada S (1989) Effects of endothelium-derived nitric oxide on peripheral arteriolar tone in man. Lancet 2: 997–1000PubMedCrossRefGoogle Scholar
  64. 64.
    Vallance P, Leone A, Calver A, Collier J, Moncada S (1992) Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572–575PubMedCrossRefGoogle Scholar
  65. 65.
    Vanhoutte PM (1987) Vascular physiology: the end of the quest? [news]. Nature 327: 459–460PubMedCrossRefGoogle Scholar
  66. 66.
    Wagner OF, Christ G, Wojta J et al. (1992) Polar secretion of endothelin-1 by cultured endothelial cells. J Biol Chem 267: 16066–16068PubMedGoogle Scholar
  67. 67.
    Waters D, Lesperance J, Francetich M et al. (1990) A controlled clinical trial to assess the effect of a calcium channel blocker on the progression of coronary atherosclerosis. Circulation 82: 1940–1953PubMedCrossRefGoogle Scholar
  68. 68.
    Webb D (1996) Vortrag auf dem „Endothelin Inhibitors-Meeting“ in San Diego/CA 05.-07. 02. 1996Google Scholar
  69. 69.
    Wenzel RR, Lüscher TF (1995) Endothelin receptor antagconists as new tools to inhibit endothelin induced vasoconstriction in humans: comparison with calcium channel blockers. In: Lüscher TF (ed) The endothelim in cardiovascular disease. Springer, Berlin Heidelberg New York Tokyo, S 129–147CrossRefGoogle Scholar
  70. 70.
    Wenzel RR, Noll G, Liischer TF (1994) Endothelin receptor antagonists inhibit endothelin in human skin microcirculation. Hypertension 23: 581–586PubMedGoogle Scholar
  71. 71.
    Wenzel RR, Duthiers N, Noll G, Bucher J, Kaufmann U, Liischer TF (1996) Endothelin anta-gonists and calcium antagonist in the skin microcirculation of patients with coronary artery disease. Circulation (in press).Google Scholar
  72. 72.
    Wiemer G, Scholkens BA, Becker RH, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium-derived bradykinin. Hyper-tension 18: 558–563Google Scholar
  73. 73.
    Winkles JA, Alberts GF, Brogi E, Libby P (1993) Endothelin-1 and endothelin receptor mRNA expression in normal and atherosclerotic human arteries. Biochem Biophys Res Commun 191: 1081–1088PubMedCrossRefGoogle Scholar
  74. 74.
    Wright CE, Rees DD, Moncada S (1992) Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res 26: 48–57PubMedCrossRefGoogle Scholar
  75. 75.
    Xu D, Emoto N, Giaid A et al. (1994) ECE-1: a membrane-bound metalloprotease that catalyzes the proteolytic activation of big endothelin-1. Cell 78: 473–485PubMedCrossRefGoogle Scholar
  76. 76.
    Yanagisawa M, Kurihara H, Kimura S et al. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415PubMedCrossRefGoogle Scholar
  77. 77.
    Yang Z, Noll G, Liischer TF (1993) Calcium antagonists differently inhibit proliferation of human coronary smooth muscle cells in response to pulsatile stretch and platelet-derived growth factor. Circulation 88: 832–836PubMedGoogle Scholar
  78. 78.
    Yang Z, Richard V, Segesser L von et al. (1990) Threshold concentrations of endothelin-1 potentiate contractions to norepinephrine and serotonin in human arteries. A new mechanism of vasospasm? Circulation 82: 188–195PubMedCrossRefGoogle Scholar
  79. 79.
    Yang ZH, Segesser L von, Bauer E, Stulz P, Turina M, Liischer TF (1991) Different activation of the endothelial L-arginine and cyclooxygenase pathway in the human internal mammary artery and saphenous vein. Circ Res 68: 52–60PubMedGoogle Scholar
  80. 80.
    Yang Z, Stulz P, Von SL, Bauer E, Turina M, Liischer TF (1991) Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 337: 939–943PubMedCrossRefGoogle Scholar
  81. 81.
    Yeung AC, Vekshtein VI, Krantz DS et al. (1991) The effect of atherosclerosis on the vaso-motor response of coronary arteries to mental stress. N Engl J Med 325: 1551–1556PubMedCrossRefGoogle Scholar
  82. 82.
    Yokokawa K, Kohno M, Yasunari K, Murakawa K, Takeda (1991) Endothelin-3 regulates endothelin-1 production in cultured human endothelial cells. Hypertension 18: 304–315Google Scholar
  83. 83.
    Zeiher AM, Drexler H, Saurbier B, Just H (1993) Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hyperten-sion. J Clin Invest 92: 652–662Google Scholar
  84. 84.
    Zeiher AM, Ihling C, Pistorius K, Schachinger V, Schaefer H-E (1994) Increased tissue endothelin immunoreactivity in atherosclerotic lesions associated with acute coronary syndromes. Lancet 344: 1405–1406PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. R. Wenzel
  • G. Noll
  • T. F. Lüscher

There are no affiliations available

Personalised recommendations