Skip to main content

Amplitude Equations and Their Applications

  • Chapter
Dissipative Structures and Chaos
  • 290 Accesses

Abstract

In the preceding chapter, we saw how in the neighborhood of a bifurcation point at which a new spatial pattern arises, the equation describing the system in question can be reduced to a relatively simple form we refer to as an amplitude equation. Then, as a representative example of this reduction procedure, we derived the Newell-Whitehead (NW) equation using phenomenological considerations. In this chapter, we investigate how different types of amplitude equations are derived to describe a variety of physical conditions. We then study the properties of these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodenschats, E., Pesch, W., Kramer, L. (1988) Structure and dynamics of dislocation in anisotropic pattern-forming systems. Physica D 32, 135–145

    Article  ADS  Google Scholar 

  • Busse, F.H., Clever, R.M. (1979) Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319–336

    Article  ADS  Google Scholar 

  • Kai, S. (1991) Liquid crystal patterns. Chap. 4 in Pattern Formation. Asakura Shoten, Tokyo (Japanese )

    Google Scholar 

  • Lega, J., Janiaud, B., Jucquois, S., Croquette, V. (1992) Localized phase jumps in wave trains. Phys. Rev. A 45, 5596–5604

    Article  ADS  Google Scholar 

  • Manneville, P. (1990) Dissipative Structures and Weak Turbulence. Academic Press, London

    MATH  Google Scholar 

  • Nozaki, K., Bekki, N. (1984) Exact solutions of the generalized Ginzburg-Landau equation. J. Phys. Soc. Japan 53, 1581–1582

    Article  MathSciNet  ADS  Google Scholar 

  • Nozaki, K., Bekki, N. (1985) Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation. Phys. Lett. A 110, 133–135

    Article  ADS  Google Scholar 

  • Siggia, E., Zipperius, A. (1981a) Dynamics of defects in Rayleigh-Bénard convection. Phys. Rev. A 24, 1036–1049

    Article  ADS  Google Scholar 

  • Siggia, E.D., Zipperius, A. (1981b) Pattern selection in Rayleigh-Bénard convection near threshold. Phys. Rev. Lett. 47, 835–858

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mori, H., Kuramoto, Y. (1998). Amplitude Equations and Their Applications. In: Dissipative Structures and Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80376-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80376-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80378-9

  • Online ISBN: 978-3-642-80376-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics