Skip to main content

The Statistical Physics of Aperiodic Motion

  • Chapter
Dissipative Structures and Chaos
  • 282 Accesses

Abstract

What physical quantity can we use to capture and describe the multitude of invariant sets and the local structure of unstable manifolds W u that determine the form and structure of chaos? By introducing the expansion rate of neighboring orbits, which expresses the stretching and folding of segments of W u, and the local dimension, which describes the self-similarity of the nested structure of strange attractors, the geometric and statistical descriptions given in terms of chaotic orbits through the fluctuations of these quantities can be unified. We show that the chaotic bifurcations and tangency structure of unstable manifolds can be directly understood in terms of the spectrum ψ(Λ), and also that a fixed relationship exists between the spectra of this expansion rate and the local dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Eckmann, J.-P., Procaccia, I. (1986) Fluctuations of dynamical scaling indices in nonlinear systems. Phys. Rev. A 34, 659–661

    Article  ADS  Google Scholar 

  • Ellis, R.S. (1985) Entropy, Large Deviations, and Statistical Mechanics. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Fujisaka, H., Inoue, M. (1987) Statistical-thermodynamics formalism of self- similarity. Prog. Theor. Phys. 77, 1334–1343

    Article  MathSciNet  ADS  Google Scholar 

  • Grassberger, P., Badii, R., Politi, A. (1988) Scaling laws for invariant measures on hyperbolic and non-hyperbolic attractors. J. Stat. Phys. 51, 135–178

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.I. (1986) Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Hata, H., Horita, T., Mori, BL, Morita, T., Tomita, K. (1988) Characterization of local structures of chaotic attractors in terms of coarse-grained local expansion rate. Prog. Theor. Phys. 80, 809–826

    Article  MathSciNet  ADS  Google Scholar 

  • Hata, H., Horita, T., Mori, H., Morita, T., Tomita, K. (1989) Singular local structures of chaotic attractors and q-phase transitions of spatial scaling structures. Prog. Theor. Phys. 81, 11–16

    Article  MathSciNet  ADS  Google Scholar 

  • Horita, T., Hata, H., Mori H., Morita, T., Tomita, K., Kuroki, S., Okamoto, H. (1988a) Local structures of chaotic attractors and q-phase transitions at attractor-merging crises in the sine-circle maps. Prog. Theor. Phys. 80, 793–808

    Article  MathSciNet  ADS  Google Scholar 

  • Horita, T., Hata, H., Mori, H., Morita, T., Tomita, K., (1988b) Singular local structures of chaotic attractors due to collisions with unstable periodic orbits in two-dimensional maps. Prog. Theor. Phys. 80, 923–928

    Article  MathSciNet  ADS  Google Scholar 

  • Jensen, M.H., Kadanoff, L.P., Libchaber, A., Procaccia, I., Stavans, J. (1985) Global universality at the onset of chaos: results of a forced Rayleigh-Bénard experiment. Phys. Rev. Lett. 55, 2798–2801

    Article  ADS  Google Scholar 

  • Mori, H., Hata, H., Horita, T., Kobayashi, T. (1989a) Statistical mechanics of dynamical sytsems. Prog. Theor. Phys. Suppl. 99, 1–63

    Article  MathSciNet  ADS  Google Scholar 

  • Mori, N., Kobayashi, T., Hata, H. Morita, T., Horita T., Mori, H. (1989b) Scaling structures and statistical mechanics of type-I intermittent chaos. Prog. Theor. Phys. 81, 60 - 77

    Article  MathSciNet  ADS  Google Scholar 

  • Morita, T., Hata, H., Mori, H., Horita, T., Tomita, K. (1987) On partial dimensions and spectra of singularities of strange attractors. Prog. Theor. Phys. 78, 511–515

    Article  MathSciNet  ADS  Google Scholar 

  • Morita, T., Hata, H., Mori, H., Horita, T., Tomita, K. (1988) Spatial and temporal scaling properties of strange attractors and their representations by unstable periodic orbits. Prog. Theor. Phys. 79, 296–312

    Article  MathSciNet  ADS  Google Scholar 

  • Ott, E., Grebogi, C., Yorke, J. A. (1989) Theory of first order phase transitions for chaotic attractors of nonlinear dynamical systems. Phys. Lett. A 135, 343–348

    Article  MathSciNet  ADS  Google Scholar 

  • Ruelle, D. (1978) Thermodynamic Formalism. Addison-Wesely, Reading, M. Sano, M., Sato S., Sawada, Y. (1986) Global Spectral Characterisitics of Chaotic Dynamics. Prog. Theor. Phys. 76, 945–948

    Google Scholar 

  • Sano, M., Sato S., Sawada, y. (1986) Global Spectral Characteristics of Chaotic Dynamics. Prog. Theor. Phys. 76, 945–948

    Article  MathSciNet  ADS  Google Scholar 

  • Shenker, S.J. (1982) Scaling behavior in a map of a circle onto itself; empirical results. Physica D 5, 405–411

    Article  MathSciNet  ADS  Google Scholar 

  • Takahashi, Y. (1980) Chaos, periodic points and entropy. Butsuri 35, 149–161 (Japanese)

    Google Scholar 

  • Takahashi, Y., Oono, Y. (1984) Towards the statistical mechanics of chaos. Prog. Theor. Phys. 71, 851–854

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Tomita, K., Hata, H., Mori, H., Morita, T. (1988) Scaling structures of chaotic attractors and g-phase transitions at crises in the Hénon and the annulus maps. Prog. Theor. Phys. 80, 953–972

    Article  MathSciNet  ADS  Google Scholar 

  • The statistical thermodynamics formalism of dynamical systems discussed in this chapter was first introduced from a mathematical point of view. To understand the motivation behind the development of this formal- ism, see, for example, Takahashi (1980) and Ellis (1985). The concrete treatment given in this chapter of the multifractal dimension D(q), the two spectra f(α) and ψ(Λ), and related quantities for physical dynamical systems follows the theoretical work contained in Halsey. (1986), Morita. (1988), and Grassberger. (1988), and the line of reasoning presented in Mori. (1989a), in which a number of subjects are treated in a unified manner. The attempt to unify the geometrical and statistical descriptions of chaos presented in this chapter has its origin in the papers by Horita. (1988a), Hata. (1988), Tomita. (1988), and Mori. (1989b), which seek a statistical characterization of the bifurcations arising from fluctuations in the coarse-grained expansion rate of orbits, and the paper Horita. (1988b), which deals with the theory regarding the slope sß resulting from collision with a saddle.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mori, H., Kuramoto, Y. (1998). The Statistical Physics of Aperiodic Motion. In: Dissipative Structures and Chaos. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80376-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80376-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80378-9

  • Online ISBN: 978-3-642-80376-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics