Skip to main content

Effect of Transgenic Cotton Expressing the Bacillus thuringiensis var. kurstaki Endotoxin on Soil Microorganisms — Risk Assessment Studies

  • Chapter
Cotton

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 42))

  • 468 Accesses

Abstract

The genetic engineering of plants has facilitated the production of agronomically desirable crops that exhibit increased resistance to pests, herbicides, pathogens, and environmental stress, and enhancement of qualitative and quantitative crop traits (Gasser and Fraley 1992). Along with these many benefits, however, comes the potential for adverse ecological effects because of the often sustained expression in the genetically engineered (transgenic) plant of the engineered trait(s) and the persistence of the transgenic plant or plant residue in the environment. Consequently, we have undertaken research to evaluate the potential ecological effects of transgenic plants and their products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali AUDD, Adellatif MA, Bakry NM, El-Sawaf SK (1973) Studies on biological control of the greater wax moth, Galleria mellonella. 1. Susceptibility of wax moth larvae and adult honeybee workers to Bacillus thuringiensis. J Agric Res 12:117–123

    Google Scholar 

  • Biolog MicroStation System Manual, Release 3.01. (1992) Biolog, Inc, Hayward, California

    Google Scholar 

  • Broder MW, Wagner GH (1988) Microbial colonization and decomposition of corn, wheat, and soybean residue. Soil Sci Soc AM J 52:112–117

    Article  Google Scholar 

  • Crawley HJ, Hails RS, Rees M, Kohn D, Baxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363:620–623

    Article  Google Scholar 

  • Darbyshire JF, Wheatley RE, Greaves MP, Inkson RH (1974) A rapid micromethod for estimating bacterial and protozoan populations in soil. Ecology 61:764–771

    Google Scholar 

  • Delannay X, LaVallee BJ, Proksch RK, Fuchs RL, Sims SR, Greenplate JT, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fischhoff DA (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringiensis var. kurstaki insect control protein. Bio/Technology 7:1265–1269

    Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schaller DL, Bucao LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bacillus thuringiensis var. kurstaki endotoxin. Appl Soil Ecol 2:111–124

    Article  Google Scholar 

  • Donegan KK, Schaller DL, Stone JK, Ganio LM, Reed G, Hamm PB, Seidler RJ (1996) Microbial populations, fungal species diversity and plant pathogen levels in field plots of potato plants expressing the Bacillus thuringiensis var. tenebrionis endotoxin. Transgen Res 5:25–35

    Article  CAS  Google Scholar 

  • Donegan KK, Seidler RJ, Fieland VJ, Schaller DL, Palm CJ, Ganio LM, Cardweel DM, Steinberger Y (1997) Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations. J Appl Ecol 34:767–777

    Article  Google Scholar 

  • Fitzpatrick T (1993) Pleiotropic gene found in barley plant. Genet Eng News 13(5): 1, 22

    Google Scholar 

  • Flexner JL, Lighthart B, Croft BA (1986) The effects of microbial pesticides on non-target, beneficial arthropods. Agric Ecosyst Environ 16:203–254

    Article  Google Scholar 

  • Fox J (1991) Bt resistance prompts early planning. Bio/Technology 9:1319

    Article  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source. Appl Environ Microbiol 57:2351–2359

    PubMed  CAS  Google Scholar 

  • Gasser CS, Fraley RT (1992) Transgenic crops. Sci Am June 1992:62–69

    Article  Google Scholar 

  • Hofte H, Whiteley HR (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242–255

    PubMed  CAS  Google Scholar 

  • James RJ, Miller JC, Lighthart B (1993) Bacillus thuringiensis var. kurstaki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae). J Econ Entom 86:334–339

    Google Scholar 

  • Jenkins JN, Parrott WL, McCarty JC Jr, Barton KA, Umbeck PF (1991) Field test of transgenic cottons containing a B.t. gene. Dept, of Information Services, Division of Agriculture, Forestry and Veterinary Medicine. MAFES Techn Bull 174, Jan 1991, 6 pp

    Google Scholar 

  • Johnson MT, Gould F (1992) Interaction of genetically engineered host plant resistance and natural enemies of Heliothis virescens (Lepidoptera: Noctuidae) in tobacco. Environ Entomol 21:586–597

    Google Scholar 

  • Kareiva P, Morris W, Jacobi CM (1994) Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Mol Ecol 3:15–21

    Article  Google Scholar 

  • Klinger T, Ellstrand NC (1994) Engineered genes in wild populations: fitness of weed-crop hybrids of Raphanus sativus. Ecolog Appl 4:117–120

    Article  Google Scholar 

  • Koziel MG, Beland GL, Bowman C, Carozzi NB, Crenshaw R, Crossland L, Dawson J, Desai N, Hill M, Kadwell S, Launis K, Lewis K, Maddox D, McPherson K, Meghji MR, Merlin E, Rhodes R, Warren GW, Wright M, Evola SV (1993) Field performance of elite transgenic maize plants expressing an insecticidal protein derived from Bacillus thuringiensis. Bio/Technology 11:194–200

    Article  CAS  Google Scholar 

  • Lange P (1990) The German experience gained with field testing of genetically modified plants. Federal Ministry for Research and Technology, Bonn, Germany

    Google Scholar 

  • Lundstrum L (1992) Monsanto develops beetle-resistant plants - plots show remarkable control. Potato Grower Idaho 21:36–38

    Google Scholar 

  • MacKenzie D (1990) Jumping genes confound German scientists. New Sci Dec 15:199

    Google Scholar 

  • Manasse RS (1992) Ecological risks of transgenic plants: effects of spatial dispersion on gene flow. Ecol Appl 2:431–438

    Article  Google Scholar 

  • Miller JC (1990) Field assessment of the effects of microbial pest control agents on nontarget Lepidoptera. Am Entomol 36:135–139

    Google Scholar 

  • Molloy D, Jamnback H (1981) Field evaluation of Bacillus thuringiensis var. israelensis as a black fly biocontrol agent and its effect on nontarget stream insects. J Econ Entomol 74:314–318

    Google Scholar 

  • Mulla MS, Federichi BA, Darwazeh HA (1982) Larvicidal effect of Bacillus thuringiensis serotype H-14 against stagnant-water mosquitoes and its effect on nontarget organisms. Environ Entomol 11:788–795

    Google Scholar 

  • Palm CJ, Donegan KK, Harris DL, Seidler RJ (1994) Quantitation in soil of Bacillus thuringiensis var. kurstaki delta-endotoxin from transgenic plants. Mol Ecol 3:145–15

    Article  CAS  Google Scholar 

  • Palm CJ, Schaller DL, Donegan KK, Seidler RJ (1996) Persistence in soil of transgenic plant produced Bacillus thuringiensis var. kurstaki endotoxin. Can J Microbiol 42:1258–1262

    Article  CAS  Google Scholar 

  • Parr JF, Papendiek RI (1978) Factors affecting the decomposition of crop residues by microorganisms. In: Oschwald WR (ed) Crop residue management systems. Amer Soci Agron, Madison, WI, pp 101–129

    Google Scholar 

  • Perlak FJ, Deaton RW, Armstrong TA, Fuchs RL, Sims SR, Greenplate JT, Fischhoff DA (1990) Insect-resistant cotton plants. Bio/Technology 8:939–943

    Article  PubMed  CAS  Google Scholar 

  • Porteous LA, Armstrong JA, Seidler RJ, Watrud LS (1994) An effective method to extract DNAs from environmental samples for polymerase chain reaction amplification and DNA fingerprint analysis. Curr Microbiol 29:301–307

    Article  PubMed  CAS  Google Scholar 

  • Pratt GE, Royce LA, Croft BA (1993) Measurement of toxicity of soils following incorporation of plant residues engineered with Bacillus thuringiensis vas. kurstaki endotoxin, using a Heliothis virescens growth bioassay, Proc 5th Investigators Meeting for EPA’s Environmental Release of Biotechnology Research Program, College Park, Maryland 1992

    Google Scholar 

  • Ream JE, Berberich SA, Sims SR, Rogan GJ, Fuchs RL (1992) In blanta distribution and environmental fate of insect-resistant cotton proteins. Plant Physiol Suppl 99(1):80

    Google Scholar 

  • SAS Institute (1989) SAS/STAT user’s guide, Version 6, vol 2,4th edn. SAS Institute, Cary, North Carolina, 846 pp

    Google Scholar 

  • Stotzky G (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion and ecology of microbes and viruses. In: Huang PM, Schnitzer M (eds) Interactions of soil mineral with natural organics and microbes. Soil Sci Soc America, Madison, Wisconsin, pp 305–428

    Google Scholar 

  • The Economist (1990) The tomatoes of the free of knowledge. The Economist, 14 July 1990 The Gene Exchange (1992) Unexpected results in transgenic organisms. The Gene Exchange 3(3):6–7

    Google Scholar 

  • Tolstova YS, Ionova ZA (1976) Toxicity of pesticides to TrichoGramma. Zashch: Rast (Mosc) 9:21

    Google Scholar 

  • Umbeck PF, Barton KA, Nordheim EV, McCarty JC, Parrot WL, Jenkins JN (1991) Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J Econ Entomol 84:1943–1950

    Google Scholar 

  • USDA-CRS and USDA-ARS (1992) Scientific evaluation of the potential for pest resistance to the Bacillus thuringiensis (Bt) delta-endotoxins. A Conference to Explore Resistance Management Strategies, Beltsville, MD, Jan 21–23, 1992

    Google Scholar 

  • Vaeck M, Reynaerts A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Transgenic plants protected from insect attack. Nature 328:33–37

    Article  CAS  Google Scholar 

  • Yamada K (1992) Genetic vegomatics splice and dice with weird results. Wall Street J April 13, 1992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donegan, K.K., Seidler, R.J. (1998). Effect of Transgenic Cotton Expressing the Bacillus thuringiensis var. kurstaki Endotoxin on Soil Microorganisms — Risk Assessment Studies. In: Bajaj, Y.P.S. (eds) Cotton. Biotechnology in Agriculture and Forestry, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80373-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80373-4_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80375-8

  • Online ISBN: 978-3-642-80373-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics