Skip to main content

Part of the book series: Principles and Practice ((PRINCIPLES))

  • 378 Accesses

Abstract

Filamentous protein networks are one of the main structural elements in nature. This report describes novel approaches in video-enhanced fluorescence microscopy to visualize and analyze the molecular motions of single constituent filaments of these networks. Common examples of these biopolymer networks are the collagen matrix of connective tissue, cartilage and bones, fibrinogen networks with intercalated blood platelets, and the cytoskeleton of cells. The collagen matrix is a chemically cross-linked network of collagen fibers which consist of tropocollagen filaments. An in vitro example of a network of fibrinogen fibers with embedded platelets is displayed in Fig. 6.1. These fibrinogen gels, which form in wounds, are slowly contracted by the platelets facilitating wound closure during healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barden JA, Miki M, Hambly BD, Dos Remedios CG (1987) Eur J Biochem 162:583–588

    Article  PubMed  CAS  Google Scholar 

  • Bremer A, Millonig RC, Sutterlin R, Engel A, Pollard TD, Aebi U (1991) The structural basis for the intrinsic disorder of the actin filament:the “lateral slipping” model. J Cell Biol 115:689–703

    Article  PubMed  CAS  Google Scholar 

  • Carlier M-F (1993) Dynamic actin. Curr Biol 3(5):321–323

    Article  PubMed  CAS  Google Scholar 

  • Casella JF, Torres MA (1994) Interaction of Cap Z with actin. The NH2-terminal domains of the alpha 1 and beta subunits are not required for actin capping, and alpha 1 beta and alpha 2 beta heterodimers bind differentially to actin. J Biol Chem 269:6992–6998

    PubMed  CAS  Google Scholar 

  • Chen ZY (1993) Nematic ordering in semiflexible polymer chains. Macromolecules 26:3419–3423

    Article  CAS  Google Scholar 

  • Coppin CM, Leavis PC (1992) Quantitation of liquid-crystalline ordering in F-actin solutions. Biophys J 63:794–807

    Article  PubMed  CAS  Google Scholar 

  • Doi M (1975) Rotational relaxation time of rigid rod-like macromolecule in concentrated solution. J Phys (Paris) 36:607–617

    Article  CAS  Google Scholar 

  • Doi M (1985) Effect of chain flexibility on the dynamics of rodlike polymers in the entangled state. J Polym Sci Polym Symp 73:93–98

    Article  CAS  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Edwards SF (1967) Proc Phys Soc 92:9–13

    Article  CAS  Google Scholar 

  • Elson E L (1988) Cellular mechanics as an indicator of cytoskeletal structure and function. Annu Rev Biophys Chem 17:397–430

    Article  CAS  Google Scholar 

  • Ferry JD (1980) Viscoelastic properties of polymers. John Wiley, New York

    Google Scholar 

  • Furukawa R, Kundra R, Fechheimer M (1993) Formation of liquid crystals from actin filaments. Biochemistry 32:12346–12352

    Article  PubMed  CAS  Google Scholar 

  • de Gennes PG (1971) Reptation of a polymer chain in the presence of fixed obstacles. J Chem Phys 55:572–579

    Article  Google Scholar 

  • de Gennes PG (1982) Kinetics of diffusion-controlled processes in dense polymer systems. II. Effects of entanglements. In:Ciferri A, Krigbaum WR, Meyer RB (eds) Polymer liquid crystals, chap 5. Academic Press, New York

    Google Scholar 

  • de Gennes PG, Prost J (1994) The physics of liquid crystals. Clarendon, Oxford

    Google Scholar 

  • de Gennes PG, Pincus P, Velasco RM, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys (Paris) 37:1461–1473

    Article  Google Scholar 

  • Graessley WW (1980) Some phenomenological consequences of the Doi-Edwards theory of viscoelasticity. J Polym Sci 13:27–34

    Google Scholar 

  • Hendricks J, Kawakatsu T, Kawasaki K, Zimmermann W (1995) On confined semiflexible polymer chains. Phys Rev E51:2658–2661

    CAS  Google Scholar 

  • Ishijima A, Doi T, Sakurada K, Yanagida T (1991) Sub-piconewton force fluctuations of actomyosin in vitro. Nature 352:301–306

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Peetermans J, Zaner KS, Stossel TP, Tanaka T (1986) Structure and mobility of actin filaments as measured by quasielastic light scattering, viscometry, and electron microscopy. J Biol Chem 261:8357–8362

    PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Oster GF, Lamb J, Stossel, TP, Hartwig JH (1990) Effect of ATP on actin filament stiffness. Nature 347:95–99

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Euteneuer U, Traub P, Schliwa M (1991) Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol 113:155–160

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Hvidt S, Käs J, Lerche D, Maggs A, Sackmann E, Schliwa M, Stossel TP (1994) The mechanical properties of actin gels. J Biol Chem 269:32503–32513

    PubMed  CAS  Google Scholar 

  • Käs J, Strey H, Bärmann M, Sackmann E (1993) Direct measurement of the wave-vector-dependent bending stiffness of freely flickering actin filaments. Europhys Lett 21:865–870

    Article  Google Scholar 

  • Käs J, Strey H, Sackmann E (1994a) Direct visualization of reptation for semiflexible actin filaments. Nature 368:226–229

    Article  PubMed  Google Scholar 

  • Käs J, Laham LE, Finger DK, Janmey PA (1994b) Solution ATP affects the bending elasticity of actin filaments implying a low affinity ATP-binding site on F-actin. Mol Biol Cel. 5:157a

    Google Scholar 

  • Käs J, Strey H, Tang JX, Finger D, Ezzell R, Sackmann E, Janmey PA (1996) F-actin, a model polymer for semiflexible chains in dilute, semidilute and liquid crystalline solutions. Biophys J 70:609–625

    Article  PubMed  Google Scholar 

  • Kaufmann S, Käs J, Goldmann WH, Sackmann E, Isenberg G (1992) Talin anchors and nucleates actin filaments at lipid membranes — a direct demonstration. FEBS Lett 314:203–205

    Article  PubMed  CAS  Google Scholar 

  • Keep GT, Pecora R (1985) Réévaluation of the dynamic model for rotational diffusion of thin, rigid rods in semidilute solution. Macromolecules 18:1167–1173

    Article  CAS  Google Scholar 

  • Khokhlov AR, Semenov AN (1982) Susceptibility of liquid-crystalline solutions of semiflexible macromolecules in an external orientational field. J Phys A 15:1361–1367

    Article  CAS  Google Scholar 

  • Landau LD, Lifshitz EM (1980) Statistical physics, part 1, 3rd edn. Pergamon, Oxford

    Google Scholar 

  • Lodge TP, Rotstein NA, Prager S (1993) Dynamics of entangled polymer liquids:do linear chains restate? Adv Chem Phys 79:1–132

    Article  Google Scholar 

  • MacKintosh FC, Käs J, Janmey PA (1995) Elasticity of semiflexible biopolymer networks. Phys Rev Lett 75(24):4425–4428

    Article  PubMed  CAS  Google Scholar 

  • Magda JJ, Davis HT, Tirrell M (1986) The transport properties of rod-like particles via molecular dynamics. I. Bulk fluid. J Chem Phys 85:6674–6685

    Article  CAS  Google Scholar 

  • Mogilner A, Oster G (1996) Cell motility driven by actin polymerization. Biophys J 71:3030–3045

    Article  PubMed  CAS  Google Scholar 

  • Müller O, Gaub HE, Bärmann M, Sackmann E (1991). Viscoelastic moduli of sterically and chemically cross-linked actin networks in the dilute to semidilute regime — measurements by an oscillating disk rheometer. Macromolecules 24:3111–3120

    Article  Google Scholar 

  • Muthukumar M, Edwards SF (1983) Screeining of hydrodynamic interaction in a solution of rodlike macromolecules. Macromolecules 16:1475–1478

    Article  CAS  Google Scholar 

  • Odijk T (1983) On the statistics and dynamics of confined or entangled stiff polymers. Macromolecules 16:1340–1344

    Article  CAS  Google Scholar 

  • Odijk T (1986) Translational friction coefficient of hydrodynamically screened rodlike macromolecules. Macromolecules 19:2073–2074

    Article  CAS  Google Scholar 

  • Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann NY Acad Sci 51:627–659

    Article  CAS  Google Scholar 

  • Perkins TT, Smith DE, Chu S (1994) Direct observation of tube-like motion of a single polymer chain. Science 264:819–822

    Article  PubMed  CAS  Google Scholar 

  • Prochniewicz E, Zhang Q, Janmey PA, Thomas DD (1995) Cooperativity in F-actin:binding of gelsolin at the barbed end affects the structure of the whole filament. Biophys J 68:A248

    Google Scholar 

  • Radzihovsky L, Frey E (1993) Kinetic theory of flux-line hydrodynamics:liquid phase with disorder. Phys Rev B 48:10357–10381

    Article  Google Scholar 

  • Ruddies R., Goldmann WH, Isenberg G, Sackmann E (1993) The viscoelasticity of entangled actin networks:the influence of defects and modulation by talin and vinculin. Eur Biophys J 22:309–322

    Article  PubMed  CAS  Google Scholar 

  • Sackmann E (1994) Intracellular and extracellular macromolecular networks — physics and biologicla function. Macromol Chem Phys 194:7–28

    Article  Google Scholar 

  • Sato T, Takada Y, Teramoto A (1991) Dynamics of stiff-chain polymers in isotropic solution. 3. Flexibility effect. Macromolecules 24:6220–6226

    Article  CAS  Google Scholar 

  • Schmidt CF, Bärmann M, Isenberg G, Sackmann E (1989) Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin. A quasielastic light scattering and microfluorescence study. Macromolecules 22:3638–3649

    Article  CAS  Google Scholar 

  • Semenov AN (1986) Dynamics of concentrated solutions of rigid-chain polymers, part 1. Brownian motion of persistent macromolecules in isotropic solution. J Chem Soc, Faraday Trans 2 (82):317–329

    Google Scholar 

  • Sheterline P, Clayton J, Sparrow J (1995) Actin. Protein Profile 2(1):1–103

    PubMed  CAS  Google Scholar 

  • Smith BS, Finzi L, Bustamente C (1992) Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP (1993) On the crawling of animal cells. Science 260:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Suzuki A, Maeda T, Ito T (1991) Formation of liquid crystalline phase of actin filament solutions and its dependence on filament length as studied by optical birefringence. Biophys J 59:25–30

    Article  PubMed  CAS  Google Scholar 

  • Volkmuth WD, Austin RH (1992) DNA electrophoresis in microlithographic arrays. Nature 358:600–602

    Article  PubMed  CAS  Google Scholar 

  • Vroege GJ, Odijk T (1988) Induced chain rigidity, splay modulus, and other properties of nematic polymer liquid crystals. Macromolecules 21:2848–2858

    Article  CAS  Google Scholar 

  • Vroege GJ, Lekkerkerker HNW (1992) Phase transitions in lyotropic colloidal and polymer liquid crystal. Rep Prog Phys 55:1241–1315

    Article  CAS  Google Scholar 

  • Wegner A J (1975) Head to tail polymerization of actin. Mol Biol 108:139–150

    Google Scholar 

  • Williams DRM, Warner M (1990) Statics and dynamics of hairpins in worm-like main chain nematic polymer liquid crystals. J Phys Fr 51:317–339

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Käs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Käs, J., Guck, J., Humphrey, D. (1998). Dynamics of Single Protein Polymers Visualized by Fluorescence Microscopy. In: Isenberg, G. (eds) Modern Optics, Electronics and High Precision Techniques in Cell Biology. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80370-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80370-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80372-7

  • Online ISBN: 978-3-642-80370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics