Advertisement

Micromanipulation of Macromolecules: How to Measure the Stiffness of Single Microtubules

Part of the Principles and Practice book series (PRINCIPLES)

Abstract

Optical tweezers are a combination of an intense light source and a standard light microscope, making it possible to grab and manipulate optically refracting particles in solution with the momentum of light. Ashkin and Dziedzic first used optical tweezers to manipulate biological objects such as viruses and bacteria in 1987. Since then, single-beam laser traps have frequently been employed to hold, move, and deform cells and subcellular particles. Examples include, but are not restricted to, the holding of yeast cells within a trap for more than one cell cycle (Ashkin et al. 1987), the manipulation of nuclei and organelles in plant cells (Ashkin and Dziedzic 1989; Leitz et al. 1994) and protozoa (Aufderheide et al. 1992), the displacement of chromosomes or chromosomes fragments in cultured cells (Berns et al. 1989; Seeger et al. 1991), the blockage of axonal transport (MArtenson et al. 1993), and cell sorting (Buican 1991; for reviews, see Block 1990; Kuo and Sheetz 1992; Weber and Greulich 1992). These studies have demonstrated convingcingly that intracellular organelles up to the size of nuclei as well as whole cells can be displaced or deformed without damaging effects. Apart from these in vivo experiments, optical tweezers-based techniques are widely used to measure physical parameters of single molecular motors and their step sizes (Finer et al. 1994; Kuo and Sheets 1993; Svoboda et al. 1993), or the elastic parameters of DNA (Perkins et al. 1995) or microtubules (Kurachi et al. 1995).

Keywords

Optical Tweezer Flexural Rigidity Optical Trapping Standard Light Microscope Single Microtubule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashkin A, Dziedzic JM (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520PubMedCrossRefGoogle Scholar
  2. Ashkin A, Dziedzic JM (1989) Internal cell manipulation using infrared laser traps. Proc Natl Acad Sci USA 86:7914–7918PubMedCrossRefGoogle Scholar
  3. Aufderheide KJ, Du Q, Fry ES (1992) Directed positioning of nuclei in living Paramecium tetraurelia: use of the laser optical force trap for developmental biology. Dev Genet 13:234–240CrossRefGoogle Scholar
  4. Berns MW, Wright WH, Tromberg BJ, Profeta GA, Andrews JJ, Walter RJ (1989) Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle. Proc Natl Acad Sci USA 86:4539–4543PubMedCrossRefGoogle Scholar
  5. Block SM (1990) Optical tweezers:a new tool for biophysics. In:Foskett JK, Grinstein S (eds) Noninvasive techniques in cell biology. John Wiley, New York, pp 375–402Google Scholar
  6. Buican TN (1991) Automated cell separation techniques based on optical trapping. Am Chem Soc Symp Ser 464:59–72Google Scholar
  7. Doi M, Edwards S (1986) The theory of polymer dynamics. Clarendon, OxfordGoogle Scholar
  8. Dye RB, Fink SP, Williams RC (1993) Taxol-induced flexibility of microtubules and its reversal by MAP-2 and tau. J Biochem 268:6847–6850Google Scholar
  9. Felgner H, Frank R, Schliwa M (1996) Flexural rigidity of microtubules measured with the use of optical tweezers. J Cell Sci 109:509–516PubMedGoogle Scholar
  10. Feynman RP, Leighton RB, Sands M (1964) The Feynman lectures on physics II. Addison-Wesley, ReadingGoogle Scholar
  11. Finer JT, Simmons RM, Spudich JA (1994) Single myosin molecule mechanics:piconewton forces and nanometre steps. Nature 368:113–119PubMedCrossRefGoogle Scholar
  12. Gittes F, Mickey B, Nettleton J, Howard J (1993) Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. J Cell Biol 120:923–934PubMedCrossRefGoogle Scholar
  13. Kuo SC, Sheetz MP (1992) Optical tweezers in cell biology. Trends Cell Biol 2:116–118PubMedCrossRefGoogle Scholar
  14. Kuo SC, Sheetz MP (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234PubMedCrossRefGoogle Scholar
  15. Kurachi M, Hoshi M, Tashiro H (1995) Buckling of a single microtubule by optical trapping forces:direct measurement of microtubule rigidity. Cell Motil Cytoskel 30:221–228CrossRefGoogle Scholar
  16. Kurz JC, Williams RC (1995) Microtubule-associated proteins and the flexibility of microtubules. Biochem 34:13374–13380CrossRefGoogle Scholar
  17. Landau LD, Lifschitz EM (1986) Theory of elasticity, 3rd edn. Pergamon, OxfordGoogle Scholar
  18. Leitz G, Weber G, Seeger S, Greulich KO (1994) The laser microbeam trap as an optical tool for living cells. Physiol Chem Phys Med NMR 26:69–88PubMedGoogle Scholar
  19. Mandelkow EM, Hermann M, Rühl U (1985) Tubulin domains probed by limited protolysis and subunit-specific antibodies. J Mol Biol 185:311–327PubMedCrossRefGoogle Scholar
  20. Mandelkow E, Mandelkow E-M (1994) Microtubule structure. Curr Opinion Struct Biol 4:171–179CrossRefGoogle Scholar
  21. Mandelkow E, Mandelkow E-M (1995) Microtubules and microtubule-associated proteins. Curr Opinion Cell Biol 7:72–81PubMedCrossRefGoogle Scholar
  22. Martenson C, Stone K, Reedy M, Sheetz MP (1993) Fast axonal transport is required for growth cone advance. Nature 366:66–69PubMedCrossRefGoogle Scholar
  23. Perkins TT, Smith DE, Larson RG, Chu S (1995) Stretching of a single tethered polymer in a uniform flow. Science 268:83–87PubMedCrossRefGoogle Scholar
  24. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667PubMedCrossRefGoogle Scholar
  25. Seeger S, Manojembashi S, Hutter K-J, Futerman G, Wolfrum J, Greulich KO (1991) Application of laser optical tweezers in immunology and molecular genetics. Cytometry 12:497–504PubMedCrossRefGoogle Scholar
  26. Shelanski ML, Gaskin F, Cantor CR (1973) Assembly of microtubules in the absence of added nucleotides. Proc Natl Acad Sci USA 70:765–768PubMedCrossRefGoogle Scholar
  27. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct observation of kinesin stepping by optical trapping interferometry. Nature 365:721–727PubMedCrossRefGoogle Scholar
  28. Venier P, Maggs AC, Carlier M-F, Pantaloni D (1994) Analysis of microtubule rigidity using hydrodynamic flow and thermal fluctuations. J Biochem 269:13353–13360Google Scholar
  29. Weber G, Greulich KO (1992) Manipulation of cells, organelles, and genomes by laser microbeam and optical trap. Int Rev Cytol 133:1–41PubMedCrossRefGoogle Scholar
  30. Witman GB (1986) Isolation of Chlamydomonas flagella and flagellar axonemes. Methods Enzymol 134:280–290PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Harald Felgner
    • 1
    • 2
  • Rainer Frank
    • 1
  • Manfred Schliwa
    • 1
  1. 1.Adolf-Butenandt-Institut (Zellbiologie)Ludwig-Maximilians-UniversitätMünchenGermany
  2. 2.Lehrstuhl für Biophysik E22Technische Universität MünchenGarchingGermany

Personalised recommendations