Möglichkeiten zur Verbesserung einer gestörten Splanchnikusperfusion

  • G. Nöldge-Schomburg
  • A. Goepfert
Conference paper
Part of the Refresher Course Aktuelles Wissen für Anästhesisten book series (REFRESHER COUR, volume 23)


Trotz Erweiterung therapeutischer und diagnostischer Möglichkeiten ist auch heute noch das Multiorganversagen eine der häufigsten Todesursachen bei Intensivpatienten. Die symptomatische Behandlung der erkrankten Einzelorgane, gestützt durch ein teils invasives Monitoring, war häufig der Hauptansatz in der Behandlung dieses komplexen Krankheitsbildes. Die unverändert hohe Mortalität bei Multiorganversagen wurde in der APACHE III Studie belegt [1]. Dort wurde nachgewiesen, daß keine nennenswerten Veränderungen bezüglich Inzidenz und Outcome bei Multiorganversagen gegenüber der 1985 durchgeführten APACHE II Studie erreicht wurden.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Knaus WA, Wagner DP, Draper EA (1991) The APACHE III prognosis system: Risk prediction of hospital mortality for critically ill hospitalized adults. Chest 100: 1619–1631PubMedCrossRefGoogle Scholar
  2. 2.
    Meakins JL, Marshall JC (1989) The gut as the motor of multiple system organ failure. In: Marston A, Bulkley GB, Fiddian-Green RG et al (eds) Splanchnic ischaemia and multiple organ failure. London: Edwart Arnold, pp 339–348Google Scholar
  3. 3.
    Gimson AES (1987) Hepatic dysfunction during bacterial sepsis. Intensive Care Med 13: 162–166PubMedCrossRefGoogle Scholar
  4. 4.
    Michie HR, Guilluon PJ, Wilmore DW (1989) Tumor necrosis factor and bacterial sepsis. Br J Surg 76: 670–671PubMedCrossRefGoogle Scholar
  5. 5.
    Maynard N, Bihari D, Beale R et al (1993) Assessment of splanchnic oxygenation by gastric tonometry in patients with acute circulatory failure. JAMA 270: 1203–1210PubMedCrossRefGoogle Scholar
  6. 6.
    Lautt WW, Legare DJ, Ezzat WR (1990) Quantitation of hepatic arterial buffer response to graded changes in portal blood flow. Gastroenterology 98: 1024–1028PubMedCrossRefGoogle Scholar
  7. 7.
    Kawada N, Tran-Thi T-A, Klein H, Decker K (1993) The contraction of hepatic stellate (ito) cells stimulated with vasoactive substances possible involvement of endothelin 1 and nitric oxide in the regulation of the sinusoidal tonus. Eur J Biochem 213: 815–823PubMedCrossRefGoogle Scholar
  8. 8.
    Fink MP (1991) Gastrointestinal mucosal injury in experimental models of shock, trauma, and sepsis. Crit Care Med 19: 627–641PubMedCrossRefGoogle Scholar
  9. 9.
    Lundgren O, Haglund U (1978) The pathophysiology of the intestinal countercurrent exchanger. Life Sciences 23: 1411–1422PubMedCrossRefGoogle Scholar
  10. 10.
    Bohlen HG (1980) Intestinal tissue PO2 and microvascular response during glucose exposure. Am J Physiol 238: H 164–H 171Google Scholar
  11. 11.
    Dalen JE, Bone RC (1996) Is it time to pull the pulmonary artery catheter? JAMA 276: 916–918PubMedCrossRefGoogle Scholar
  12. 12.
    Bowles SA, Schlichtig R, Klions HA (1992) The supply-dependent intestine does not produce lactate during progressive flow stagnation. Am Rev Respir Dis 154: A792Google Scholar
  13. 13.
    Kainuma M Nakashima K, Sakuma I, Kawase M, Komatsu T, Shimada Y, Nimura Y, Nonami T (1992) Hepatic venous hemoglobin oxygen saturation predicts liver dysfunction after hepatectomy. Anesthesiology 76: 379–386PubMedCrossRefGoogle Scholar
  14. 14.
    Arnold J, Hendriks J, Ince C, Bruining H (1994) Tonometry to assess the adequacy of splanchnic oxygenation in the critically ill patient. Intensive Care Med 20: 452–456PubMedCrossRefGoogle Scholar
  15. 15.
    Fiddian-Green RG (1982) Back diffusion of CO2, and its influence on the intramural pH in gastric mucosa. J Surg Res 33: 39–48PubMedCrossRefGoogle Scholar
  16. 16.
    Ivatury RR, Simon RJ, Havriliak D, Garcia C, Greenbarg J, Stahl WM (1995) Gastric mucosal pH and oxygen delivery and oxygen consumption indices in the assessment of adequacy of resucitation after trauma: a prospective, randomized study. Journal of Trauma 39: 128–136PubMedCrossRefGoogle Scholar
  17. 17.
    Knichwitz G (1996) A new method for continuous intramucosal PCO2 measurement in the gastrointestinal tract. Anesth Analg 83: 6–11PubMedGoogle Scholar
  18. 18.
    Shoemaker WC (1988) Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 94: 1176–1186PubMedCrossRefGoogle Scholar
  19. 19.
    Gattionini L (1995) A trial goal-oriented hemodynamic therapy in critically ill patients. N Engl J Med 333: 1025–1032CrossRefGoogle Scholar
  20. 20.
    Edouard AR, Degremont A-C, Duranteau J, Pussard E, Berdeaux A, Samii K (1994) Heterogenous regional vascular responses to simulated transient hypovolemia in man. Intensive Care Med 20: 414–420PubMedCrossRefGoogle Scholar
  21. 21.
    Mythen MG, Webb AR (1994) The role of gut mucosal hypoperfusion in the pathogenesis of postoperative organ dysfunction. Intensive Care Med 20: 203–209PubMedCrossRefGoogle Scholar
  22. 22.
    Kainuma M, Kimura N, Nonami T, Kurokawa T, Ito T, Nakashima K et al (1992) Effect of dobutamine on hepatic blood flow and oxygen supply-uptake ratio during enflurane nitrous oxide anesthesia in humans undergoing liver resection. Anesthesiology 77: 432–438PubMedCrossRefGoogle Scholar
  23. 23.
    Roytblat L, Gelman S, Bradley EL, Henderson T, Park D (1990) Dopamine and hepatic oxygen supply-demand relationship. Can J Physiol Pharmacol 68: 1165–1169PubMedCrossRefGoogle Scholar
  24. 24.
    Hirsch LJ, Ayabe T, Glick D (1976) Direct effects of various catecholamines on liver circulation in dogs. Am J Physiol 77: 432–438Google Scholar
  25. 25.
    Priebe H-J, Nöldge GFE, Armbruster K, Geiger K (1995) Differential effects of dobutamine, dopamine, and noradrenaline on splanchnic haemodynamics and oxygenation in the pig. Acta Anaesthesiol Scand 39: 1088–1096PubMedCrossRefGoogle Scholar
  26. 26.
    Moss R, Tighe D, Haywood GA et al (1990) The differening effects of dopexamine, dobutamine and placebo on the histology of the liver in pig peritonitis. Intensive Care Med 16 (Suppl. 1): 66Google Scholar
  27. 27.
    Fink MP, Rothschild R, Deniz YF, Wang H, Lee PC, Cohn SM (1989) Systemic and mesenteric O2 metabolism in endotoxin pigs: effect of ibuprofen and meclofenamate. J Appl Physiol 67: 1950–1957PubMedGoogle Scholar
  28. 28.
    Zhang H, Spapen H, Nguyen DN, Rogiers P, Bakker J, Vincent JL (1995) Effects of N-acetyl- L-cysteine in regional blood flow during endotoxic shock. Eur J Surg 9: 236–243Google Scholar
  29. 29.
    Leyer CV (1988) Regional blood flow responses to vasodilators and inotropes in congestive heart failure. Am J Cardiol 62: 86E–93ECrossRefGoogle Scholar
  30. 30.
    Spain DA, Wilson MA, Bar-Natan MD, Garrison RN (1994) Nitric oxide synthase inhibition aggravates intestinal microvascular vasoconstriction and hypoperfusion of bacteremia. J Trauma 36: 720–725PubMedCrossRefGoogle Scholar
  31. 31.
    Johansson K, Ahn H, Lindhagen J, Tryselius U (1988) Effect of epidural anaesthesia on intestinal blood flow. Brit J Anaesth 75: 73–76Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • G. Nöldge-Schomburg
  • A. Goepfert

There are no affiliations available

Personalised recommendations