Skip to main content

Pharmacokinetics of Fluoroquinolones in Experimental Animals

  • Chapter
Quinolone Antibacterials

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 127))

Abstract

Absorption, distribution, metabolism and excretion (ADME) are important processes which not only characterize the pharmacokinetics of an antibacterial agent but also influence significantly its antibacterial efficacy at the focus of infection. During the developmental process of an antimicrobial agent, infection models in experimental animals bridge the gap between the in vitro and clinical evaluation of an anti-infective agent. However, some restrictions exist, which, if ignored, will compromise the conclusions drawn from the data generated in animal models of infections. One of the major drawbacks in the use of animal models may be the differences in pharmacokinetics of a drug between animals and humans. It is well documented that animals eliminate drugs faster than humans (Boxenbaum 1982; Dedrick 1973; Mordenti 1985,1986; Sawada et al. 1984). These differences can be overcome, for example, by repeated fractional dosing or continuous infusion. The species-specific differences in the routes of excretion present difficulties, and in drug metabolism these difficulties cannot be overcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aihara M, Shigematsu A (1993) Absorption, distribution and excretion after multiple oral administrations of [14C]temafloxacin in rats. Chemotherapy (Tokyo) 41:163

    Google Scholar 

  • Andrews JM, Ashby JP, Wise R (1987) Factor affecting the in vitro activity of roxithromycin. J Antimicrob Chemother 20[Suppl B]:31–37

    PubMed  CAS  Google Scholar 

  • Baldwin DR, Honeybourne D, Wise R (1992a) Pulmonary disposition of antimicrobial agents: methodological considerations. Antimicrob Agents Chemother 36:1171–1175

    PubMed  CAS  Google Scholar 

  • Baldwin DR, Honeybourne D, Wise R (1992b) Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance. Antimicrob Agents Chemother 36:1176–1180

    PubMed  CAS  Google Scholar 

  • Bergan T (1978) Kinetics of tissue penetration. Are high plasma peak concentrations or substained levels preferable for effective antibiotic therapy? Scand J Infect Dis Suppl 14:36–46

    PubMed  CAS  Google Scholar 

  • Bergan T (1981) Pharmacokinetics of tissue penetration of antibiotics. Rev Infect Dis 3:45–66

    Article  PubMed  CAS  Google Scholar 

  • Bergan T (1988) Pharmacokinetics of fluorinated quinolones. In: Andriole VJ (ed) The quinolones. Academic, London, pp 119–154

    Google Scholar 

  • Bergan T, Dalhoff A, Thorstensson SB (1985) A review of the pharmacokinetics and tissue penetration of ciprofloxacin. Ciprofloxacin workshop proceedings. Sieber Mclntyre, Hongkong, pp 23–36

    Google Scholar 

  • Bergan T, Engeset A, Olszewski W (1987) Does serum protein binding inhibit tissue penetration of antibiotics? Rev Infect Dis 4:713–718

    Article  Google Scholar 

  • Bergan T, Dalhoff A, Rohwedder R (1988) Pharmacokinetics of ciprofloxacin. Infection 16 Suppl 1:3–13

    Google Scholar 

  • Boxenbaum H (1982) Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinets. J Pharmacokinet Biopharm 10:201–227

    Article  PubMed  CAS  Google Scholar 

  • Carlier MB, Tulkens PM (1988) Uptake and subcellular localization of lomefloxacin (SC 47111; L) in phagocytic cells in comparison with pefloxacin (P) and fleroxacin (F). Abstracts of the 28th Interscience Conference on Antimicrobial Agents and Chemotherapy, no 52

    Google Scholar 

  • Carlier MB, Scorneaux B, Zenebergh A, Tulkens PM (1987) Uptake and subcellular distribution of 4 quinolones (pefloxacin, P; ciprofloxacin, C; ofloxacin, O; RO-23- 6240, R) in phagocytes. Abstracts of the 27th Interscience Conference on Antimicrobial Agents and Chemotherapy, no 622

    Google Scholar 

  • Craig WA, Ebert SC (1991) Killing and regrowth of bacteria in vitro: a review. Scand J Infect Dis Suppl 74:63–70

    Google Scholar 

  • Craig WA, Ebert SC (1992) Continuous infusion of /J-lactam antibiotics. Antimicrob Agents Chemother 36:2577–2583

    PubMed  CAS  Google Scholar 

  • Craig WA, Leggett JE, Ebert S, Fantin B (1991) Comparative dose-effect relations at several dosing intervals for beta-lactam, aminoglycoside and quinolone antibiotics against gram- egative bacilli in murine thigh-infection and pneumonitis models. Scand J Infect Dis [Suppl] 74:179–184

    Google Scholar 

  • Dalhoff A (1985) Gewebespiegel von Penicillinen beim Menschen. FAC Fortschr Antimikrob Antineoplast Chemother 4–6:1389–1416

    Google Scholar 

  • Dalhoff A (1989) A reivew of quinolone tissue pharmacokinetics. In: Fernandes PB (ed) International Telesymposium on quinolones. Prous Science, Barcelona, pp 277–312

    Google Scholar 

  • Davey PG, Precious E, Winter J (1991) Bronchial penetration of ofloxacin after single and multiple oral dosage. J Antimicrob Chemother 27:335–341

    Article  PubMed  CAS  Google Scholar 

  • Dedrick RL (1973) Animal scale up. J Pharmacokinet Biopharm 1:435–461

    Article  PubMed  CAS  Google Scholar 

  • Derendorf H (1989) Pharmacokinetic evaluation of ß-lactam antibiotics. J Antimicrob Chemother 24:407–413

    Article  PubMed  CAS  Google Scholar 

  • Derendorf H, Limberg J, Lebel M (1990) Evaluation of free tissue concentrations of fleroxacin after oral administration. Pharm Res 7:422–424

    Article  PubMed  Google Scholar 

  • Endo M, Kohno M, Yamada Y, Otsuka M, Takaiti O (1993) Absorption, distribution and excretion of [14C]temafloxacin in rats. Chemotherapy (Tokyo) 41:140- 154

    CAS  Google Scholar 

  • Fabre D, Bressolle F, Gomeni R, Arich C, Lemesle F, Beziau H, Galtier M (1991) Steady-state pharmakokinetics of ciprofloxacin in plasma from patients with nosocomial pneumonia: enetration of the bronchial mucosa. Antimicrob Agents Chemother 35:2521–2525

    PubMed  CAS  Google Scholar 

  • Fernandes PB, Shipkowitz N, Swanson N (1989) Comparative efficacy of the fluoroquinolones in experimental animal infections: correlation with in vitro potency and pharmacokinetics. In: Fernandes PB (ed) International Telesymposium on quinolones. Prous Science, Barcelone, pp 255–268

    Google Scholar 

  • Fischman AJ, Livni E, Babich J (1992) Pharmacokinetics of [18F]-labelled fleroxacin in rabbits with Escherichia coli infections, studied with positron emission tomography. Antimicrob Agents Chemother 36:2286–2292

    PubMed  CAS  Google Scholar 

  • Garrafo R, DE Salvator F, Dellamonica P, Lafallus P (1988) Ciprofloxacin penetration in bronchial mucosa after oral treatment (Abstr 342). International Congress on Infections Diseases, 16–21 April, Rio de Janeiro

    Google Scholar 

  • Gerber AU, Feller-Segessenmann C (1985) In vivo assessment of in vitro killing patterns of Pseudomonas aeruginosa. J Antimicrob Chemother 15:201–206

    Article  PubMed  CAS  Google Scholar 

  • Gerber AU, Wiprachtiger P, Stettier-Spichiger U, Lebek G (1982a) Constant infusion versus intermittent doses of gentamicin against Pseudomonas aeruginosa in vitro. J Infect Dis 145:554–560

    Article  PubMed  CAS  Google Scholar 

  • Gerber AU, Vastola AP, Brandel J, Craig WA (1982b) Selection of aminoglycoside- resistant variants of Pseudomonas aeruginosa in an in vivo model. J Infect Dis 146:691–697

    Article  PubMed  CAS  Google Scholar 

  • Gerber AU, Craig WA, Brugger HP, Feller C, Vastola AP, Brandel J (1983) Impact of dosing intervals on activity of gentamicin and ticarcillin against Pseudomonas aeruginosa in granulocytopenic mice. J Infect Dis 147:910–917

    Article  PubMed  CAS  Google Scholar 

  • Gerber AU, Brugger HP, Feller C, Stritzko T, Stalder B (1986) Antibiotic therapy of infections due to Pseudomonas aeruginosa in normal and granulocytopenic mice: comparison of murine and human pharmacokinetics. J Infect Dis 153:90- 97

    Article  PubMed  CAS  Google Scholar 

  • Gerding DN, Peterson LR, Moody JA, Fasching CE (1985) Mezlocillin, ceftizoxime and amikacin alone and in combination against six Enterobacteriaceae in a neutropenic site in rabbits. J Antimicrob Chemother 15:207–219

    Article  PubMed  CAS  Google Scholar 

  • Hand WE, King-Thomson N, Hohman JW (1987) Entry of roxithromycin (RU 965), imipenem, cefotaxime, trimethroprim and metronidazole into human polymorphonuclear leukocytes. Antimicrob Agents Chemother 31:1553–1557

    PubMed  CAS  Google Scholar 

  • Honeybourne D, Baldwin DR (1992) The site concentrations of antimicrobial agents in the lung. J Antimicrob Chemother 30:249–260

    Article  PubMed  CAS  Google Scholar 

  • Karabalut N, Drusano GL (1993) Pharmacokinetics of the quinolone antimicrobial agents. In: Hooper DC, Wolfson JS (eds) Quinolone antimicrobial agents, 2nd edn. American Society for Microbiology, Washington, pp 195–223

    Google Scholar 

  • Kawahara F, Ooie T, Nagatsu Y, Ulhida H (1991) Metabolism of fleroxacin in humans and various experimental animals. Chemotherapy (Tokyo) 38:122–134

    Google Scholar 

  • Kohno M, Kodama H, Endo M, Otsuka M, Takaiti O (1993) Absorption, metabolism and excretion of [14C]temafloxacin in dogs. Chemotherapy (Tokyo) 41:177–187

    CAS  Google Scholar 

  • Limberg J, Lebel M, Derendorf H (1990) Evaluation of free tissue concentrations of fleroxacin after oral administration. Pharmac Res 7(4):422–424

    Article  CAS  Google Scholar 

  • May JR (1955) The laboratory background to the use of penicillin in chronic bronchitis and bronchiectasis. Br J Tuberc Dis Chest 49:166–173

    Article  PubMed  CAS  Google Scholar 

  • Montay G, Goueffon Y, Roquet F (1984) Absorption, distribution, metabolic fate, and elimination of pefloxacin mesylate in mice, rats, dogs, monkeys and humans. Antimicrob Agents Chemother 25:463–472

    PubMed  CAS  Google Scholar 

  • Mordenti I (1985) Forecasting cephalosporin and monobactam antibiotic half-lives in humans from data collected in laboratory animals. Antimicrob Agents Chemother 27:887–891

    PubMed  CAS  Google Scholar 

  • Mordenti I (1986) Man versus beast: pharmacokinetic scaling in mammals. J Pharm Sci 75:1028–1040

    Article  PubMed  CAS  Google Scholar 

  • Murayama S, Hirai K, Ito A, Abe Y, Irikura T (1981) Studies on absorption, distribution and excretion of AM-715 in animals by bioassay method. Chemotherapy (Tokyo) 29:98–104

    CAS  Google Scholar 

  • Nagata O, Yamada T, Takahashi, K, Okezaki E (1988a) Disposition and metabolism of NY-198. III. Absorption, metabolism and excretion of NY-198 in monkeys by high-performance liquid chromatography. Chemotherapy (Tokyo) 36:144–150

    CAS  Google Scholar 

  • Nagata O, Yamada T, Yamaguchi T, Okezaki E (1988b) Disposition and metabolism of NY-198. IV. Absorption, distribution and excretion of 14C-NY-198 in rats and dogs. Chemotherapy (Tokyo) 36:151–173

    CAS  Google Scholar 

  • Nagata O, Yamada T, Yamaguchi T, Hasegawa H, Okezaki E (1988c) Disposition and metabolism of NY-198. V. Metabolism of 14C-NY-198 in rats and dogs. Chemoterapy (Tokyo) 36:174–187

    CAS  Google Scholar 

  • Nagatsu Y, Endo K, Irikura T (1981a) Studies on the fate of 14C-labelled AM-715. Chemotherapy (Tokyo) 29:105–118

    CAS  Google Scholar 

  • Nagatsu Y, Endo K, Irikura T (1981b) Studies on the metabolism of 14C-labelled AM- 715. Chemotherapy (Tokyo) 29:119–127

    CAS  Google Scholar 

  • Nagatsu Y, Mukai M, Takagi K, Uchida H (1990) Absorption, distribution and excretion of 14C-fleroxacin in rats and rabbits. Chemotherapy (Tokyo) 38:100–114

    CAS  Google Scholar 

  • Nakamura S, Kurobe N, Kashimoto S, Ohue T, Takase Y, Shimizu M (1984) Absorption, distribution, excretion and metabolism of AT-2266 in experimental animals. Chemotherapy (Tokyo) 32:86–94

    CAS  Google Scholar 

  • Nakamura S, Kurobe N, Ohue T, Hashimoto M, Shimizu M (1990) Pharmacokinetics of a novel quinolone, AT-4140, in animals. Antimicrob Agents Chemother 34:89- 93

    PubMed  CAS  Google Scholar 

  • Nakamura S, Kurobe N, Ohue T, Hashimoto M, Shimizu M (1991) Absorption, distribution and excretion of sparfloxacin in animals. Chemotherapy (Tokyo) 39:123- 130

    CAS  Google Scholar 

  • Okezaki E, Ohmichi K, Koike S, Takahashi Y, Makino E (1988a) Disposition and metabolism of NY-198.1. Bioassay study of absorption, distribution and excretion in various animals. Chemotherapy (Tokyo) 36:132–137

    CAS  Google Scholar 

  • Okezaki E, Makino E, Ohmichi K, Nagata O, Yamada T, Takahashi K (1988b) Disposition and metabolism of NY-198. II. HPLC and bioassay studies of absorption and excretion in the dog. Chemotherapy (Tokyo) 36:138–143

    CAS  Google Scholar 

  • Rubin RH, Livni E, Babich J, Alpert NM, Liu Y-Y, Tham E, Prosser B, Cleeland R, Callahan RJ, Correia JA, Strauss HW, Fischmann AJ (1993) Pharmacokinetics of fleroxacin as studied by positron emission tomography and [18F]fleroxacin. Am J Med 94 Suppl 3A:31–37

    Google Scholar 

  • Ryan DM, Cars O (1980) Antibiotic assay in muscle: are conventional tissue levels misleading as indicator of the antibacterial activity. Scand J Infect Dis 12:307–309

    PubMed  CAS  Google Scholar 

  • Sawada Y, Hanano M, Sugiyama Y, Iga T (1984) Prediction of the disposition of ¡5- lactam antibiotics in humans from pharmacokinetic parameters in animals. J Pharmacokinet Biopharm 12:241–261

    Article  PubMed  CAS  Google Scholar 

  • Scorneaux B, Tulkens PM (1992a) Activities of macrolides (ML) and fluoroquinolones (FQ) against Legionella pneumophila (L.p.) in a model of J774 macrophages (M0) in relation to their cellular accumulation. Abstracts of the 32nd International Conference on Antimicrobial Agents and Chemotherapy, no 1701

    Google Scholar 

  • Scorneaux B, Tulkens PM (1992b) Activities of azithromycin (Az), sparfloxacin (Sp), gentamicin (Gm) and ampicillin (Am) against a series of facultative and obligatory intracellular parasites in a model of J774. Abstracts of the 32nd International Conference on Antimicrobial Agents and Chemotherapy, no 1706

    Google Scholar 

  • Scorneaux B, Orfila J, Tulkens PM (1991) Activities of erythromycin and Roxithromycin against Chlamydia spp. in the model of J774 M0 in relation to their cellular accumulation. Abstracts of the 17th International Congress of Chemotherapy, no 783

    Google Scholar 

  • Sekine Y, Yamaguchi T, Miyamoto M, Suzuki R, Yoshida K, Minami A, Nakamura S, Hashimoto M (1984) Pharmacokinetics of a new antibacterial agent AT-2266. I. Metabolism of AT-2266 in rats, dogs, monkeys and man. Chemotherapy (Tokyo) 32:95–102

    CAS  Google Scholar 

  • Siefert HM, Maruhn D, Maul W, Forster D, Ritter W (1986a) Pharmacokinetics of ciprofloxacin. 1st Communication: absorption, concentrations in plasma, metabolism and excretion after a single administration of [14C] ciprofloxacin in albino rats and rhesus monkeys. Arzneimittelforschung 36:1496–1502

    PubMed  CAS  Google Scholar 

  • Siefert HM, Maruhn D, Scholl H (1986b) Pharmacokinetics of ciprofloxacin. 2nd Communication: distribution to and elimination from tissues and organs following single or repeated administration of [14C]ciprofloxacin in albino rats. Arzneimittelforschung 36:1503–1510

    PubMed  CAS  Google Scholar 

  • Stamey TA, Meares EM, Winningham DG (1970) Chronic bacterial prostatitis and the diffusion of drugs into prostatic fluid. J Urol 103:187–194

    PubMed  CAS  Google Scholar 

  • Sudo K, Hashimoto K, Kurata T, Okazaki O, Tsumura M, Tachizawa H (1984) Metabolic disposition of DL-8280. The third report: metabolism of 14C-DL-8280 in various animal species. Chemotherapy (Tokyo) 32:1203–1210

    CAS  Google Scholar 

  • Takeda K, Yano S, Sakuma Y, Koyama Y, Yamaguchi T (1993) Pharmacokinetics of temafloxacin in mice, rats and hamsters. Chemotherapy (Tokyo) 41:128–139

    CAS  Google Scholar 

  • Tsumura M, Sato K, Une T, Tachizawa H (1984) Metabolic disposition of DL-8280. The first report: comparison between absorption and excretion of DL-8280 in the dog and monkey by bioassay and HPLC methods. Chemotherapy (Tokyo) 32:1179–1184

    CAS  Google Scholar 

  • Tulkens PM (1991) Intracellular distribution and activity of antibiotics. Eur J Clin Microbiol Infect Dis 10:100–106

    Article  PubMed  CAS  Google Scholar 

  • Vogelmann B, Craig WA (1986) Kinetics of antimicrobial activity. J Pediatr 108:835- 840

    Article  Google Scholar 

  • Vogelmann B, Gudmundsson S, Legget J, Turnidge J, Ebert S, Craig WA (1988) Correlation of antimicrobial pharmacokinetic parameters with therapeutic efficacy in an animal model. J Infect Dis 158:831–847

    Article  Google Scholar 

  • White LO (1988) The pharmacokinetics of ofloxacin, desmethyl ofloxacin and ofloxacin N-oxide in haemodialysis patients with end-stage renal failure. J Antimicrob Chemother 22[Suppl C]:65–72

    PubMed  Google Scholar 

  • White LO (1993) The serum concentrations of desmethyl ofloxacin and ofloxacin N- oxide in seriously ill patients and their possible contributions to the antibacterial activity of ofloxacin. J Antimicrob Chemother 34:300–303

    Google Scholar 

  • White LO, MacGowan AP, Lovering AM, Reeves DS, Mackay IG (1987) A preliminary report on the pharmacokinetics of ofloxacin desmethyl ofloxacin and ofloxacin N-oxide in patients with chronic renal failure. Drugs 34[Suppl 1]:56–61

    Article  PubMed  Google Scholar 

  • Wise R, Baldwin DR, Andrews JM, Honeybourne D (1991) Comparative pharmacokinetic disposition of fluoroquinolones in the lung. J Antimicrob Chemother 28[Suppl C]:65–71

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews J, Imbimbo BP, Greaves I, Honeybourne D (1993) The penetration of rufloxacin into sites of potential infection in the respiratory tract. J Antimicrob Chemother 32:861–866

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Suzuki R, Sekine Y (1984) Pharmacokinetics of a new antibacterial agent AT-2266. II. Plasma levels and urinary excretion of AT-2266 and its metabolites in mice, rats, cats, dogs and monkeys. Chemotherapy (Tokyo) 32:103–108

    CAS  Google Scholar 

  • Yano S, Sakuma Y, Takeda K (1993) Absorption, metabolism and excretion of [14C]temafloxacin in dogs. Chemotherapy (Tokyo) 41:177–187

    Google Scholar 

  • Yasuda T, Watanabe Y, Hayashi T, Kitayama R (1988a) Serum protein binding of T- 3262. Chemotherapy (Tokyo) 36:143–148

    CAS  Google Scholar 

  • Yasuda T, Watanabe Y, Minami S, Kumano K, Takagi S, Tsuneda R, Kanayama J (1988b) Absorption, distribution, metabolism and excretion of T-3262 in experimental animals. Chemotherapy (Tokyo) 36:149–157

    CAS  Google Scholar 

  • Zeiler HJ, Petersen U, Gau W, Ploschke HJ (1987) Antibacterial activity of the metabolites of ciprofloxacin and its significance in the bioassay. Arzneimittel- forschung 37:131–134

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dalhoff, A., Bergan, T. (1998). Pharmacokinetics of Fluoroquinolones in Experimental Animals. In: Kuhlmann, J., Dalhoff, A., Zeiler, HJ. (eds) Quinolone Antibacterials. Handbook of Experimental Pharmacology, vol 127. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80364-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80364-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80366-6

  • Online ISBN: 978-3-642-80364-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics