Advertisement

The Chemistry of the Quinolones: Chemistry in the Periphery of the Quinolones

  • U. Petersen
  • T. Schenke
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 127)

Abstract

Numerous reviews have been published to date on the structure-activity relationships of quinolones (Andriole 1988; Asahina et al. 1992; Domagala 1994; Mitscher et al. 1990, 1993; Rádl 1990; Rosen 1990; Schentag and Domagala 1985; Wentland 1990); therefore these will be mentioned only briefly in connection with the discussion of chemical reactions. This chapter focuses on the chemistry of the quinolone parent substance. There have also been several reviews published on the chemistry of quinolones (Albrecht 1977; Bouzard 1990; Chu 1993; Chu and Fernandes 1991; Lesher 1978; Leysen et al. 1991a,b; Radl and Bouzard 1992; Mitcher et al. 1988).

Keywords

Antibacterial Activity Antibacterial Agent Oxolinic Acid Cyclic Amine Quinolone Antibacterial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht R (1977) Development of antibacterial agents of the nalidixic acid type. Prog Drug Res 21:9–104PubMedGoogle Scholar
  2. Albrecht HA (1990) Cephalosporin 3’-quinolone esters with a dual mode of action. J Med Chem 33:77–86PubMedGoogle Scholar
  3. Albrecht HA, Beskid G, Christenson JG, Durkin JW, Fallat V, Georgopapadakou NH, Keith DD, Konzelmann FM, Lipschitz ER, McGarry DH, Siebelist JA, Wei CC, Weigele M, Yang R (1991a) Dual-action cephalosporins: cephalosporin 3’- quaternary ammonium quinolones. J Med Chem 34:669–675PubMedGoogle Scholar
  4. Albrecht HA, Beskid G, Christenson JG, Georgopapadakou NH, Keith DD, Konzelmann FM, Pruess DL, Rossman PL, Wei CC (1991b) Dual-action cephalosporins: cephalosporin 3’-quinolone carbamates. J Med Chem 34:2857–2864PubMedGoogle Scholar
  5. Albrecht HA, Beskid G, Christenson JG, Deitcher KH, Georgopapadakou NH, Keith DD, Konzelmann FM, Pruess DL, Wei CC (1994) Dual-action cephalosporins incorporating a 3’-tertiary-amine-linked quinolone. J Med Chem 37:400–407PubMedGoogle Scholar
  6. Anderson AG, Lok R (1972) The synthesis of azetidine-3-carboxylic acid. J Org Chem 37:3953–3955Google Scholar
  7. Andriole VT (ed) (1988) The quinolones. Academic, LondonGoogle Scholar
  8. Anonymous (1988) RD 291 097Google Scholar
  9. Araki K, Kuroda T, Uemori S, Moriguchi A, Ikeda Y (1987) EP 311 948Google Scholar
  10. Araki K, Kuroda T, Uemori S, Moriguchi A, Ikeda Y, Hirayama F, Yokoyama Y, Iwao E, Yakushiji T (1993) Quinolone antimicrobial agents substituted with morpholines at the 7-position. Syntheses and structure-activity relationships. J Med Chem 36:1356–1363PubMedGoogle Scholar
  11. Asahina Y, Fukuda Y, Fukuda H, Kyorin Pharmaceutical (1990) EP 443 498Google Scholar
  12. Asahina Y, Ishizaki T, Suzue S (1992) Recent advances in structure activity relationships in new quinolones. Prog Drug Res 38:57–106PubMedGoogle Scholar
  13. Atarashi S, Imamura M, Kimura Y, Yoshida A, Hayakawa I (1993) Fluorocyclopro- pyl quinolones. I. Synthesis and structure-activity relationships of l-(2- fluorocyclopropyl)-3-pyridonecarboxylic acid antibacterial agents. J Med Chem 36:3444–3448PubMedGoogle Scholar
  14. Barrett D, Sasaki H, Tsutsumi H, Murata M, Terasawa T, Sakane K (1995a) A concise, practical synthesis of the pyrido[3,2,1-ij]cinnoline ring system of potent DNA gyrase inhibitors. J Org Chem 60:3928–3930Google Scholar
  15. Barrett D, Tsutsumi H, Kinoshita T, Murata M, Sakane K (1995b) Synthesis of new 1,8- bridged tricyclic quinolones by a novel intramolecular arylation of N-l tethered malonamides. Tetrahedron 51:11125–11140Google Scholar
  16. Bartel S, Krebs A, Kunisch F, Petersen U, Schenke T, Grohe K, Schriewer M, Bremm KD, Endermann R, Metzger KG (1993) Bayer AG, DE 4 301 246Google Scholar
  17. Bauernfeind A (1993) Comparative in-vitro activities of the new quinolone BAY Y 3118, and ciprofloxacin, Sparfloxacin, tosufloxacin, CI-960 and CI-990. J Antimicrob Chemotherapy 31:505–522Google Scholar
  18. Bouzard D (1990) Recent advances in the chemistry of quinolones. In: Lukacs G (ed) Recent progress in the chemical synthesis of antibiotics. Springer, Berlin Heidelberg New York, pp 249–283Google Scholar
  19. Bouzard D, Di Cesare P, Essiz M, Jacquet JP, Remuzon P, Weber A, Oki T, Masuyoshi M (1989) Fluoronaphthyridines and quinolones as antibacterial agents. I. Synthesis and structure-activity relationships of new 1-substituted derivatives. J Med Chem 32:537–542PubMedGoogle Scholar
  20. Bouzard D, Di Cesare P, Essiz M, Jacquet JP, Kiechel JR, Remuzon P, Weber A, Oki T, Masuyoshi M, Kessler RE, Fung-Tome J, Desiderio J (1990) Fluoronaphthyridines and quinolones as antibacterial agents. II. Synthesis and structure-activity relationships of new 1-tert-butyl 7-substituted derivatives. J Med Chem 33:1344–1352PubMedGoogle Scholar
  21. Bouzard D, Di Cesare P, Essiz M, Jacquet JP, Ledoussal B, Remuzon P, Kessler RE, Fung-Tome J (1992a) Fluoronaphthyridines as antibacterial agents. IV. Synthesis and structure-activity relationships of 5-substituted-6-fluoro-7-(cycloalkylamino)- l,4-dihydro-4-oxo-l,8-naphthyridine-3-carboxylic acids. J Med Chem 35:518–525PubMedGoogle Scholar
  22. Bouzard D, Di Cesare P, Hoffmann P, Fung-Tome J, Kessler R (1992b) In vitro and in vivo evaluation of BMY 45243, a new 5-amino-naphthyridone derivative. Drugs Exp Clin Res 18:291–294PubMedGoogle Scholar
  23. Braish TF (1992) Pfizer Inc., WO 93/18001Google Scholar
  24. Braish TF, Fox DE (1990) Synthesis of (S,S)- and (R,R)-2-alkyl-2,5-diaza- bicyclo[2.2.1]heptanes. J Org Chem 55:1684–1687Google Scholar
  25. Braish TF, Fox DE, Norris T, Rose PR (1994) Pfizer Inc., WO 95/19361Google Scholar
  26. Braish TF, Castaldi M, Chan S, Fox DE, Keltonic T, McGarry J, Hawkins JM, Norris T, Rose PR, Sieser JE, Sitter BJ, Watson H Jr (1996) Construction of the (la,5a,6a)-6-amino-3-azabicyclo[3.1.0]hexane ring system. Synlett 1100–1102Google Scholar
  27. Bremm KD, Petersen U, Metzger KG, Endermann R (1992) In vitro evaluation of BAY Y3118, a new full-spectrum fluoroquinolone. Chemotherapy (Basel) 38:376–387Google Scholar
  28. Brighty KE (1989) Pfizer Inc., EP 413 455Google Scholar
  29. Brighty KE, Lowe JA, McGuirk PR (1987) Pfizer Inc., EP 321 191Google Scholar
  30. Brighty KE, Castaldi MJ (1996) Synthesis of (la,5a,6a)-6-amino-3-azabicyclo- [3.1.0]hexane, a novel achiral diamine. Synlett 1097–1102Google Scholar
  31. Bucsh RA, Domagala JM, Laborde E, Sesnie JC (1993) Synthesis and antimicrobial evaluation of a series of 7-[3-amino (or aminomethyl)-4-aryl (or cyclopropyl)-l- pyrrolidinyl]-4-quinolone- and l,8-naphthyridone-3-carboxylic acids. J Med Chem 36:4139–4151PubMedGoogle Scholar
  32. Carr RM, Sutherland DR (1994) A novel synthesis of carbon-labelled quinolone-3- carboxylic acid antibacterials. J Label Compound Radiopharm 34:961–971Google Scholar
  33. Carabateas PM, Brundage RP, Gelotte KO, Gruett MD, Lorenz RR, Opalka CJ Jr, Singh B, Thielking WH, Williams GL, Lesher GY (1984) l-Ethyl-l,4-dihydro-4- oxo-7-(pyridinyl)-3-quinolinecarboxylic acids. II. Synthesis. J Heterocycl Chem 21:1857–1863Google Scholar
  34. Cecchetti V, Fravolini A, Fringuelli R, Mascellani G, Pagella P, Palmioli M, Segre G, Terni P (1987) Quinolonecarboxylic acids. II. Synthesis and antibacterial evaluation of 7-oxo-2,3-dihydro-7H-pyrido[l, 2,3-de][l,4]benzothiazine-6-carboxylic acid. J Med Chem 30:465–473PubMedGoogle Scholar
  35. Cecchetti V, Fravolini A, Terni P, Pagella PG, Tabarrini O. Mediolanum Farmaceutici (1991) EP 531 958Google Scholar
  36. Cecchetti V, Fravolini A, Fringuelli R, Schiaffella F (1993a) 4H-l-benzothiopyran- 4-one-3-carboxylic acids and 3,4-dihydro-2H-isothiazolo[5,4-b][l]benzothiopyran- 3,4-diones as quinolone antibacterial analogs. J Heterocycl Chem 30:1143–1148Google Scholar
  37. Cecchetti V, Fravolini A, Pagella PG, Savino A, Tabarrini O (1993b) Quinolinecarboxylic acids. III. Synthesis and antibacterial evaluation of 2- substituted-7-oxo-2,3-dihydro-7H-pyrido[l,2,3-de][l,4]benzothiazine-6-carboxylic acids related to rufloxacin. J Med Chem 36:3449–3454PubMedGoogle Scholar
  38. Cecchetti V, Clementi S, Cruciani G, Fravolini A, Pagella PG, Savino A, Tabarrini O (1995) 6-Aminoquinolones: a new class of quinolone antibacterials? J Med Chem 38:973–982Google Scholar
  39. Cecchetti V, Fravolini A, Lorenzini MC, Tabarrini O, Terni P, Xin T (1996) Studies on 6-aminoquinolones: synthesis and antibacterial evaluation of 6-amino-8- methylquinolones. J Med Chem 39:436–445PubMedGoogle Scholar
  40. Chan K-K, Keith DD (1987/1988) F Hoffmann-La Roche & Co, EP 322 810Google Scholar
  41. Cheil Pharm (1990) KR 9 206 780Google Scholar
  42. Chiba K, Nishimura Y, Nakano J, Matsumoto J, Nakamura S, Dainippon Pharmaceutical (1987) JP 01 56.673 (Chem Abstr lll:153779w)Google Scholar
  43. Chu DTW, Abbott Laboratories (1983/1984) EP 131 839Google Scholar
  44. Chu DTW (1985) A regiospecific synthesis of l-methylamino-6-fluoro-7-(4- methylpiperazin-l-yl)-l,4-dihydro-4-oxoquinoline-3-carboxylic acid. J Heterocycl Chem 22:1033–1034Google Scholar
  45. Chu DTW (1987) Synthesis and structure-activity relationship of l-aryl-6,8- difluoroquinolone antibacterial agents. J Med Chem 30:504–509PubMedGoogle Scholar
  46. Chu DTW (1990) Synthesis of 6-fluoro-7-(piperazin-l-yl)-9-cyclopropyl- 2,3,4,9-tetrahydroisothiazolo[5,4-b]quinoline-3,4-dione and 6-fluoro-7-(piperazin- l-yl)-9-(p-fluorophenyl)-2,3,4,9-tetrahydroisothiazolo[5,4-b]quinoline-3,4-dione. J Heterocycl Chem 27:839–843Google Scholar
  47. Chu DTW (1992) Isothiazoloquinolones: antibacterial and antineoplastic agents. Drugs Fut 17:1101–1109Google Scholar
  48. Chu DTW (1993) Fluoroquinolone carboxylic acids as antibacterial drugs. In: Filler R, Kobayashi Y, Yagupolskii LM (eds) Organofluorine compounds in medicinal chemistry and biomedical applications. Elsevier, Amsterdam, pp 165–207Google Scholar
  49. Chu DTW, Claiborne AK (1990) Practical synthesis of iminochlorothioformates: application of iminochlorothioformates in the synthesis of novel 2,3,4,9- tetrahydroisothiazolo[5,4-b][l,8]naphthyridine-3,4-diones and 2,3,4,9-tetrahydroi- sothiazolo[5,4-b]quinoline-3,4-dione derivatives. J Heterocycl Chem 27:1191–1195Google Scholar
  50. Chu DTW, Fernandes PB (1991) Recent development in the field of quinolone antibacterial agents. Adv Drug Res 21:39–144Google Scholar
  51. Chu DTW, Hallas R, Abbott Laboratories (1988/1989) EP 360 258Google Scholar
  52. Chu DTW, Rosen TJ, Abbott Laboratories (1988a) EP 331 960Google Scholar
  53. Chu DTW, Rosen TJ, Abbott Laboratories (1988b) US 4 859 776Google Scholar
  54. Chu DTW, Fernandes PB, Claiborne AK, Shen L, Pernet AG (1988) Structure-activity relationships in quinolone antibacterials: design, synthesis and biological activities of novel isothiazoloquinolones. Drugs Exp Clin Res 14:379–383PubMedGoogle Scholar
  55. Chu DTW, Lico IM, Swanson RN, Marsh KC, Plattner JJ, Pernet AG (1990) Synthesis and biological properties of A-71497: a prodrug of tosufloxacin. Drugs Exp Clin Res 16:435–443PubMedGoogle Scholar
  56. Chu DTW, Nordeen CW, Hardy DJ, Swanson RN, Giardina WJ, Pernet AG, Plattner JJ (1991) Synthesis, antibacterial activities, and pharmacological properties of enantiomers of temafloxacin hydrochloride. J Med Chem 34:168–174PubMedGoogle Scholar
  57. Chu DTW, Li Q, Tanaka K, Alder J, Claiborne A, Lico I, Raye K, Rosen T, Plattner JJ (1992) Synthesis and biological properties of A-80556: a potent antibacterial fluoroquinolone (Abstr 652). 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy, AnaheimGoogle Scholar
  58. Chu DTW, Li Q, Lee CM, Raye K, Tanaka K, Alder J, Plattner JJ (1993a) Novel quinolone antibacterial agents: synthesis and biological activity of 6H-6- oxopyrido[l,2-a]pyrimidine-7-carboxylic acids. In: Bentley PH, Ponsford R (eds) Recent advances in the chemistry of anti-infective agents. Royal Society of Chemistry, Cambridge, pp 93–105 (Special publication 119)Google Scholar
  59. Chu DTW, Li Q, Cooper CS, Fung AKL, Lee CM, Plattner JJ, Abbott Laboratories (1993b) WO 95/10519Google Scholar
  60. Chu DTW, Li Q, Claiborne A, Raye-Passarelli K, Cooper C, Fung A, Lee C, Tanaka SK, Shen LL, Donner P, Armiger YL, Plattner JJ (1994) Synthesis and antibacterial activity of A-86719.1 and related 2-pyridones. A novel series of potent DNA gyrase inhibitors (Abstr F41). 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, OrlandoGoogle Scholar
  61. Cole A, Goodfield J, Williams DR, Midgley JM (1984) The complexation of transition series metal ions by nalidixic acid. Inorg Chim Acta 92:91–97Google Scholar
  62. Conrad RA, White WA, Eli Lilly (1981) US 4 379 929Google Scholar
  63. Cooper CS, Klock PL, Chu DTW, Hardy DJ, Swanson RN, Plattner JJ (1992a) Preparation and in vitro and in vivo evaluation of quinolones with selective activity against gram-positive organisms. J Med Chem 35:1392–1398PubMedGoogle Scholar
  64. Cooper CS, Donner PK, Chu DTW, Clement J, Alder J, Plattner JJ (1992b) Synthesis and biological activity of A-77143, a potent new quinolone antibacterial agent (Abstr 763). 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy, AnaheimGoogle Scholar
  65. Corraz AJ, Dax SL, Dunlap NK, Georgopapadakou NH, Keith DD, Pruess DL, Rossmann PL, Then R, Unowsky J, Wei C-C (1992) Dual-action penems and carbapenems. J Med Chem 35:1828–1839PubMedGoogle Scholar
  66. Culbertson TP (1991) Synthesis of 4H-l,4-benzothiazine 1-oxide and 1,1-dioxide. Analogs of antibacterial agents. J Heterocycl Chem 28:1701–1703Google Scholar
  67. Culbertson TP, Mich TF, Domagala JM, Nichols JB, Warner-Lambert (1982/1983) EP 106 489Google Scholar
  68. Culbertson TP, Mich TF, Domagala JM, Nichols JB (1984) EP 153 163Google Scholar
  69. Culbertson TP, Domagala JM, Nichols JB, Priebe S, Skeean RW (1987a) Enantiomers of l-ethyl-7-[3-[(ethylamino)methyl]-l-pyrrolidinyl]-6,8-difluoro-l,4-dihydro-4- oxo-3-quinolinecarboxylic acid: preparation and biological activity. J Med Chem 30:1711–1715PubMedGoogle Scholar
  70. Culbertson TP, Domagala JM, Peterson P, Bongers S, Nichols JB (1987b) New 7- substituted quinolone antibacterial agents. The synthesis of 1-ethyl-l,4-dihydro-4- oxo-7-(2-thiazolyl and 4-thiazolyl)-3-quinolinecarboxylic acids. J Heterocycl Chem 24:1509–1520Google Scholar
  71. Culbertson TP, Sanchez JP, Gambino L, Sesnie JA (1990) Quinolone antibacterial agents substituted at the 7-position with spiroamines. Synthesis and structure- activity relationships. J Med Chem 33:2270–2275PubMedGoogle Scholar
  72. Daiichi Seiyaku (1980) JP 56 118 081Google Scholar
  73. Daiichi Seiyaku (1981) JP 57 149 286 (Chem Abstr 98:72117q)Google Scholar
  74. Dainippon (1978) JP 55 036 436Google Scholar
  75. Dainippon (1979) JP 56 045 473Google Scholar
  76. Dainippon (1986) JP 62 226 962Google Scholar
  77. Dainippon (1987) JP 1 016 767Google Scholar
  78. Dainippon (1990) JP 4 049 765Google Scholar
  79. Dalhoff A, Petersen U, Endermann R (1996) In vitro activity of BAY 12–8039, a new methoxyquinolone. Chemotherapy (Basel) 42:410–425Google Scholar
  80. De la Cruz A, Elguero J, Goya P, Martinez A (1990) Synthesis of a valuable precursor for the preparation of novel quinolone glycosides. Synlett:753–754Google Scholar
  81. De la Cruz A, Elguero J, Goya P, Martinez A, Pfleiderer W (1992) Tautomerism and acidity in 4-quinolone-3-carboxylic acid derivatives. Tetrahedron 48:6135–6150Google Scholar
  82. Demuth TP Jr, White RE, Norwich Eaton Pharmaceuticals (1988/1989a) EP 366 193Google Scholar
  83. Demuth TP Jr, White RE, Norwich Eaton Pharmaceuticals (1988/1989b) EP 366 640Google Scholar
  84. Demuth TP Jr, White RE, Norwich Eaton Pharmaceuticals (1988/1989c) EP 366 641Google Scholar
  85. Demuth TP, White RE, Procter & Gamble (1992) WO 94/10163Google Scholar
  86. Demuth TP, White RE, Tietjen RA, Storrin RJ, Skuster JR, Andersen JA, McOsker CC, Freedman R, Rourke FJ (1991) Synthesis and antibacterial activity of new C- 10 quinolonylcephem esters. J Antibiot 44:200–209PubMedGoogle Scholar
  87. Desideri, Stradi R, Milanese A, Rorer Italiana (1985) EP 224 121Google Scholar
  88. Di Cesare P, Jacquet J-P, Essiz M, Remuzon P, Bouzard D, Weber A (1986) EP 266 576Google Scholar
  89. Di Cesare P, Bouzard D, Essiz M, Jacquet JP, Ledoussal B, Kiechel JR, Remuzon P, Kessler RE, Fung-Tome J, Desiderio J (1992) Fluoronaphthyridines and -quinolones as antibacterial agents. V. Synthesis and antimicrobial activity of chiral l-tert-butyl-6-fluoro-7-substituted-naphthyridones. J Med Chem 35:4205–4213PubMedGoogle Scholar
  90. Dohmori R, Kadoya S, Tanaka Y, Takamura I, Yoshimura R, Naito T (1969) Synthesis of l-substituted-l,4-dihydro-7-[2-(5-nitro-2-furyl)vinyl]-4-oxo-l,8-naphthyridine Derivatives. II. Chem Pharm Bull (Tokyo) 17:1832–1838Google Scholar
  91. Domagala JM (1994) Rewiew: structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother 33:685–706PubMedGoogle Scholar
  92. Domagala JM, Schroeder MC, Warner-Lambert (1985) EP 198 678Google Scholar
  93. Domagala JM, Hagen SE, Sanchez JP, Warner-Lambert (1986a) EP 255 908Google Scholar
  94. Domagala JM, Hanna LD, Heifetz CL, Hütt MP, Mich TF, Sanchez JP, Solomon M (1986b) New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J Med Chem 29:394–404PubMedGoogle Scholar
  95. Domagala JM, Hagen SE, Sanchez JP, Warner-Lambert (1987) US 4 771 055Google Scholar
  96. Domagala JM, Hägen SE, Heifetz CL, Huff MP, Mich TF, Sanchez JP, Trehan AK (1988a) 7-Substituted 5-amino-l-cyclopropyl-6,8-difluoro-l,4-dihydro-4-oxo-3- quinolinecarboxylic acids: synthesis and biological activity of a new class of quinolone antibacterials. J Med Chem 31:503–506Google Scholar
  97. Domagala JM, Heifetz CL, Hütt MP, Mich TF, Nichols JB, Solomon M, Worth DF (1988b) 7-[3-[(Ethylamino)methyl]-l-pyrrolidinyl]-6,8-difluoro-l,4-dihydro-4- oxo-3-quinolinecarboxylic acids. New quantitative structure-activity relationships at Nx for the quinolone antibacterials. J Med Chem 31:991–1001PubMedGoogle Scholar
  98. Domagala JM, Suto MJ, Turner WR (1990) Warner Lambert, US 5 047 538Google Scholar
  99. Domagala JM, Bridges AJ, Culbertson TP, Gambino L, Hagen SE, Karrick G, Porter K, Sanchez JP, Sesnie JA, Spense FG, Szotek D, Wemple J (1991) Synthesis and biological activity of 5-amino- and 5-hydroxyquinolones, and the overwhelming influence of the remote Nrsubstituent in determining the structure-activity relationships. J Med Chem 34:1142–1154PubMedGoogle Scholar
  100. Domagala JM, Hägen SE, Joannides T, Kiely JS, Laborde E, Schroeder MC, Sesnie JA, Shapiro MA, Suto MJ, Vanderroest S (1993) Quinolone antibacterials containing the new 7-[3-(l-aminoethyl)-l-pyrrolidinyl]side chain: the effects of the 1- aminoethyl moiety and its stereo-chemical configurations on potency and in vivo efficacy. J Med Chem 36:871–882PubMedGoogle Scholar
  101. Egawa H, Miyamoto T, Minamida A, Nishimura Y, Okada H, Uno H, Matsumoto J (1984) Pyridonecarboxylic acids as antibacterial agents. IV. Synthesis and antibacterial activity of 7-(3-amino-l-pyrrolidinyl)-l-ethyl-6-fluoro-l,4-dihydro-4-oxo- l,8-naphthyridine-3-carboxylic acid and its analogues. J Med Chem 27:1543–1548PubMedGoogle Scholar
  102. Egawa H, Kataoka M, Shibamori K, Miyamoto T, Nakano J, Matsumoto J (1987) A new synthetic route to 7-halo-l-cyclopropyl-6-fluoro-l,4-dihydro-4-oxoquinoline- 3-carboxylic acid, an intermediate for the synthesis of quinolone antibacterial agents. J Heterocycl Chem 24:181–185Google Scholar
  103. Eissenstat MA, Kuo G-H, Weawer III JD, Wentland MP, Robinson RG, Klingbeil KM, Danz DW, Corbett TH, Coughlin SA (1995) 3-Benzyl-quinolones: novel, potent inhibitors of mammalian topoisomerase II. Bioorg Med Chem Lett 5:1021–1026Google Scholar
  104. Esteve Soler J (1983/1984) Provesan S. A., EP 134 165Google Scholar
  105. Fan J-Y, Sun D, Yu H, Kerwin SM, Hurley LH (1995) Self-assembly of a quinobenzoxazine-Mg2+ complex on DNA: a new paradigm for the structure of a drug-DNA complex and implications for the structure of the quinolone bacterial gyrase-DNA complex. J Med Chem 38:408–424PubMedGoogle Scholar
  106. Fass RJ (1993) In vitro activity of BAY Y 3118, a new quinolone. Antimicrob Agents Chemother 37:2348–2357PubMedGoogle Scholar
  107. Fedij V, Lenoir EA, Suto MJ, Zeller JR, Wemple J (1994) An efficient method for the synthesis of (R)-3-(l-amino-l-methylethyl)pyrrolidines for the antiinfective agent, PD 138 312. Tetrahedron Asymmetry 5:1131–1134Google Scholar
  108. Fernandes P, Chu DTW, Abbott Laboratories (1987) EP 302 372Google Scholar
  109. Flanagan DM, Joullie MM (1987) Synthetic strategies for the construction of 3- pyrrolidinol, a versatile nitrogen heterocycle. Heterocycles 26:2247–2265Google Scholar
  110. Frank J, Rakoczy P (1979) Synthesis and antibacterial activity of some 5-substituted 6,7-methylenedioxy-4-quinolone-3-carboxylic acid derivatives. Eur J Med Chem Chim Ther 14:61–65Google Scholar
  111. Fray AH, Augeri DJ, Kleinman EF (1988) A convenient synthesis of 3,6-disubstituted 3,6-diazabicyclo[3.2.2]nonanes and 3,6-diazabicyclo[3.2.1]octanes. J Org Chem 53:896–899Google Scholar
  112. Freidmann RC, O’Neill BT, Lackey JW, Pfizer (1988) EP 366 301Google Scholar
  113. Frigola J, Parés, Corbera J, Vañó D, Mercè R, Torrens A, Más J, Valenti E (1993) 7- Azetidinylquinolones as antibacterial agents. Synthesis and structure-activity relationships. J Med Chem 36:801–810PubMedGoogle Scholar
  114. Frigola J, Torrens A, Castrillo JA, Mas J, Vaño D, Berrocal JM, Calvet C, Salgado L, Redondo J, García-Granda S, Valenti E, Quintana JR (1994) 7-Azetidinyl- quinolones as antibacterial agents. Synthesis and biological activity of 7-(2,3- disubstituted-l-azetidinyl)-4-oxoquinoline and l,8-naphthyridine-3-carboxylic acids. Properties and structure-activity relationships of quinolones with an azetidine moiety. J Med Chem 37:4195–4210PubMedGoogle Scholar
  115. Frigola J, Vaño D, Torrens A, Gómez-Gomar A, Ortega E, García-Granda S (1995) 7-Azetidinylquinolones as antibacterial agents. III. Synthesis, properties and structure-activity relationships of stereoisomers containing a 7-(3-amino-2- methyl-1 -azetidinyl) moiety. J Med Chem 38:1203–1215PubMedGoogle Scholar
  116. Fromtling RA, Castañer J (1996) Trovafioxacin mesylate. Drugs Fut 21:496–505Google Scholar
  117. Fujii T, Nishida H, Abiru Y, Yamamoto M, Kise M (1995) Studies on synthesis of the antibacterial agent NM 441. II. Selection of a suitable base for alkylation of 1- substituted piperazine with 4-(bromomethyl)-5-methyl-l,3-dioxol-2-one. Chem Pharm Bull 43:1872–1877Google Scholar
  118. Fujita M, Egawa H, Kataoka M, Miyamoto T, Nakano J, Matsumoto J (1995) Imidazo- and triazoloquinolones as antibacterial agents. Synthesis and structure-activity relationships. Chem Pharm Bull 43:2123–2132PubMedGoogle Scholar
  119. Fung AKL, Chu DT, Armiger YL, Li Q, Tananka SK, Flamm RK, Shen L, Baranowski J, Marsh K, Crowell D, Plattner JJ (1995) Synthesis and structure-activity- relationships of 8-[3-(l-amino-alkyl)pyrrolidinyl]- and 8-[3-(l-aminocycloalkyl) pyrrolidinyl]-2-pyridopyridone antibacterials (Abstr F9) 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco Gaertner VR (1967) Cyclization of l-alkylamino-3-halo-2-alkanols to l-alkyl-3- azetidinols. J Org Chem 32:2972–2976Google Scholar
  120. Gammill RB, Bisaha SN, Timko JM, Barbachyn MR, Kim KS, Upjohn Company (1993) US 5 385 906Google Scholar
  121. Garemszegi F, Lehoczk G, Somfai E, Ban K, Hernadi G (1980) Chinoin, HU T 30 014 (Chem Abstr 101:130 678s)Google Scholar
  122. Gilis PM, Haemers A, Bollaert W (1980) lH-tetrazol-5-yl derivatives of chemothera- peutic agents of the nalidixic acid type. Eur J Med Chem Chim Ther 15:499–502Google Scholar
  123. Gobeaux B, Ghosez L (1989) Intramolecular [2+2]cycloadditions of keteniminium salts derived from a- and β-amino acids. A route to azabicyclic ketones. Heterocycles 28:29–32Google Scholar
  124. Grohe K, Heitzer H (1987) Synthese von l-Amino-4-chinolon-3-carbonsauren. Liebigs Ann Chem 871–879Google Scholar
  125. Grohe K, Zeiler H-J, Metzger KG, Bayer (1979) EP 14390Google Scholar
  126. Grohe K, Petersen U, Zeiler H-J, Metzger K-G, Bayer (1983) EP 126 355Google Scholar
  127. Grohe K, Zeiler H-J, Metzger K-G, Bayer (1984a) EP 155 587Google Scholar
  128. Grohe K, Zeiler H-J, Metzger K-G, Bayer (1984b) US 4 670 444Google Scholar
  129. Grohe K, Petersen U, Zeiler H-J, Metzger K-G, Bayer (1985) DE 3 525 108Google Scholar
  130. Hagen SE, Domagala JM (1990) Synthesis of 5-methyl-4-oxo-quinolinecarboxylic acids. J Heterocycl Chem 27:1609Google Scholar
  131. Hägen SE, Domagala JM, Heifetz CL, Sanchez JP, Solomon M (1990) New quino- lone antibacterial agents. Synthesis and biological activity of 7-(3,3- or 3,4- disubstituted-l-pyrrolidinyl)quinoline-3-carboxylic acids. J Med Chem 33:849–854PubMedGoogle Scholar
  132. Hägen SE, Domagala JM, Heifetz CL, Johnson J (1991) Synthesis and biological activity of 5-alkyl-l,7,8-trisubstituted-6-fluoroquinoline-3-carboxylic acids. J Med Chem 34:1155–1161PubMedGoogle Scholar
  133. Hägen SE, Domagala JM, Gracheck SJ, Sesnie JA, Stier MA, Suto MJ (1994) Synthesis and antibacterial activity of new quinolones containing a 7-[3-(l-amino-l- methylethyl)-l-pyrrolidinyl] moiety. Gram-positive agents with excellent oral activity and low side-effect potential. J Med Chem 37:733–738PubMedGoogle Scholar
  134. Haramura M, Okamachi A, Makino T, Kohda A, Katoh Y, Munemura K, Ito T, Matsumoto M, Kojima K, Yokota T (1994) Synthesis and biological activity of new 8-methoxyquinolones possessing 7-aminoalkyl group. 34th Interscience Conference on Antimicrobial Agents and Chemotherapy, OrlandoGoogle Scholar
  135. Hayakawa I, Atarashi S, Daiichi Seiyaku (1985) EP 207 420Google Scholar
  136. Hayakawa I, Kimura Y, Daiichi Seiyaku (1988) EP 341 493Google Scholar
  137. Hayakawa I, Atarashi S, Imamura M, Kimura Y, Daiichi Seiyaku (1988a) EP 357 047Google Scholar
  138. Hayakawa I, Atarashi S, Imamura M, Kimura Y, Daiichi Seiyaku (1988b) EP 529 688Google Scholar
  139. Hayakawa I, Atarashi S, Kimura Y, Kawakami K, Daiichi Seiyaku (1990) EP 488 227Google Scholar
  140. Hayakawa I, Atarashi S, Kimura Y, Kawakami K, Saito T, Yafune T, Sato K, Une T, Sato M (1991) Design and structure-activity relationship of new Nrcis-2- fluorocyclopropyl quinolones (Abstr 1504). 31st Interscience Conference on Antimicrobial Agents and Chemotherapy, ChicagoGoogle Scholar
  141. Heck JV, Thorsett ED, Merck (1987) EP 308 019Google Scholar
  142. Helena M, Teixeira SF, Vilas-Boas LF, Gil VMS, Teixeira F (1995) Complexes of ciprofloxacin with metal ions contained in antacid drugs. J Chemother 7:126–132Google Scholar
  143. Hermecz I, Kereszturi G, Vasäri L, Horväth Ä, Balogh M, Ritli P, Sipos J, Chinoin Gyogyszer (1987a) WO 88/07998Google Scholar
  144. Hermecz I, Lehoczki G, Kereszturi G, Ritii P, Sipos J, Garamszegi F, Horvath A, Vasvari Debreczi L, Pajor A, Balogh A, Chinoin Gyogyszer (1987b) HU T 46 312 (Chem Abstr 111:97 087e)Google Scholar
  145. Himmler T, Schriewer T, Petersen U, Grohe K, Haller I, Metzger KG, Endermann R, Zeiler H-J, Bayer (1988) EP 343 398Google Scholar
  146. Himmler T, Petersen U, Bremm K-D, Endermann R, Stegemann M, Wetzstein H-G, Bayer (1994) EP 671 391Google Scholar
  147. Högberg T, Vora M, Drake SD, Mitscher LA, Chu DTW (1984a) Structure-activity relationships among DNA-gyrase inhibitors. Synthesis and antimicrobial evaluation of chromones and coumarins related to oxolinic acid. Acta Chem Scand B38:359–366Google Scholar
  148. Högberg T, Khanna I, Drake SD, Mitscher LA, Shen LL (1984b) Structure-activity relationships among DNA gyrase inhibitors. Synthesis and biological evaluation of 1,2-dihydro-4,4-dimethyl-l-oxo-2-naphthalenecarboxylic acids as 1 -carba bioisosters of oxolinic acid. J Med Chem 27:306–310PubMedGoogle Scholar
  149. Hojo K, Sakamoto A, Tsutsumi M, Yamada T, Nakazono K, Ishimori K (1985) EP 218 249Google Scholar
  150. Hokuriku (1986) JP 62 178 586Google Scholar
  151. Hokuriku (1988) JP 2 174 783, 2 196 786Google Scholar
  152. Hokuriku (1990a) ZA 9 008 298Google Scholar
  153. Hokuriku (1990b) JP 4 253 982Google Scholar
  154. Hutt MP, Kiely JS, Warner-Lambert (1987) US 4 923 879Google Scholar
  155. Hutt MP, Mich TF, Culbertson TP, Warner-Lambert (1984) EP 159 174Google Scholar
  156. ICAAC (1996) Data on BAY 12–8039 were published on the 36th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, Abstracts no B 45, F1-F26Google Scholar
  157. ICI (1957) BE 564 863Google Scholar
  158. Irikura T, Suzue S, Hirai K, Ishizaki T, Kyorin Pharmaceutical (1984/1985) EP 184 035Google Scholar
  159. Ishikawa H, Uno T, Miyamoto H, Ueda H, Tamaoka H, Tominaga M, Nakagawa K (1990) Studies on antibacterial agents. II. Synthesis and antibacterial activities of substituted l,2-dihydro-6-oxo-6H-pyrrolo[3,2,1-ij]quinoline-5-carboxylic acids. Chem Pharm Bull (Tokyo) 38:2459–2462Google Scholar
  160. Ito Y, Kato H, Yasuda S, Kado N, Yoshida T, Yamamoto Y, Hokuriku Seiyaku (1993/ 1994) EP 641 793Google Scholar
  161. Iwanami S, Takashima M, Hirata Y, Hasegawa O, Usuda S (1981) Synthesis and neuroleptic activity of benzamides. cis-N-(l-benzyl-2-methylpyrrolidin-3-yl)-5- chloro-2-methoxy-4-(methylamino)benzamide and related compounds. J Med Chem 24:1224–1230PubMedGoogle Scholar
  162. Iwata M, Kimura T, Fujiwara Y, Katsube T, Ube Industries (1986) EP 241 206Google Scholar
  163. Iwata M, Kimura T, Inoue T, Fujihara Y, Katsube T, Ube Industries/Sankyo (1988) EP 352 123Google Scholar
  164. Jack DB (1986) Recent advances in pharmaceutical chemistry. The 4-quinolone antibiotics. J Clin Hosp Pharm 11:75–93PubMedGoogle Scholar
  165. Jacquet J-P, Bouzard D, Kiechel J-R, Remuzon P (1991) Synthesis of a new bridged diamine, 3,6-diazabicyclo[3.2.0]heptane: applications to the synthesis of quinolone antibacterials. Tetrahedron Lett 32:1565–1568Google Scholar
  166. Jacquet J-P, Bouzard D, Di Cesare P, Dolcnic N, Massoudi M, Remuzon P (1992) Synthesis and biological activity of novel l-aryl-6-fluoro-5-methyl-l,8- naphthyridine-3-carboxylic acids. Heterocycles 34:2301–2311Google Scholar
  167. Jaetsch T, Mielke B, Petersen U, Philipps T, Schenke T, Bremm KD, Endermann R, Scheer M, Stegemann M, Wetzstein H-G, Bayer (1993) DE 4 329 600Google Scholar
  168. Jaetsch T, Mielke B, Petersen U, Schenke T, Bremm KD, Endermann R, Metzger K-G, Scheer M, Stegemann M, Wetzstein H-G, Bayer (1994a) EP 682 030Google Scholar
  169. Jaetsch T, Petersen U, Bremm KD, Endermann R, Metzger K-G, Scheer M, Stegemann M, Wetzstein H-G, Bayer (1994b) EP 683 169Google Scholar
  170. Jefson MR, Pfizer (1992) US 5 235 054 (1992)Google Scholar
  171. Jefson MR, McGuirk PR, Pfizer (1985) EP 215 650Google Scholar
  172. Jefson MR, McGuirk PR, Pfizer (1986) US 4 775 668Google Scholar
  173. Jendralla H, Fischer G (1995) Synthesis of l,2,3,4,5,6-hexahydropyrrolo[3,4-c]pyrrole dihydrobromide and l,2,3,5-tetrahydro-2-[(4-methylphenyl)sulfonyl]pyrrolo[3,4- c]pyrrole. Heterocycles 41:1291–1298Google Scholar
  174. Jordis U, Sauter F, Siddiqi SM, Küenburg B, Bhattacharya K (1990) Synthesis of (1R,4R)- and (lS,4S)-2,5-diazabicyclo[2.2.1]heptanes and their N-substituted derivatives. Synthesis 925–930Google Scholar
  175. Jordis U, Sauter F, Siddiqi SM (1991) Synthesis of (lR,4S,5R)-endo-N,N-Dimethyl-2- azabicyclo[2.2.1]methanamine. J Heterocycl Chem 28:2045–2047Google Scholar
  176. Kara M, Hasinoff BB, McKay DW, Campbell NRC (1991) Clinical and chemical interactions between iron preparations and ciprofloxacin. Br J Clin Pharmacol 31:257–261PubMedGoogle Scholar
  177. Keith DD, Albrecht HA, Beskid G, Chan K-K, Christenson JG, Cleeland R, Deitcher K, Delaney M, Georgopapadakou NH, Konzelmann F, Okabe M, Pruess D, Rossman P, Specian A, Then R, Wei C-C, Weigele M (1993) Mechanism-based dual-action cephalosporins. In: Bentley PH, Ponsford R (eds) Recent advances in the chemistry of anti-infective agents. Royal Society of Chemistry, Cambridge, pp 79–92 (Special publication 119)Google Scholar
  178. Kiely JS (1991) The preparation of ethyl 7-chloro-l-cyclopropyl-6-fluoro-l,4-dihydro- 5-methyl-4-oxo-l,8-naphthyridine-3-carboxylate. J Heterocycl Chem 28:541–543Google Scholar
  179. Kiely JS, Huang S, Leshesky LE (1989) A general method for the preparation of 2- substituted-4-oxo-3-quinolinecarboxylic acids. J Heterocycl Chem 26:1675–1681Google Scholar
  180. Kiely JS, Laborde E, Lesheski LE, Bucsh RA (1991a) Synthesis of 7-(alkenyl, cycloalkenyl, and l,2,3,6-tetrahydro-4-pyridinyl)quinolones. J Heterocycl Chem 28:1581–1585Google Scholar
  181. Kiely JS, Hutt MP, Culbertson TP, Bucsh RA, Worth DF, Lesheski LE, Gogliotti RD, Sesnie JA, Solomon M, Mich TF (1991b) Quinolone antibacterials: preparation and activity of bridged bicyclic analogues of the C7-piperazine. J Med Chem 34:656–663PubMedGoogle Scholar
  182. Kim DY, Lee JW, Lee KS, Son HJ, Kang TC, Dae Woong Pharmaceutical (1991) WO 93/03026Google Scholar
  183. Kim KS (1990) Synthesis of an aminoisoxazolidine substituted quinolone acid. Hetero- cycles 31:87–95Google Scholar
  184. Kim KS, Ryan PC (1990) Synthesis of an aminopyrazolidine substituted quinolone acid. Heterocycles 31:79–86Google Scholar
  185. Kim WJ, Lee TS (1991) KR 9 306 163Google Scholar
  186. Kim WJ, Park MH, Oh JH, Jung MH, Kim BJ, Korea Research Institute of Chemical Technology (1989a) EP 424 850Google Scholar
  187. Kim WJ, Park MH, Oh JH, Jung MH, Kim BJ, Korea Research Institute of Chemical Technology (1989b) EP 424 851Google Scholar
  188. Kim WJ, Park MH, Oh JH, Korea Research Institute of Chemical Technology (1989c) EP 424 852Google Scholar
  189. Kim WJ, Park MH, Ha JD, Baik KU, Hoechst (1991a) WO 93/08163Google Scholar
  190. Kim WJ, Park MH, Ha JD, Baik KU, Korea Research Institute of Chemical Technology (1991b) EP 537 556Google Scholar
  191. Kim WJ, Park MH, Ha JD, Baik KU, Lee TS, Park TH, Nam KS, Kim BJ, Korea Research Institute of Chemical Technology (1991c) EP 549 857Google Scholar
  192. Kim WJ, Park MH, Ha JD, Baik KU, Korea Research Institute of Chemical Technology (1991d) EP 550 016Google Scholar
  193. Kim WJ, Park MH, Ha JD, Baik KU, Lee TS, Park TH, Nam KS, Kim BJ, Korea Research Institute of Chemical Technology (1991s) EP 550 019Google Scholar
  194. Kim WJ, Park MH, Ha JD, Baik KU, Korea Research Institute of Chemical Technology (1991f) EP 550 025Google Scholar
  195. Kim WJ, Park TH, Kim MH, Korea Research Institute of Chemical Technology (1992a) WO 94/02479Google Scholar
  196. Kim WJ, Park TH, Kim MH, Korea Research Institute of Chemical Technology (1992b) WO 94/02487Google Scholar
  197. Kim WJ, Park MH, Ha JD, Kim BJ, Nam KS, Kong JY, Korea Research Institute of Chemical Technology (1992c) EP 574 231Google Scholar
  198. Kim WJ, Lee TS, Park MH, Ha JD, Kim BJ, Nam KS, Kong JY, Korea Research Institute of Chemical Technology (1992d) WO 93/25545Google Scholar
  199. Kim WJ, Park TH, Park JG, Kim MH, Ha JD, Pearson N, Korea Research Institute of Chemical Technology — SmithKline Beecham PLC (1992/1993) WO 94/14813Google Scholar
  200. Kim WJ, Park TH, Kim B J, Kim MH, Pearson N, Korea Research Institute of Chemical Technology — SmithKline Beecham PLC (1993) WO 94/15938Google Scholar
  201. Kim WJ, Kim BJ, Lee TS, Nam KS, Kim KJ (1995) Synthesis and antibacterial activity of l-cyclopropyl-6,8-difluoro-7-(2-substituted 4,6-dihydro-lH-pyrrolo[3,4- d]thiazol-5-yl)-l,4-dihydro-4-oxoquinoline-3-carboxylic acid. Heterocycles 41: 1389–1397Google Scholar
  202. Kim Y-K, Choi H, Kim S-H, Chang J-H, Nam D-H, Kim Y-Z, Lee Y-H, Kwak J-H, Hong C-Y (1995) Synthesis and antibacterial activities of LB 20304: a new fluoronaphthyridone antibiotic containing novel oxime functionalized pyrrolidine (Abstr F204). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  203. Kimura Y, Atarashi S, Takahashi M, Hayakawa I (1994a) Synthesis and structure- activity relationships of 7-[3-(l-aminoalkyl)-pyrrolidinyl]- and 7-[3-(l- aminocycloalkyl)pyrrolidinyl]-quinolone antibacterials. Chem Pharm Bull (Tokyo) 42:1442–1454Google Scholar
  204. Kimura Y, Atarashi S, Kawakami K, Hayakawa I (1994b) (Fluorocyclo- propyl)quinolones. II. Synthesis and stereochemical structure-activity relationships of chiral 7-(7-amino-5-azaspiro[2.4]heptan-5-yl)-l-(2-fluorocyclopropyl) quinolone antibacterial agents. J Med Chem 37:3344–3352PubMedGoogle Scholar
  205. Kitani H, Kuroda T, Moriguchi A, Hikida K, Ao H, Yokoyama Y, Hirayama F, Ikeda Y (1995) Novel 7-substituted-fluoroquinolones as potent antibacterial agents: synthesis and structure-activity relationships (Abstr F190). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  206. Kleinman EF, Pfizer (1988) EP 356 193Google Scholar
  207. Koga H, Ito A, Murayama S, Suzue S, Irikura T (1980) Structure-activity relationships of antibacterial 6,7- and 7,8-disubstituted l-alkyl-l,4-dihydro-4-oxo-quinoline-3- carboxylic acids. J Med Chem 23:1358–1363PubMedGoogle Scholar
  208. Kondo H, Sakamoto F, Kodera Y, Tsukamoto G (1986) Studies on prodrugs. V. Synthesis and antimicrobial activity of N-(oxo-alkyl)norfloxacin derivatives. J Med Chem 29:2020–2024PubMedGoogle Scholar
  209. Kondo H, Sakamoto F, Kawakami K, Tsukamoto G (1988) Studies on prodrugs. VII. Synthesis and antimicrobial activity of 3-formyl-quinolone derivatives. J Med Chem 31:221–225PubMedGoogle Scholar
  210. Kondo H, Sakamoto F, Uno T, Kawahata Y, Tsukamoto G (1989) Studies on prodrugs. XI. Synthesis and antimicrobial activity of N-[(4-methyl-5-methylene-2-oxo-l,3- dioxolan-4-yl)oxy]norfloxacin. J Med Chem 32:671–674PubMedGoogle Scholar
  211. Krebs A, Schenke T, Bayer (1987) EP 310 854Google Scholar
  212. Kyorin (1986) JP 62 255 482Google Scholar
  213. Kyorin (1987) JP 1090 183Google Scholar
  214. Laborde E, Kiely JS, Lesheski LE, Schroeder NC (1991) Novel 7-substituted quinolone antibacterial agents. Synthesis of 7-alkenyl- cycloalkenyl-, and 1,2,3,6-tetrahydro- 4-pyridinyl-l,6-naphthyridines. J Heterocycl Chem 28:191–198Google Scholar
  215. Laborde E, Kiely JS, Culbertson TP, Lesheski LE (1993) Quinolone antibacterials: synthesis and biological activity of carbon isosteres of the 1-piperazinyl and 3- amino-l-pyrrolidinyl side chains. J Med Chem 36:1964–1970PubMedGoogle Scholar
  216. Lecomte S, Baron MH, Chenon MT, Coupry C, Moreau NJ (1994) Effect of magnesium complexation by fluoroquinolones on their antibacterial properties. Antimicrob Agents Chemother 38:2810–2816PubMedGoogle Scholar
  217. Lee KH, Kim JW, Cho IW, Lee JM, Yoon YH, Lee KH, Song SB, Hwang HS (1995) Practical synthesis of CFC-222, a new fluoroquinolone (Abstr F198). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  218. Lesher GY (1978) Nalidixic acid and other quinolone carboxylic acids. In: Kirk- Othmer (ed) Encyclopedia of chemical technology, 3rd edn, vol 2. Wiley, New York, pp 782–789Google Scholar
  219. Lesher GY, Singh B, Reuman M, Sterling Drug (1987) EP 309 789 (Chem Abstr 112: 7389y)Google Scholar
  220. Lesher GY, Singh B, Reuman M, Daum SJ, Sterling Drug (1989a) US 5 075 319Google Scholar
  221. Lesher GY, Singh B, Reuman M, Daum SJ, Sterling Drug (1989b) EP 417 669Google Scholar
  222. Leysen DC, Zhang MQ, Haemers A, Bollaert W (1991a) Synthesis of antibacterial 4- quinolone-3-carboxylic acids and their derivatives. Part 1. Pharmazie 46:485–501Google Scholar
  223. Leysen DC, Zhang MQ, Haemers A, Bollaert W (1991b) Synthesis of antibacterial 4- quinolone-3-carboxylic acids and their derivatives. Part 2. Pharmazie 46:557–572PubMedGoogle Scholar
  224. Li Q, Claiborne A, Chu DTW, Lee CM, Raye KA, Sneller K, Ma Z, Wang W, Shen LS, Flamm R, Shortridge VD, Tanaka SK, Seif L, Cooper C, Fung A, Tufano M, Melcher LM, Henry R, Klein L, Plattner JJ (1995a) Synthesis and in vitro antibacterial activity of novel DNA gyrase inhibitors (Abstr F8). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  225. Li Q, Chu DTW, Raye K, Claiborne A, Seif L, Macri B, Plattner J J (1995b) A practical stereoselective synthesis of (2S,4S)-4-tertbutoxycarbonylamino-2- methylpyrrolidine. Tetrahedron Lett 46:8391–8394Google Scholar
  226. Li Q, Chu DTW, Claiborne A, Cooper CS, Lee CM, Raye K, Berst KB, Donner P, Wang W, Hasvold L, Fung A, Ma Z, Tufano M, Flamm R, Shen LL, Baranowski J, Nilius A, Alder J, Meulbroek J, Marsh K, Crowell DA, Hui Y, Seif L, Melcher LM, Henry R, Spanton S, Faghih R, Klein LL, Tanaka SK, Plattner JJ (1996) Synthesis and structure-activity relationships of 2-pyridones: a novel series of potent DNA gyrase inhibitors as antibacterial agents. J Med Chem 39:3070–3088PubMedGoogle Scholar
  227. Loubinoux B, Colin JL, Thomas V (1991) Synthesis and biological activities of oxolinic acid pro-drugs. Eur J Med Chem 26:461–467Google Scholar
  228. Maddaluno J, Corruble A, Leroux V, Pie G, Duhamel P (1992) Handy access to chiral N,N’-disubstituted 3-aminopyrrolidines. Tetrahedron Asymmetry 3:1239- 1242Google Scholar
  229. Maejima T, Senda H, Iwatani W, Tatsumi Y, Arika T, Fukui H, Shibata T, Nakano J, Naito T (1995) Potent antibacterial activity of S-32730, a new fluoroquinolone, against Gram-positive bacteria including quinolone-resistant MRSA (Abstr F189). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  230. Markees DG, Schwab LS (1972) The synthesis and some reactions of N-Alkyl-4- quinolone-3-carboxylic acids. Helv Chim Acta 55(4):1319–1326Google Scholar
  231. Martel AM, Leeson PA, Castaner J (1997) BAY 12–8039. Drugs Fut 22:109–113Google Scholar
  232. Masuzawa K, Suzue S, Hirai K, Ishizaki T, Kyorin Pharmaceutical (1985) EP 208 210Google Scholar
  233. Masuzawa K, Suzue S, Hirai K, Ishizaki T, Kyorin Pharmaceutical (1986a) EP 230 295Google Scholar
  234. Masuzawa K, Suzue S, Hirai K, Ishizaki T, Kyorin Pharmaceutical (1986b) EP 235 762Google Scholar
  235. Matsumoto J, Minami S (1975) Pyrido[2,3-d]pyrimidine antibacterial agents. III. 8- Alkyl- and 8-vinyl-5,8-dihydro-5-oxo-2-(l-piperazinyl)pyrido[2,3-d]pyrimidine-6- carboxylic acids and their derivatives. J Med Chem 18:74–79PubMedGoogle Scholar
  236. Matsumoto J, Nakamura S, Miyamoto T, Uno H, Dainippon Pharmaceutical, (1983) EP 132 845Google Scholar
  237. Matsumoto J, Miyamoto T, Minamida A, Nishimura Y, Egawa H, Nishimura H (1984a) Pyridonecarboxylic acids as antibacterial agents. II. Synthesis and structure- activity-relationships of 1,6,7-trisubstituted l,4-dihydro-4-oxo-l,8-naphthyridine- 3-carboxylic acids, including enoxacin, a new antibacterial agent. J Med Chem 27:292–301PubMedGoogle Scholar
  238. Matsumoto J, Miyamoto T, Minamida A, Nishimura Y, Egawa H, Nishimura H (1984b) Synthesis of fluorinated pyridines by the Balz-Schiemann reaction. An alternative route to enoxacin, a new antibacterial pyridonecarboxylic acid. J Heterocycl Chem 21:673–679Google Scholar
  239. Matsumoto J, Nakano J, Chiba K, Nakamura S, Dainippon Pharmaceutical (1985) EP 191 451Google Scholar
  240. Matsumoto J, Miyamoto T, Egawa H, Nakamura T, Dainippon Pharmaceutical (1985/ 1986) US 4 795 751Google Scholar
  241. Matsumoto J, Minamida A, Hirose T, Nakano J, Nakamura S, Dainippon Pharmaceutical (1987/1988) EP 319 906Google Scholar
  242. McGuirk PR, Pfizer (1988) EP 348 088Google Scholar
  243. McGuirk PR, Jefson MR, Mann DD, Elliott NC, Chang P, Cisek EP, Cornell CP, Gootz TD, Haskell SL, Hindahl MS, LaFleur LJ, Rosenfeld MJ, Shryock TR, Silvia AM, Weber FH (1992) Synthesis and structure-activity relationships of 7- diazabicycloalkylquinolones, including danofloxacin, a new quinolone antibacterial agent for veterinary medicine. J Med Chem 35:611–620PubMedGoogle Scholar
  244. Mitscher LA, Zavod RM, Sharma PN, Chu DTW, Shen LL, Pernet AG (1988) Recent advances on quinolone antimicrobial agents. In: Davis BD, Ichikawa T, Maeda K, Mitscher LA (eds) Horizons on antibiotic reserach. Japan Antibiotics Research Association, Tokyo, pp 166–193Google Scholar
  245. Mitscher LA, Devasthale PV, Zavod RM (1990) Structure-activity relationships of fluoro-4-quinolones. In: Crumplin GC (ed) The 4-quinolones: antibacterial agents in vitro. Springer, Berlin Heidelberg New York, pp 115–146Google Scholar
  246. Mitscher LA, Devasthale P, Zavod R (1993) Structure-activity relationships. In: Hooper DC, Wolfson JS (eds) Quinolone antimicrobial agents, 2nd edn. American Society for Microbiology, Washington, pp 3–51Google Scholar
  247. Miyamoto H, Yamashita H, Tominaga M, Yabuuchi Y, Otsuka Pharmaceutical (1988/1989) EP 364 943Google Scholar
  248. Miyamoto H, Ueda H, Otsuka T, Aki S, Tamaoka H, Tominaga M, Nakagawa K (1990) Studies on antibacterial agents. III. Synthesis and antibacterial activities of substituted l,4-dihydro-8-methyl-4-oxoquinoline-3-carboxylic acids. Chem Pharm Bull (Tokyo) 38:2472–2475Google Scholar
  249. Miyamoto T, Matsumoto J (1990) Fluorinated pyrido[2,3-c]pyridazines. II. Synthesis and antibacterial activity of 1,7-disubstituted 6-fluoro-4(lH)-oxopyrido[2,3- c]pyridazine-3-carboxylic acids. Chem Pharm Bull (Tokyo) 38:3359–3365Google Scholar
  250. Miyamoto T, Matsumoto J, Chiba K, Egawa H, Shibamori K, Minamida A, Nishimura Y, Okada H, Kataoka M, Fujita M, Hirose T, Nakano J (1990) Synthesis and structure-activity relationship of 5-substituted 6,8-difluoroquinolones, including Sparfloxacin, a new quinolone antibacterial agent with improved potency. J Med Chem 33:1645–1656PubMedGoogle Scholar
  251. Molinari G, Schito GC (1995) Comparative in vitro activity of BAY Y 3118 with other fluoroquinolones. Drugs 49 [Suppl 2]:222–225PubMedGoogle Scholar
  252. Moran DB, Ziegler CB Jr, Dunne TS, Kuck NA, Lin Y (1989) Synthesis of novel 5-fluoro analogues of norfloxacin and ciprofloxacin. J Med Chem 32:1313–1318PubMedGoogle Scholar
  253. Mozek I, Sket B (1994) Direct monobromination of substituted 4-oxoquinoline-3-carboxylic acid derivatives. J Heterocycl Chem 31:1293–1295Google Scholar
  254. Nagano H, Yokota T, Katoh Y (1988) EP 342 675Google Scholar
  255. Nakagawa S, Mano E, Ushijima R (1989) JP 3 188 080Google Scholar
  256. Nakano J, Fukui H, Shibata T, Senda H, Maejima T, Arika T, Kaken Pharmaceutical (1993) WO 95/11902Google Scholar
  257. Neu HC, Novelli A, Chiu N-X (1989) Comparative in vitro activity of a new quinolone, AM-1091. Antimicrob Agents Chemother 33:1036–1041PubMedGoogle Scholar
  258. Niedballa U, Vorbrüggen H (1974) A general synthesis of N-glycosides. IV. Synthesis of nucleosides of hydroxy and mercapto N-heterocycles. J Org Chem 39:3668–3671PubMedGoogle Scholar
  259. Nishigaki S, Mizushima N, Kanazawa H, Ichiba M, Senga K (1985) Synthetic antibac- terials. VIII. 7-(r-Alkylhydrazino)-l,8-naphthyridines and related compounds. J Heterocycl Chem 22:1029–1032Google Scholar
  260. Nishida H, Fujii T, Abiru Y, Yatsuki K, Yamamoto M, Shimizu N, Kakemi K, Mikawa M, Kise M (1994) Studies on synthesis of antibacterial agent (NM 441). I. Kinetics and mechanism of the reaction of 4-(bromomethyl)-5-metyl-l,3-dioxol-2-one with 1-substitued piperazine (NM 394). Bull Chem Soc Jpn 67:1419–1426Google Scholar
  261. Nishimura Y, Minamida A, Matsumoto J (1988a) An intramolecular cyclisation of 7- substituted 6-fluoro-l,8-naphtyridine and -quinoline derivatives. J Heterocycl Chem 25:479–485Google Scholar
  262. Nishimura Y, Minamida A, Matsumoto J (1988b) Pyridonecarboxylic acids as antibacterial agents. XII. Synthesis and antibacterial activity of enoxacin analogues with a variant at position 1. Chem Pharm Bull (Tokyo) 36:1223–1228Google Scholar
  263. Nishimura Y, Hirose T, Okada H, Shibamori K, Nakano J, Matsumoto J (1990) Synthesis of 7-thio-substituted 4-oxoquinoline-3-carboxylic acids with antibacterial activity. Chem Pharm Bull (Tokyo) 38:2190–2196Google Scholar
  264. Nishino T, Otsuki M, Ozaki M, Matsuda M, Kimura K (1989) Antimicrobial activities of NAD-441A, a new type of quinolone antibacterial (Abstr 1253) 29th International Conference on Antimicrobial Agents Chemotherapy, HoustonGoogle Scholar
  265. Nishitani Y, Nishino Y, Irie T (1988a) EP 362 759Google Scholar
  266. Nishitani Y, Irie T, Nishino Y (1988b) JP 1 265 092Google Scholar
  267. Nord CE, Lindmark A, Persson I (1993) In vitro activity of the new quinolone BAY Y 3118 against anaerobic bacteria. Eur J Clin Microbiol Infect Dis 12:640–642PubMedGoogle Scholar
  268. Ochi K, Shimizu H, Chugai Seiyaku Kabushiki Kaisha (1992) EP 641 782Google Scholar
  269. Ogata M, Matsumoto H, Shimizu S, Kida S (1988a) EP 343 524Google Scholar
  270. Ogata M, Matsumoto H, Shimizu S, Kida S (1988b) EP 359 172Google Scholar
  271. Ogata M, Matsumoto H, Shimizu S, Kida S, Nakai H, Motokawa K, Miwa H, Matsuura S, Yoshida T (1991) Synthesis and antibacterial activity of new 7- (aminoazabicycloalkanyl)-quinolonecarboxylic acids. Eur J Med Chem 26:889–906Google Scholar
  272. Oh J-I, Ahn M-J, Paek K-S, Kim M-Y, Seo M-K, Lee Y-H, Nam D-H, Kim Y-Z, Kim I-C, Kwak J-H (1995). In vitro and in vivo antibacterial activities of LB 20304, a new fluoronaphthyridone (Abstr F206). 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  273. Okabe M, F. Hoffmann-La Roche (1990) EP 453 952Google Scholar
  274. Okabe M, Sun R-C (1992) Synthesis of a dual action cephalosporin: a novel approach to 3-acyloxymethyl-3-cephems. Synthesis 1160–1164Google Scholar
  275. Okada T, Tsushima T, Shionogi Seiyaku Kabushiki Kaisha (1990) EP 487 030Google Scholar
  276. Okada T, Ezumi K, Yamakawa M, Sato H, Tsuji T, Tsushima T, Motokawa K, Komatsu Y (1993a) Quantitative structure-activity relationships of antibacterial agents, 7-heterocyclic amine substituted l-cyclopropyl-6,8-difluoro-4- oxoquinoline-3-carboxylic acids. Chem Pharm Bull (Tokyo) 41:126–131Google Scholar
  277. Okada T, Sato H, Tsuji T, Tsushima T, Nakai H, Yoshida T, Matsuura S (1993b) Synthesis and structure-activity relationships of 7-(3’-amino-4’- methoxypyrrolidin-1’-yl)-l-cyclopropyl-6,8-difluoro-l,4-dihydro-4-oxoquinoline- 3-carboxylic acids. Chem Pharm Bull (Tokyo) 41:132–138Google Scholar
  278. Okura A, Yoshinari T, Arakawa H, Nakagawa S, Mano E, Ushijima R (1990) WO 92/ 12146Google Scholar
  279. Pankuch GA, Jacobs MR, Appelbaum PC (1993) Susceptibility of 428 Gram-positive and negative anaerobic bacteria to BAY Y 3118 compared with their susceptibilities to ciprofloxacin, clindamycin, metronidazole, piperacillin, piperazillin- tazobactam, and cefoxitin. Antimicrob Agents Chemother 37:1649–1654PubMedGoogle Scholar
  280. Pares Corominas J, Colombo Pinol A, Frigola Constansa J, Laboratorios del Dr. Esteve (1989) EP 388 298Google Scholar
  281. Perrone E, Jabes D, Alpegiani M, Andreini BP, Delia Bruna C, Del Nero S, Rossi R, Visentin G, Zarini F (1992) Dual-action penems. J Antibiot (Tokyo) 45:589–594Google Scholar
  282. Petersen U, Grohe K, Zeiler H-J, Metzger KG, Bayer (1982) EP 113 092Google Scholar
  283. Petersen U, Grohe K, Zeiler H-J, Metzger KG, Bayer (1983) EP 117 474Google Scholar
  284. Petersen U, Grohe K, Zeiler H-J, Metzger KG, Bayer (1984) EP 167 763Google Scholar
  285. Petersen U, Schriewer M, Grohe K, Zeiler H-J, Metzger KG, Bayer (1985) EP 203 488Google Scholar
  286. Petersen U, Grohe K, Schenke T, Hagemann H, Zeiler HJ, Metzger KG, Bayer (1986) DE 3 601 567Google Scholar
  287. Petersen U, Grohe K, Schriewer M, Schenke T, Haller I, Metzger K-G, Endermann R, Zeiler H-J, Bayer (1987) EP 284 935Google Scholar
  288. Petersen U, Schenke T, Grohe K, Schriewer M, Haller I, Metzger KG, Endermann R, Zeiler HJ, Bayer (1988a) EP 326 916Google Scholar
  289. Petersen U, Schenke T, Krebs A, Grohe K, Schriewer M, Haller I, Metzger KG, Endermann R, Zeiler HJ, Bayer (1988b) EP 350 733Google Scholar
  290. Petersen U, Schenke T, Schriewer M, Krebs A, Grohe K, Haller I, Metzger KG, Endermann R, Zeiler HJ, Bayer (1989a) EP 391 169Google Scholar
  291. Petersen U, Krebs A, Schenke T, Grohe K, Schriewer M, Haller I, Metzger KG, Endermann R, Zeiler H-J, Bayer (1989b) EP 401 623Google Scholar
  292. Petersen U, Schenke T, Schriewer M, Grohe K, Krebs A, Haller I, Metzger KG, Bremm KD, Endermann R, Zeiler HJ, Bayer (1990) DE 4 032 560Google Scholar
  293. Petersen U, Himmler T, Schenke T, Krebs A, Grohe K, Bremm K-D, Metzger KG, Endermann R, Zeiler H-J, Bayer (1991a) EP 523 512Google Scholar
  294. Petersen U, Krebs A, Schenke T, Kunisch F, Philipps T, Grohe K, Bremm K-D, Endermann R, Metzger K-G, Haller I, Zeiler H-J, Bayer (1991b) DE 4 120 646Google Scholar
  295. Petersen U, Krebs A, Schenke T, Grohe K, Bremm KD, Endermann R, Metzger KG, Zeiler HJ (1992a) EP 520 277Google Scholar
  296. Petersen U, Krebs A, Schenke T, Philipps T, Grohe K, Bremm KD, Endermann R, Metzger KG, Haller I, Bayer (1992b) EP 550 903Google Scholar
  297. Petersen U, Krebs A, Schenke T, Grohe K, Endermann R, Bremm KD, Metzger KG, Bayer (1992c) EP 589 318Google Scholar
  298. Petersen U, Bremm KD, Krebs A, Metzger KG, Philpps T, Schenke T (1992d) Bay Y 3118, a novel 4-quinolone: synthesis and in vitro activity (Abstr 642). 32nd Interscience Conference on Antimicrobial Agents and Chemotherapy, AnaheimGoogle Scholar
  299. Philipps T, Bartel S, Krebs A, Petersen U, Schenke T, Bremm KD, Endermann R, Metzger KG, Bayer (1992) DE 4 230 804Google Scholar
  300. Portoghese PS, Mikhail AA (1966) Bicyclic bases. Synthesis of 2,5-diazabicyclo[2.2.1]heptanes. J Org Chem 31:1059–1062Google Scholar
  301. Rádl S (1990) Structure-activity relationships in DNA gyrase inhibitors. Pharmacol Ther 48:1–17PubMedGoogle Scholar
  302. Rádl S (1994a) Synthesis of ethyl l-ethyl-6-fluoro-l,4-dihydro-8-hydroxy-4-oxoquinoline-3-carboxylate. Collect Czech Chem Commun 59:2119–2122Google Scholar
  303. Rádl S (1994b) Synthesis of 3-amino- and 3-acyclamino-l-cyclopropylquinolin-4(lH)-ones. Collect Czech Chem Commun 59:2123–2126Google Scholar
  304. Rádl S, Bouzard D (1992) Recent advances in the synthesis of antibacterial quinolones. Heterocycles 34:2143–2177Google Scholar
  305. Rádl S, Janichová M (1992) Synthesis and antibacterial activity of some 3-hydroxyquinolones. Collect Czech Chem Commun 57:188–193Google Scholar
  306. Rádl S, Chan K (1994) Synthesis of 1-substituted 3-nitroquinolin-4(lH)-ones. J Heterocycl Chem 31:437–440Google Scholar
  307. Remuzon P, Bouzard D, Dussy C, Jacquet J-P, Massoudi M (1992a) Preparation of (6R)- and (6S)-(lR,4R)-6-Methyl-2-(p-toluenesulfonyl)-5-phenylmethyl-2,5-diazabicyclo[2.2.1]heptanes, intermediates in a synthesis of new quinolones. Heterocycles 34:241–245Google Scholar
  308. Remuzon P, Massoudi M, Bouzard D, Jacquet J-P (1992b) Preparation of (1R,4R)- l-methyl-2-(p-toluenesulfonyl)-5-phenylmethyl-2,5-diazabicyclo[2.2.1]heptane, intermediate in a synthesis of new naphthyridones. Heterocycles 34:679–684Google Scholar
  309. Remuzon P, Bouzard D, Di Cesare P, Dussy C, Jacquet J-P, Jaegly A (1992c) Synthesis and antibacterial activity of new 5-substituted l-cyclopropyl-6-fluoro-7- piperazinyl-l,4-dihydro-4-oxo-l,8-naphthyridine-3-carboxylic acids. J Heterocycl Chem 29:985–989Google Scholar
  310. Remuzon P, Bouzard D, Guiol C, Jacquet J-P (1992d) Fluoronaphthyridines as antibacterial agents. VI. Synthesis and structure-activity relationships of new chiral 7-(l-, 3-, 4-, and 6-methyl-2,5-diazabicyclo[2.2.1]heptan-2-yl)naphthyridine analogues of 7-[(lR,4R)-2,5-diazabicyclo[2.2.1]heptan-2-yl]-l-(l,1-dimethylethyl)-6- fluoro-l,4-dihydro-4-oxo-l,8-naphthyridine-3-carboxylic acid. Influence of the configuration on the blood pressure in dogs. A quinolone-class effect. J Med Chem 35:2898–2909PubMedGoogle Scholar
  311. Remuzon P, Bouzard D, Jacquet J-P (1993a) Preparation of new 2-chloro-5-fluoro-6- (4-phenylmethylpiperazinyl)-4-trifluoromethyl-3-nicotinic acid. Heterocycles 36: 431–434Google Scholar
  312. Remuzon P, Bouzard D, Clemencin C, Dussy C, Essiz M, Jacquet J-P, Saint-Germain J (1993b) Synthesis of (1R,4R,7S)- and (lS,4S,7S)-2-(4-tolylsulfonyl)-5- phenylmethyl-7-methyl-2,5-diazabicyclo[2.2.1]heptanes via regioselective opening of 3,4-epoxy-D-proline with lithium dimethyl cuprate. J Heterocycl Chem 30:517–523Google Scholar
  313. Renau TE, Sanchez JP, Shapiro MA, Dever JA, Gracheck SJ, Domagala JM (1995) Effect of lipophilicity at N-l on activity of fluoroquinolones against mycobacteria. J Med Chem 38:2974–2977PubMedGoogle Scholar
  314. Renau TE, Sanchez JP, Domagala JM (1996) The synthesis of 3-bromo-2,4,5- trifluorobenzoic acid and its conversion to 8-bromoquinolonecarboxylic acids. J Heterocyclic Chem 33:1407–1411Google Scholar
  315. Reuman M, Daum SJ, Singh B, Coughlin SA, Sedlock DM, Rake JB, Lesher GY (1989) Synthesis and Antibacterial Activity of some Novel l-Substituted-7- pyridinyl-l,4-dihydro-4-oxoquinoline-3-carboxylic Acids (Abstr 1193) 29th Inter- science Conference on Antimicrobial Agents and Chemotherapy, Houston Reuman M, Eissenstat MA, Weaver JD III (1994) Cyanide mediated decarboxylation of l-substituted-4-oxoquinoline and 4-oxo-l,8-naphthyridine-3-carboxylic acids. Tetrahedron Lett 35:8303–8306Google Scholar
  316. Reuman M, Daum SJ, Singh B, Wentland MP, Perni RB, Pennock P, Carabateas PM, Gruett MD, Saindane MT, Dorff PH, Coughlin SA, Sedlock DM, Rake JB, Lesher GY (1995) Synthesis and antibacterial activity of some novel 1-substituted 1,4- dihydro-4-oxo-7-pyridinyl-3-quinolinecarboxylic acids. Potent antistaphylococcal agents. J Med Chem 38:2531–2540PubMedGoogle Scholar
  317. Rosen TJ (1990) The fluoroquinolone antibacterial agents. Prog Med Chem 27:235–295PubMedGoogle Scholar
  318. Rosen TJ, Chu DT, Abbott Laboratories (1987) EP 302 371 (Chem Abstr 111: 39348e)Google Scholar
  319. Rosen TJ, Fesik SW, Chu DTW, Pernet AG (1988a) Asymmetric synthesis of 2- substituted (4S)-4-aminopyrrolidines. SN2 displacement at the 4-position of the pyrrolidine moiety. Synthesis 40–44Google Scholar
  320. Rosen TJ, Chu DTW, Lico IM, Fernandes PB, Shen L, Borodkin S, Pernet AG (1988b) Asymmetric synthesis and properties of the enantiomers of the antibacterial agent 7-(3-aminopyrrolidinyl)-l-(2,4-difluorophenyl)-l,4-dihydro-6-fluoro- 4-oxo-l,8-naphthyridine-3-carboxylic acid hydrochloride. J Med Chem 31:1586–1590PubMedGoogle Scholar
  321. Rosen TJ, Chu DTW, Lico IM, Fernandes PB, Marsh K, Shen L, Cepa VG, Pernet AG (1988c) Design, synthesis, and properties of (4S)-7-(4-amino-2-substituted- pyrrolidin-l-yl)quinolone-3-carboxylic acids. J Med Chem 31:1598–1611PubMedGoogle Scholar
  322. Ross DL, Riley CM (1993) Physicochemical properties of the fluoroquinolone antimicrobials. V. Effect of fluoroquinolone structure and pH on the complexation of various fluoroquinolones with magnesium and calcium ions. Int J Pharm 93:121–129Google Scholar
  323. Ross DL, Riley CM (1994) Dissociation and complexation of the fluoroquinolone antimicrobials — an update. J Pharm Biomed Anal 12:1325–1331PubMedGoogle Scholar
  324. Ross DL, Elkinton SK, Riley CM (1992) Physicochemical properties of the fluoroquinolone antimicrobials. IV. 1-Octanol/water partition coefficients and their relationships to structure. Int J Pharm 88:379–389 (erratum 90:179)Google Scholar
  325. Ross DL, Elkinton SK, Knaub SR, Riley CM (1993) Physicochemical properties of the fluoroquinolone antimicrobials. VI. Effect of metal-ion complexation on octan-1- ol-water partitioning. Int J Pharm 93:131–138Google Scholar
  326. Saito A, Uesato S, Iwata H, Ao H, Kuroda T, Kawasaki K, Moriguchi A, Ikeda Y, Yoshitomi Pharmaceutical Industries (1992/1993) EP 677 522Google Scholar
  327. Sakamoto F, Ikeda S, Kondo H, Tsukamoto G (1985) Studies on prodrugs. IV. Preparation and characterization of N-(5-substituted 2-oxo-l,3-dioxol-4-yl)methyl norfloxacin. Chem Pharm Bull (Tokyo) 33:4870–4877Google Scholar
  328. Sanchez JP, Warner-Lambert (1989) US 4 916 141 (Chem Abstr 113:40658d)Google Scholar
  329. Sanchez JP, Gogliotti RD (1993) The synthesis of a series of 7-amino-l-cyclopropyl-8- fluoro-l,4-dihydro-4-oxo-l,6-naphthyridine-3-carboxylic acids as potential antibacterial agents. J Heterocycl Chem 30:855–859Google Scholar
  330. Sanchez JP, Domagala JM, Hagen SE, Heifetz CL, Hütt MP, Nichols JB, Trehan AK (1988) Quinolone antibacterial agents. Synthesis and structure-activity relationships of 8-substituted quinolone-3-carboxylic acids and l,8-naphthyridine-3- carboxylic acids. J Med Chem 31:983–991PubMedGoogle Scholar
  331. Sanchez JP, Bridges AJ, Bucsh R, Domagala JM, Gogliotti RD, Hägen SE, Heifetz CL, Joannides ET, Sesnie JC, Shapiro MA, Szotek DL (1992a) New 8- (trifluoromethyl)-substituted quinolones. The benefits of the 8-fluoro group with reduced phototoxic risk. J Med Chem 35:361–367PubMedGoogle Scholar
  332. Sanchez JP, Domagala JM, Heifetz CL, Priebe SR, Sesnie JA, Trehan AK (1992b) Quinolone antibacterial agents. Synthesis and structure-activity relationships of a series of amino acid prodrugs of racemic and chiral 7-(3-amino-l-pyrrolidinyl)- quinolones. Highly soluble quinolone prodrugs with in vivo Pseudomonas activity. J Med Chem 35:1764–1773PubMedGoogle Scholar
  333. Sanchez JP, Gogliotti RD, Domagala JM, Gracheck SJ, Huband MD, Sesnie JA, Cohen MA, Shapiro MA (1995) The synthesis, structure-activity, and structure- side effect relationships of a series of 8-alkoxy- and 5-amino-8-alkoxyquinolone antibacterial agents. J Med Chem 38:4478–4487PubMedGoogle Scholar
  334. Schenke T, Petersen U, Bayer (1989) EP 393 424 (Chem Abstr 114:122348n)Google Scholar
  335. Schenke T, Krebs A, Petersen U, Bayer (1992) DE 4 200 415 (Chem Abstr 119:271179p)Google Scholar
  336. Schentag JJ, Domagala JM (1985) Structure-activity relationships with the quinolone antibiotics. Res Clin Forums 7:9–13Google Scholar
  337. Schriewer M, Grohe K, Petersen U, Haller I, Metzger KG, Endermann R, Zeiler HJ, Bayer (1987) DE 3 702 393 (Chem Abstr 109:230824v)Google Scholar
  338. Schroeder MC, Kiely JS, Laborde E, Johnson DR, Szotek DL, Domagala JM, Stickney TM, Michel A, Kampf JW (1992) Synthesis of the four stereoisomers of several 3-(l-aminoethyl)pyrrolidines. Important intermediates in the preparation of quinolone antibacterials. J Heterocycl Chem 29:1481–1498Google Scholar
  339. Seebach D, Hungerbühler E, Naef R, Schnurrenberger P, Weidmann B, Züger M (1982) Titanate-mediated transesterifications with functionalized substrates. Synthesis 138–141Google Scholar
  340. Segawa J, Kitano M, Kazuno K, Matsuoka M, Shirahase I, Ozaki M, Matsuda M, Tomii Y, Kise M (1992) Studies on pyridonecarboxylic acids. 1. Synthesis and antibacterial evaluation of 7-substituted-6-halo-4-oxo-4H-[l,3]thiazeto[3,2-a]quinoline-3- carboxylic acids. J Med Chem 35:4727–4738PubMedGoogle Scholar
  341. Segawa J, Kazuno K, Matsuoka M, Shirahase I, Ozaki M, Matsuda M, Tomii Y, Kitano M, Kise M (1995) Studies on pyridonecarboxylic acids. III. Synthesis and antibacterial activity evaluation of 1,8-disubstituted 6-fluoro-4-oxo-7-piperazinyl-4H- [l,3]thiazeto[3,2-a]quinoline-3-carboxylic acid derivatives. Chem Pharm Bull (Tokyo) 43:63–70Google Scholar
  342. Shibamori K, Egawa H, Miyamoto T, Nishimura Y, Itokawa A, Matsumoto J (1990) Regioselective displacement reactions of l-cyclopropyl-5,6,7,8-tetrafluoro-4(lH)- oxoquinoline-3-carboxylic acid with amine nucleophiles. Chem Pharm Bull (Tokyo) 38:2390–2396Google Scholar
  343. Shimizu H, Miura Y, Fujimura Y, Chugai Seiyaku Kabushiki Kaisha (1992) WO 93/22 308Google Scholar
  344. Tagaki N, Fubasami H, Matsukubo H, Kyorin Pharmaceutical (1990) EP 464 823Google Scholar
  345. Takäcs K, Jözan M, Hermecz I, Szäsz G (1992) Lipophilicity of antibacterial fluoroquinolones. Int J Pharm 79:89–96Google Scholar
  346. Tiefenbacher E-V, Haen E, Przybilla B, Kurz H (1994) Photodegradation of some quinolones used as antimicrobial therapeutics. J Pharm Sci 83:463–467PubMedGoogle Scholar
  347. Todo Y, Takagi H, lino F, Fukuoka Y, Ikeda Y, Tanaka K, Saikawa I, Narita H (1994a) Pyridonecarboxylic acids as antibacterial agents. VI. Synthesis and structure- activity relationship of 7-(alkyl, cycloalkyl, and vinyl)-l-cyclopropyl-6-fluoro-4- quinolone-3-carboxylic acids. Chem Pharm Bull (Tokyo) 42:2049–2054Google Scholar
  348. Todo Y, Nitta J, Miyajima M, Fukuoka Y, Ikeda Y, Yamashiro Y, Saikawa I, Narita H (1994b) Pyridonecarboxylic acids as antibacterial agents. VII. Synthesis and structure-activity relationship of amino- and hydroxyl-substituted 7-cycloalkyl and 7-vinyl derivatives of l-cyclopropyl-6-fluoro-4-quinolone-3-carboxylic acid. Chem Pharm Bull (Tokyo) 42:2055–2062Google Scholar
  349. Todo Y, Nitta J, Miyajima M, Fukuoka Y, Yamashiro Y, Nishida N, Saikawa I, Narita H (1994c) Pyridonecarboxylic acids as antibactrial agents. VIII. Synthesis and structure-activity relationship of 7-(l-aminocyclopropyl)-4-oxo-l,8- naphthyridine-3-carboxylic acids and 7-(l-aminocyclopropyl)-4-oxoquinoline-3- carboxylic acids. Chem Pharm Bull (Tokyo) 42:2063–2070Google Scholar
  350. Todo Y, Takagi H, lino F, Fukuoka Y, Takahata M, Okamoto S, Saikawa I, Narita H (1994d) Pyridonecarboxylic acids as antibacterial agents. IX. Synthesis and structure-activity relationship of 3-substituted 10-(l-aminocyclopropyl)-9-fluoro- 7-oxo-2,3-dihydro-7H-pyrido[l,2,3-d,e]-l,4-benzoxacine-6-carboxylic acids and their 1-thio- and 1-aza analogues. Chem Pharm Bull (Tokyo) 42:2569–2574Google Scholar
  351. Todo Y, Takagi H, lino F, Hayashi K, Takata M, Kuroda H, Momonoi K, Narita H (1994e) Practical synthesis of T-3761, (S)-10-(l-aminocyclopropyl)-9-fluoro-3- methyl-7-oxo-2,3-dihydro-7H-pyrido[l,2,3-d,e]-l,4-benzoxacine-6-carboxylic acid. Chem Pharm Bull (Tokyo) 42:2629–2632Google Scholar
  352. Tolstikov GA, Mustafin AG, Yghibaeva GK, Gataullin RR, Spirikhin LV, Sultanova VS, Abdrakhmanov IB (1993) N- and C-glycosylation of 6,7-difluoro-l,4-dihydro-4-oxo-3-quinoline carboxylic acid ethyl ester. Mendeleev Commun:194 Toyama Chemical (1994) JP 7 242 660Google Scholar
  353. Tsuji T, Sato H, Okada T, Shionogi Seiyaku Kabushiki (1988) EP 347 851Google Scholar
  354. Tsuji K, Tsubouchi H, Ishikawa H (1995) Synthesis and antibacterial activities of optically active substituted l,2-dihydro-6-oxo-6H-pyrrolo[3,2,1-i,j]quinoline-5- carboxylic acids. Chem Pharm Bull (Tokyo) 43:1678–1682Google Scholar
  355. Tsushima T, Okada T, Nishitani Y, Shionogi Seiyaku Kabushiki Kaisha (1990) EP 485 952Google Scholar
  356. Turel I, Leban I, Bukovec N (1994) Synthesis, characterisation, and crystal structure of a copper (II) complex with quinolone family member (ciprofloxacin): bis(l-cyclopropyl-6-fluoro-l,4-dihydro-4-oxo-7-piperazin-l-yl-quinoline-3- carboxylate)copper(II) chloride hexahydrate. J Inorg Biochem 56:273–282Google Scholar
  357. Turner WR, Suto MJ (1993) 3-Ethenyl-, 3-ethynyl, 3-aryl, and 3-cyclopropyl-2,4,5- trifluorobenzoic acids: useful intermediates in the synthesis of quinolone antibac- terials. Tetrahedron Lett 34:281–284Google Scholar
  358. Ube Industries (1992) JP 61 574 464Google Scholar
  359. Ueda H, Miyamoto H (1985) Otsuka Pharmaceutical, EP 228 035Google Scholar
  360. Ueda H, Miyamoto H, Yamashita H, Tone H, Otsuka Pharmaceutical (1987) EP 287 951Google Scholar
  361. Uno T, Takamatsu M, Inoue Y, Kawahata Y, Iuchi K, Tsukamoto G (1987) Synthesis of antimicrobial agents. I. Syntheses and antibacterial activities of 7-(azole substituted)quinolones. J Med Chem 30:2163–2169PubMedGoogle Scholar
  362. Uno T, Okuno T, Taguchi M, Iuchi K, Kawahata Y, Sotomura M, Tsukamoto G (1989) Synthesis of antimicrobial agents. IV. Synthesis of 1-hydroxypiperazine dihydrochloride and its applications to pyridone carboxylic acid antibacterial agents. J Heterocycl Chem 26:393–396Google Scholar
  363. Uno T, Kondo H, Inoue Y, Kawahata Y, Sotomura M, Iuchi K, Tsukamoto G (1990) Synthesis of antimicrobial agents. III. Syntheses and antibacterial activities of 7-(4-hydroxypiperazin-l-yl)quinolones. J Med Chem 33:2929–2932PubMedGoogle Scholar
  364. Uno T, Okuno T, Kawakami K, Sakamoto F, Tsukamoto G (1993) Synthesis of antimicrobial agents. V. In vivo metabolism of 7-(4-hydroxypiperazin-l-yl)quinolones. J Med Chem 36:2712–2715Google Scholar
  365. Van Le T, Spence FG, Wemple JN (1992) US 5 177 217Google Scholar
  366. Verbist L (1986) Quinolones in perspective. Quinolones: pharmacology. Pharm Weekbl 8:22–25Google Scholar
  367. Warner-Lambert L (1986) AU 8 666 870 Wemple JN, Warner-Lambert (1988/1989) EP 342 649Google Scholar
  368. Wentland MP (1990) Structure-activity relationships of fluoroquinolones. In: Siporin C, Heifetz CL, Domagala JM (eds) The new generation of quinolones. Dekker, New York, pp 1–43 Wentland MP, Sterling Winthrop (1992) US 5 334 595Google Scholar
  369. Wentland MP, Cornett JB (1985) Quinolone antibacterial agents. Annu Rep Med Chem 20:145–154Google Scholar
  370. Wentland MP, Bailey DM, Cornett JB, Dobson RA, Powles RG, Wagner RB (1984) Novel amino-substituted 3-quinolinecarboxylic acid antibacterial agents: synthesis and structure-activity relationships. J Med Chem 27:1103–1108PubMedGoogle Scholar
  371. Wentland MP, Perni RB, Dorff PH, Brundage RP, Castaldi MJ, Bailey TR, Carabateas PM, Bacon ER, Young DC, Woods MG, Rosi D, Drozd ML, Kullnig RK, Dutko FJ (1993a) 3-Quinolinecarboxamides. A series of novel orally-active antiherpetic agents. J Med Chem 36:1580–1596Google Scholar
  372. Wentland MP, Lesher GY, Reuman M, Gruett MD, Singh B, Aldous SC, Dorff PH, Rake JB, Coughlin S A (1993b) Mammalian topoisomerase II inhibitory activity of l-cyclopropyl-6,8-difluoro-l,4-dihydro-7-(2,6-dimethyl-4-pyridinyl)-4-oxo- 3-quinolinecarboxylic acid and related derivatives. J Med Chem 36:2801–2809PubMedGoogle Scholar
  373. Wentland MP, Carlson JA, Dorff PH, Aldous SC, Perni RB, Young DC, Woods MG, Kingsley SD, Ryan KA, Rosi D, Drozd ML, Dutko FJ (1995) Cyclic variations of 3-quinolinecarboxamides and effects on antiherpetic activity. J Med Chem 38:2541–2545PubMedGoogle Scholar
  374. Wexler HM, Molitoris E, Finegold SM (1994) In vitro activity of BAY Y 3118 against anaerobic bacteria. Antimicrob Agents Chemother 37:2509–2513Google Scholar
  375. Wise R, Andrews JM, Brenwald N (1993) The in vitro activity of BAY Y 3118, a new chlorofluoroquinolone. J Antimicrob Chemother 31:73–80PubMedGoogle Scholar
  376. Yang BV (1991) WO 92/22550Google Scholar
  377. Yatsunami T, Yamamoto H, Kuramoto Y, Hayashi N, Yazaki A, Inoue S, Noda S, Amano H, Wakunaga Seiyaku Kabushiki Kaisha (1989) EP 390 215Google Scholar
  378. Yokomoto M, Yazaki A, Hayashi N, Hatono S, Inoue S, Kuramoto Y, Wakunaga Seiyaku Kabushiki Kaisha/Fujisawa Pharmaceutical (1990/1991) EP 470 578Google Scholar
  379. Yokota T, Haramura M, Okamachi A, Makino T, Chugai Seiyaku Kabushiki Kaisha (1992) EP 664 288Google Scholar
  380. Yokoyama Y, Morimoto M, Iwao E, Yamamoto K, Honjo K, Hirayama F, Ikeda Y (1995) Y-688, a new fluoroquinolone with high activity against quinolone resistant Gram-positive bacteria (Abstr F191) 35th Interscience Conference on Antimicrobial Agents and Chemotherapy, San FranciscoGoogle Scholar
  381. Yoon GJ, Kim DY, Lee JW, Park NJ, Lee KS, Kang TC (1990) WO 92/04342Google Scholar
  382. Yoshida T, Yamamoto Y, Yagi N, Yasuda S, Katoh H, Itoh Y (1990) Studies on quinolone antibiotics. I. Synthesis and antibacterial activity of 7-(2- aminoethoxy)-, 7-(2-aminoethylthio)-, and 7-(2-aminoethylamino)-l-cyclopropyl- 6-fluoro-l,4-dihydro-4-oxoquinoline-3-carboxylic acids and their derivatives. Yakugaku Zasshi 111:258–267Google Scholar
  383. Yoshida T, Yamamoto Y, Yagi N, Takahashi Y, Yasuda S, Katoh H, Itoh Y (1991a) Studies on quinolone antibiotics. II. Synthesis and antibacterial activity of 7- aminoalkoxy-l-cyclopropyl-6-fluoro-l,4-dihydro-4-oxoquinoline-3-carboxylic acids and their derivatives. Yakugaku Zasshi 111:19–31PubMedGoogle Scholar
  384. Yoshida T, Yamamoto Y, Yagi N, Takahashi Y, Yasuda S, Katoh H, Itoh Y (1991b) Studies on quinolone antibiotics. III. Synthesis and antibacterial activity of 5- amino-7-(2-aminoalkoxy)-l-cyclopropyl-6-fluoro-l,4-dihydro-4-oxoquinoline-3- carboxylic acids and their derivatives. Yakugaku Zasshi 111:386–392PubMedGoogle Scholar
  385. Yoshida T, Yamamoto Y, Orita H, Kakiuchi M, Takahashi Y, Itakura M, Kado N, Mitani K, Yasuda S, Kato H, Itoh Y (1996a) Studies on quinolone antibacterials. IV. Structure-activity relationships of antibacterial activity and side effects for 5- or 8-substituted and 5,8-disubstituted-7-(3-amino-l-pyrrolidinyl)-l-cyclopropyl- l,4-dihydro-4-oxoquinoline-3-carboxylic acids. Chem Pharm Bull (Tokyo) 44:1074–1085Google Scholar
  386. Yoshida T, Yamamoto Y, Orita H, Kakiuchi M, Takahashi Y, Itakura M, Kado N, Yasuda S, Kato H, Itoh Y (1996b) Studies on quinolone antibacterials. V. Synthesis and antibacterial activity of chiral 5-amino-7-(4-substituted-3-amino-l- pyrrolidinyl)-6-fluoro-l,4-dihydro-8-methyl-4-oxoquinoline-3-carboxylic acids and derivatives. Chem Pharm Bull (Tokyo) 44:1376–1386Google Scholar
  387. Ziegler CB Jr, Bitha P, Lin Y (1988) Synthesis of some novel 7-substituted quinolonecarboxylic acids via nitroso and nitrone cycloadditions. J Heterocycl Chem 25:719–723Google Scholar
  388. Ziegler CB Jr, Curran WV, Kuck NA, Harris SM, Lin Y (1989) Synthesis and antibacterial activity of some 7-substituted l-ethyl-6-fluoro-l,4-dihydro-4-oxoquinoline- 3-carboxylic acids: ethers, secondary amines and sulfides as C-7 substituents. J Heterocycl Chem 26:1141–1145Google Scholar
  389. Ziegler CB, Kuck NA, Strohmeyer TW, Lin Y (1990a) Synthesis and in vitro biological activity of some 7-(5-aminomethyl-2-isoxazolidinyl)quinolone-3-carboxylic acids. J Heterocycl Chem 27:2077–2079Google Scholar
  390. Ziegler CB, Bitha P, Kuck NA, Fenton TJ, Petersen PJ, Lin Y (1990b) Synthesis and structure-activity-relationships of new 7-[3-(fluoromethyl)piperazinyl]- and (fluorohomopiperazinyl)-quinolone antibacterials. J Med Chem 33:142–146PubMedGoogle Scholar
  391. Zikan V, Radl S (1987) Czech. CS 261 328 (Chem Abstr 112:198398h)Google Scholar
  392. Zikan V, Radl S, Hola V (1987) Czech. CS 262 587 (Chem Abstr 112:216721q)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • U. Petersen
  • T. Schenke

There are no affiliations available

Personalised recommendations