Advertisement

In-vitro- und In-vivo-Manipulation hämatopoetischer Stammzellen für die Hochdosischemotherapie

  • Thomas A. Bock
  • Stefan Scheding
  • Wolfram Brugger
  • Lothar Kanz
Part of the Handbuch der Molekularen Medizin book series (HDBMOLEK, volume 2)

Zusammenfassung

Die Fortschritte der vergangenen Jahre haben weitreichende Einblicke in die phänotypischen Eigenschaften, die Biologie und Regulationsprozesse hämatopoetischer Stamm- und Progenitorzellen gestattet. Diese Erkenntnisse förderten die rasche klinische Verbreitung innovativer Transplantationskonzepte und ermöglichten eine kontinuierliche Fortentwicklung der Hochdosischemotherapie und Stammzelltransplantation (Abb. 2.2.1).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Agarwal R, Doren S, Hicks B, Dunbar CE (1995) Long-term culture of chronic myelogenous leukemia marrow cells on stem cell factor-deficient stroma favors benign progenitors. Blood 85: 1306–1312PubMedGoogle Scholar
  2. Albritton LM, Tseng L, Scadden D, Cunningham JM (1989) A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57: 659–666PubMedCrossRefGoogle Scholar
  3. Almici C, Carlo-Stella C, Donnenberg AD, Rizzoli V (1993) Counterflow elutriation: present and future. Bone Marrow Transplant 12: 105–108PubMedGoogle Scholar
  4. Anderson WF(1984) Prospects for human gene therapy. Science 226: 401–409PubMedCrossRefGoogle Scholar
  5. Baltimore D(1988) Gene therapy: intracellular immunization. Nature 335: 395–396PubMedCrossRefGoogle Scholar
  6. Batinic D, Marusic M, Pavletic Z, Bogdanic V, Uzarevic B, Nemet D, Labar B (1990) Relationship between differing volumes of bone marrow aspirates and their cellular composition. Bone Marrow Transplant 6: 103–107PubMedGoogle Scholar
  7. Bensinger WI, Weaver CH, Appelbaum FR, Rowley S, De- mirer T, Sanders J, Storb R, Buckner CD (1995) Transplantation of allogeneic peripheral blood progenitor cells mobilized by recombinant human granulocyte colony-stimulating factor. Blood 85: 1655–1658PubMedGoogle Scholar
  8. Berardi AC, Wang A, Levine JD, Lopez P, Scadden D (1995) Functional isolation and characterization of human hematopoietic stem cells. Science 267: 104–108PubMedCrossRefGoogle Scholar
  9. Bertolini F, Soligo D, Lazzari L, Corsini C, Servida F, Sirchia G (1995) The effect of interleukin-12 in ex vivo expansion of human haematopoietic progenitors. Br J Haematol 90: 935–938PubMedCrossRefGoogle Scholar
  10. Blaese RM (1995) Steps toward gene therapy: the initial trials. Hosp Pract (Off Ed) 30: 33–40Google Scholar
  11. Bock TA, Orlic D, Dunbar CE, Broxmeyer HE, Bodine DM (1995) Improved engraftment of human hematopoietic cells in severe combined immunodeficient (SCID) mice carrying human cytokine transgenes. J Exp Med 182: 2037–2043PubMedCrossRefGoogle Scholar
  12. Bodine D (1995) Mobilization of peripheral blood „stem” cells: where there is smoke, is there fire? Exp Hematol 23: 293–295PubMedGoogle Scholar
  13. Bodine DM (1996) Principles of gene therapy. In: Morstyn G, Sheridan W (eds) Cell therapy. Cambridge University Press, Cambridge, pp 91–110Google Scholar
  14. Bodine DM, Moritz T, Donahue RE, Luskey BD, Kessler SW, Martin DI, Orkin SH, Nienhuis AW, Williams DA (1993a) Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood 82: 1975–1980PubMedGoogle Scholar
  15. Bodine DM, Seidel NE, Zsebo KM, Orlic D (1993b) In vivo administration of stem cell factor to mice increases the absolute number of pluripotent hematopoietic stem cells. Blood 82: 445–455PubMedGoogle Scholar
  16. Bodine DM, Seidel NE, Gale MS, Nienhuis AW, Orlic D (1994) Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colonystimulating factor and stem cell factor. Blood 84: 1482–1491PubMedGoogle Scholar
  17. Brandwein JM, Callum J, Rubinger M, Scott JG, Keating A (1989) An evaluation of out patient bone marrow harvesting. J Clin Oncol 7: 648–650PubMedGoogle Scholar
  18. Brenner MK, Rill DR, Moen RC, Krance RA, Mirro J, Anderson WF, Ihle JN (1993) Gene-marking to trace origin of relapse after autologous bone-marrow transplantation. Lancet 341: 85–86PubMedCrossRefGoogle Scholar
  19. Brenner MK, Cunningham JM, Sorrentino BP, Heslop HE (1995) Gene transfer into human hematopoietic progenitor cells. Br Med Bull 51: 167–191PubMedGoogle Scholar
  20. Broxmeyer HE, Hangoc G, Cooper S, Ribeiro RC, Graves V, Yoder M, Wagner J, Vadhan-Raj S, Benninger L, Rubinstein P (1992) Growth characteristics and expansion of human umbilical cord blood and estimation of its potential for transplantation in adults. Proc Natl Acad Sci USA 89: 4109–4113PubMedCrossRefGoogle Scholar
  21. Broxmeyer HE, Lu L, Cooper S, Ruggierei L, Li ZH, Lyman SD (1995) Flt3 ligand stimulates/costimulates the growth of myeloid stem/progenitor cells. Exp Hematol 23: 1121–1129PubMedGoogle Scholar
  22. Brugger W, Kanz L (1996) Ex vivo expansion of hematopoietic precursor cells. Curr Opin Hematol 3: 235–240PubMedCrossRefGoogle Scholar
  23. Brugger W, Bross K, Frisch J, Dern P, Weber B, Mertelsmann R, Kanz L (1992) Mobilization of peripheral blood progenitor cells by sequential administration of interleukin-3 and granulocyte-macrophage colony-stimulating factor following polychemotherapy with etoposide, ifosfamide, and cisplatin. Blood 79: 1 193–2000Google Scholar
  24. Brugger W, Birken R, Bertz H, Hecht T, Pressler K, Frisch J, Schulz G, Mertelsmann R, Kanz L (1993) Peripheral blood progenitor cells mobilized by chemotherapy plus granulocyte-colony stimulating factor accelerate both neutrophil and platelet recovery after high-dose VP 16, ifosfamide and cisplatin. Br J Hematol 84: 402–407CrossRefGoogle Scholar
  25. Brugger W, Mácklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1993) Evivo expansion of enriched peripheral CD34+ progenitor cells by stem cell factor, interleukin1, Interleukin-6, interleukin 3, interferon-gam- ma, and erythropoietin. Blood 81: 2 579–2584Google Scholar
  26. Brugger W, Bross KJ, Glatt M, Weber F, Mertelsmann R, Kanz L (1994) Mobilization of tumor cells and hematopoietic progenitor cells into peripheral blood of patients with solid tumors. Blood 83: 636–640PubMedGoogle Scholar
  27. Brugger W, Henschler R, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1994) Positively selected autologous blood CD34+ cells and unseparated peripheral blood progenitor cells mediate identical hematopoietic engraftment after high-dose VP 16, ifosfamide, carboplatin, and epirubicin. Blood 84: 1421–1426PubMedGoogle Scholar
  28. Brugger W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1995) Reconstitution of hematopoiesis after highdose chemotherapy by autologous progenitor cells generated ex vivo. N Engl J Med 333: 283–287PubMedCrossRefGoogle Scholar
  29. Brugger W, Vogel W, Scheding S, Bock T, Ziegler B, Kanz L (1995) Epithelial tumor cells are not expanded concomitantly during cytokine-mediated ex vivo expansion of peripheral blood CD34+ progenitor cells(abstract). Blood 86: 295Google Scholar
  30. Buckner CD, Petersen FB, Bolonesi BA (1994) Bone marrow donors. In: Forman SJ, Blume KG, Thomas ED (eds) Bone marrow transplantation. Blackwell Scientific Publications, Boston, pp 259–269Google Scholar
  31. Burnett AK, Tansey P, Hills C, Alcorn MJ, Sheehan T, McDonald GA, Banham SW (1983) Haematological reconstitution following high dose and supralethal chemoradiotherapy using stored, non-cryopreserved autologous marrow Br J Haematol 54: 309–316PubMedCrossRefGoogle Scholar
  32. Carella AM, Pollicardo N, Raffo MR, Podesta M, Ferrero M, Pierluigi D, Nati S, Naibo K, Congiu A et al. (1992) Intensive conventional chemotherapy can lead to a precocious overshoot of cytogenetically normal blood stem cells (BSC) in chronic myeloid leukemia and acute lymphoblastic leukemia. Leukemia [Suppl 6] 4: 120–123Google Scholar
  33. Cassel A, Cottier-Fox M, Doren S, Dunbar CE (1993) Retroviral-mediated gene transfer into CD34-enriched human peripheral blood stem cells. Exp Hematol 21: 585–591PubMedGoogle Scholar
  34. Champlin R, Mehra R, Gajewski J, Khouri I, Geisler D, Davis M, Oba K, Thomas M, Armstrong RD, Douville J, Weber S, Silver S, Muller T, Deisseroth A (1995) Ex vivo expanded progenitor cell transplantation in patients with breast cancer. Blood 86: 294aGoogle Scholar
  35. Chang J, Dexter TM (1991) Long-term marrow cultures: in vitro purging of leukaemic cells. Baillieres Clin Haematol 4: 775–788PubMedCrossRefGoogle Scholar
  36. Chao NJ, Schriber JR, Grimes K, Long GD, Negrin RS, Rai- mondi CM, Horning SJ, Brown SL, Miller L, Blume KG (1993) Granulocyte colonystimulating factor „mobilized” peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 81: 2031–2035PubMedGoogle Scholar
  37. Chuah MK, Vandendriessche T, Chang HK, Ensoli B, Morgan RA (1994) Inhibition of human immunodeficiency virus type-1 by retroviral vectors expressing antisense- TAR. Hum Gene Ther 5: 1467–1475PubMedCrossRefGoogle Scholar
  38. Cullis HM, Areman E, Carter CS (1991) Nucleated cell separation using the Fenwall CS 3000™. In: Gee AP (ed) Bone marrow processing and purging. A practical guide. CRC Press, Boca Raton, pp 54–70Google Scholar
  39. DeLuca E, Sheridan WP, Watson D, Szer J, Begley CG (1992) Prior chemotherapy does not prevent effective mobilisation by G-CSF of peripheral blood progenitor cells. Br J Cancer 66: 893–899PubMedCrossRefGoogle Scholar
  40. et al.
    Deisseroth AB, Zu Z, Claxton D, Hanania EG, Fu S, Ellerson D, Goldberg L, Thomas M, Janicek K, Anderson WF (1994) Genetic marking shows that Ph+cells present in autologous transplants of chronic myelogenous leukemia (CML) contribute to relapse after autologous bone marrow in CML. Blood 83: 3068–3076Google Scholar
  41. Dick JE, Lapidot T, Pflumio F (1991) Transplantation of normal and leukemic human bone marrow into immune-deficient mice: development of animal models for human hematopoiesis. Immunol Rev 124: 25–43PubMedCrossRefGoogle Scholar
  42. Dicke KA, Hood DL, Hanks S, Vaughan M, Fulbright L, Dicke JA, Arneson M, Blumenschein G (1995) A marrow harvest procedure under local anesthesia. Exp Hematol 23: 1229–1323PubMedGoogle Scholar
  43. Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Lóffler H, Müller-Ruchholtz W, Loffler H, Schmitz N (1994) G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol 87: 609–613PubMedCrossRefGoogle Scholar
  44. Dührsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D (1988) Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72: 2074–2081PubMedGoogle Scholar
  45. Dunbar CE, Cottier-Fox M, O’Shaughnessy JA, Doren S, Carter C, Berenson R, Brown S, Moen RC, Greenblatt J, Stewart FM, Young NS, Nienhuis AW (1995) Retrovirally marked CD34-enriched peripheral blood and bone marrow cells contribute to long-term engraftment after autologous transplantation. Blood 85: 3048–3057PubMedGoogle Scholar
  46. Dunbar CE, Seidel NE, Doren S, Sellers S, Cline A, Metzger ME, Agricola BA, Donahue RE, Bodine DM (1997) Improved retroviral gene transfer into murine and rhesus peripheral blood or bone marrow repopulating cells primed in vivo with stem cell factor and granulocyte colony-stimulating factor. Proc Natl Acad Sci USA in pressGoogle Scholar
  47. Ebell W, Castro-Malaspina H, Moore MA, O’Reilly RJ (1985) Depletion of stromal cell elements in human marrow grafts separated by soybean agglutination. Blood 65: 1105–1111PubMedGoogle Scholar
  48. Elias AD, Ayash L, Anderson KC, Hunt M, Wheeler C, Schwartz G, Tepfer I, Mazanet R, Lynch C, Pap S et al. (1992) Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colonystimulating-factor for hematologic support after highdose intensification for breast cancer. Blood 79: 3036–3044PubMedGoogle Scholar
  49. Eto T, Takamatsu Y, Harada N, Harada N, Akashi K, Teshima T, Inaba S, Okamura T, Niho Y (1994) Effects of macrophage-colony stimulating factor (M-CSF) on the mobilization of peripheral blood stem cells. Bone Marrow Transplant 13: 125–129Google Scholar
  50. Finke J, Brugger W, Bertz H, Behringer D, Kunzmann R, Weber-Nordt RM, Kanz L, Mertelsmann R (1996) Allogeneic transplantation of positively selected peripheral blood CD34+ progenitor cells from matched related donors. Bone Marrow Transplant in pressGoogle Scholar
  51. Fisch P, Káhler G, Schaefer HE, Brugger W, Kanz L (1996) Generation of antigen presenting cells for soluble protein antigens ex vivo from peripheral blood CD34+ hematopoietic progenitor cells in cancer patients. Eur J Immunol 26: 595–600PubMedCrossRefGoogle Scholar
  52. Freedman AS, Nadler LM (1993) Developments in purging in autotransplantation. Hematol Oncol Clin North Am 7: 687–715PubMedGoogle Scholar
  53. Friedmann T, Jiing-Kuan Y (1995) Pseudotyped retroviral vectors for studies of human gene therapy. Nat Med 1: 275–277PubMedCrossRefGoogle Scholar
  54. Fritsch G, Emminger W, Buchinger P, Printz D, Gadner H (1991) CD34-positive cell proportions in peripheral blood correlate with colony-forming capacity. Exp Hematol 19: 1079–1083PubMedGoogle Scholar
  55. Gabiannelli M, Pelosi E, Montesoro E, Valieri M, Luchetti L, Samoggia P, Vitelli L, Barberi T, Testa U, Lyman S, Peschle C (1995) Multi-level effects of flt3 ligand on human hematopoiesis: expansion of putative stem cells and proliferation of granulomonocytic progenitors/monocytic precursors. Blood 86: 1661–1670Google Scholar
  56. Ganser A, Lindemann A, Ottmann OG, Seipelt G, Hess U, Geissler G, Kanz L, Frisch J, Schultz G, Herrmann F, Mertelsmann R, Hoelzer D (1992) Sequential treatment with two recombinant human hematopoietic growth factors (interleukin-3 and granulocyte-macrophage colonystimulating factor) as a new modality to stimulate hematopoiesis: result of a phase I study. Blood 79: 2583–2 593Google Scholar
  57. Gianni AM, Bregni M, Stern AC, Siena S, Tarella C, Pileri A, Bonadonna G (1989) Granulocyte-macrophage colonystimulating factor to harvest circulating haematopoietic stem cells for autotransplantation. Lancet 9: 580–585CrossRefGoogle Scholar
  58. Goan SR, Fichtner I, Just U, Karawajew L, Schultze W, Krause KP, Harsdorf S von, Schilling C von, Herrmann F (1995) The severe combined immunodeficient-human peripheral blood stem cell (SCID-huPBSC) mouse: a xenotransplant model for huPBSC-initiated hematopoiesis. Blood 86: 89–100PubMedGoogle Scholar
  59. Haas R, Ho AD, Bredthauer U, Cayeux S, Egerer G, Knauf W, Hunstein W (1990) Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hematol 18: 94–98PubMedGoogle Scholar
  60. Harrison DE, Jordan CT, Zhong RK, Astle CM (1993) Primitive hematopoietic stem cells: direct assay of most productive populations by competitive repopulation with simple binomial correlation and covariance calculations. Exp Hematol 21: 206–219PubMedGoogle Scholar
  61. Heal JM, West BL, Brightman A (1986) Harvesting of committed hematopoietic progenitor cells (CFU-GM) by hemapheresis. Transfusion 26: 136–140PubMedCrossRefGoogle Scholar
  62. Henon PR (1993) Peripheral blood stem cell transplantations: past, present and future. Stem Cells (Dayt) 11: 154–172CrossRefGoogle Scholar
  63. Henschler R, Brugger W, Luft T, Frey T, Mertelsmann R, Kanz L (1994) Maintenance of transplantation potential in ex vivo expanded CD34+ selected human peripheral blood progenitor cells. Blood 84: 2898–2903PubMedGoogle Scholar
  64. Herrmann RP, Davis RE (1982) Technique for human bone marrow harvest. Acta Haematol 68: 309–312PubMedCrossRefGoogle Scholar
  65. Ho AD, Li X, Lane TA, Yu M, Law P, Wong-Staal F (1995) Stem cells as vehicles for gene therapy: novel strategy for HIV infection. Stem Cells (Dayt) [Suppl 3] 13: 100–105PubMedCrossRefGoogle Scholar
  66. Holyoake TL, Alcorn M J, Richmond L, Pearson C, Farrell E, Kyle B, Dunlop DJ, Fitzsimons E, Steward WP, Pragnell IB (1995) A phase I study to evaluate the safety of re-infusing CD34 cells expanded ex vivo as part of all or a PBPC transplant procedure (abstract). Blood 86: 294Google Scholar
  67. Hudak S, Hunte B, Culpepper J, Menon S, Hannum C, Thompson-Snipes LA, Rennick D (1995) Flt3/flk2 ligand promotes the growth of murine stem cells and the expansion of of colony-forming cells and spleen colony-forming units. Blood 85: 2747–2755PubMedGoogle Scholar
  68. Jacobsen FW, Keller JR, Ruscetti FW, Veiby OP, Jacobsen SE (1995) Direct synergistic effects of 11–4 and 11–11 on proliferation of primitive hematopoietic progenitor cells. Exp Hematol 23: 990–995PubMedGoogle Scholar
  69. Jacobsen SE, Okkenhaug C, Myklebust, Veiby OP, Lyman SD (1995) The flt3 ligand potently and directly stimulates the growth and expansion of primitive murine bone marrow progenitor cells in vitro: synergistic interactions with interleukin(II)-ll, 11–12, and other hematopoietic growth factors. J Exp Med 181: 1357–1363PubMedCrossRefGoogle Scholar
  70. Janssen WE, Lee C (1991) Transportation of bone marrow for in vitro processing and transplantation. In: Gee AP (ed) Bone marrow processing and purging. A practical guide. CRC Press, Boca Raton, pp 40–49Google Scholar
  71. Janssen WE, Farmelo MJ, Lee C, Smilee R, Kronish L, Elfenbein GJ (1992) The CD34+ cell fraction in bone marrow and blood is not universally predictive of CFU-GM [see comments]. Exp Hematol 20: 528–530PubMedGoogle Scholar
  72. Janssen WE, Smilee RC, Elfenbein GJ (1995) A prospective randomized trial comparing blood-and marrow-derived stem cells following high-dose chemotherapy. J Hematother 4: 139–140PubMedCrossRefGoogle Scholar
  73. Jin NR, Hill R, Segal G, Still B, Petersen FB, Amos D, Buckner CD, Clift R, Bensinger W, Martin P et al. (1987) Preparation of red-blood-cell-depleted marrow for ABO-incompatible marrow transplantation by density-gradient separation using the IBM 2991 cell processor. Exp Hematol 15: 93–98PubMedGoogle Scholar
  74. Jones RJ, Wagner JE, Celano P, Zicha MS, Sharkis SJ (1990) Separation of pluripotent haematopoietic stem cells from spleen colony-forming cells. Nature 347: 188–189PubMedCrossRefGoogle Scholar
  75. Juttner CA, To LB, Haylock DN, Branford A, Kimber RJ (1985) Circulating autologous stem cells collected in very early remission from acute nonlymphoblastic leukaemia produce prompt but incomplete haemopoietic reconstitution after high dose melphalan or supralethal chemoradiotherapy. Br J Haematol 61: 739–745PubMedCrossRefGoogle Scholar
  76. Keller JR, Ortiz M, Ruscetti FW (1995) Steel factor (c-kit ligand) promotes the survival of hematopoietic stem/progenitor cells in the absence of cell division. Blood 86: 1757–1764PubMedGoogle Scholar
  77. Kessinger A (1995) Do autologous peripheral blood cell transplants provide more than hematopoietic recovery? Stem Cells (Dayt) 13: 351–354PubMedCrossRefGoogle Scholar
  78. Kessinger A, Armitage JO (1991) The evolving role of autologous peripheral stem cell transplantation following high-dose therapy for malignancies. Blood 77: 211–213PubMedGoogle Scholar
  79. Kishimoto T, Taga T, Akira S (1994) Cytokine signal transduction. Cell 76: 253–262PubMedCrossRefGoogle Scholar
  80. Kohn DB, Weinberg KI, Nolta JA, Heiss LN, Lenarsky C, Crooks GM, Hanley ME, Annett G, Brooks JS, El-Khoureiy A, Lawrence K, Wells S, Moen RC, Bastian J, Williams-Herman DE, Elder M, Wara D, Bowen T, Hershfield MS, Mullen CA, Blaese RM, Parkman R (1995) Engraftment of genemodified umbilical cord blood cells in neonates with adenosine deaminase deficiency. Nat Med 1: 1017PubMedCrossRefGoogle Scholar
  81. Koller MR, Palsson MA, Manchel I, Palsson BO (1995) Long-term culture initiating cell expansion is dependent on frequent medium exchange combined with stromal and other accessory cell effects. Blood 86: 1784–1793PubMedGoogle Scholar
  82. Körbling M, Burke P, Braine H, Elfenbein G, Santos G, Kaizer H (1981) Successful engraftment of blood-derived normal hematopoietic stem cells in chronic myelogenous leukemia. Exp Hematol 9: 684–690PubMedGoogle Scholar
  83. Körbling M, Dörken B, Ho AD, Pezzutto A, Hunstein W, Fliedner TM (1986) Autologous transplantation of blood-derived hematopoietic stem cells after myeloablative therapy in a patient with Burkitt’s lymphoma. Blood 67: 529–532PubMedGoogle Scholar
  84. Körbling M, Fliedner TM, Pflieger H (1990) Collection of large quantities of granulocyte-macrophage progenitor cells (CFUc) in man by means of continuous-flow leukapheresis. Scand J Haematol 24: 24Google Scholar
  85. Körbling M, Przepiorka D, Huh YO, Engel H, Besien K van, Giralt S, Andersson B, Kleine HD, Seong D, Deisseroth AB et al. (1995) Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood 85: 1659–1665PubMedGoogle Scholar
  86. Kotasek D, Shepherd KM, Sage RE, Dale BM, Norman JE, Charles P, Gregg A, Pillow A, Bolton A (1992) Factors affecting blood stem cell collections following high-dose cyclophosphamide mobilization in lymphoma, myeloma, and solid tumors. Bone Marrow Transplant 9: 11–17PubMedGoogle Scholar
  87. Laface D, Hermonat P, Wakeland E, Peck A (1989) Gene transfer into hematopoietic progenitor cells mediated by an adeno-associated virusvector. Virology 162: 483–487CrossRefGoogle Scholar
  88. Lapidot T, Pflumio F, Dick JE (1993) Modeling human hematopoiesis in immunodeficient mice. Lab Anim Sci 43: 147–150PubMedGoogle Scholar
  89. Lebkowski JS, McNally MM, Okarma TB, Lerch LB (1988) Adeno-associated virus: a vector system for efficient introduction of DNA into a variety of mammalian cell types. Mol Cell Biol 8: 3988–3996PubMedGoogle Scholar
  90. Lee JH, Klein HG (1995) Collection and use of circulating hematopoietic progenitor cells. Hematol Oncol Clin North Am 9: 1–22PubMedGoogle Scholar
  91. Lemischka IR (1992) What we have learnt from retroviral marking of hematopoietic stem cells. Curr Top Microbiol Immunol 177: 59–71PubMedGoogle Scholar
  92. Licht T, Pastan I, Gottesman M, Herrman F (1994) P-glycoprotein-mediated multidrug resistance in normal and neoplastic hematopoietic cells. Ann Hematol 69: 159–171PubMedCrossRefGoogle Scholar
  93. Link H, Arseniev L, Bahre O, Kadar JG, Diedrich H, Poliwoda H (1996) Transplantation of allogeneic CD34+ blood cells. Blood 87: 4903–4909PubMedGoogle Scholar
  94. Lyman SD, James L, Vanden Bos T, Vries P de, Brasel K, Gliniak B, Hollingsworth LT, Picha KS, McKenna HJ, Splett RR, Fletcher FA, Maraskovsky E, Farrah T, Foxwothe D, Williams DE, Beckmann MP (1993) Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells. Cell 75: 1157–1167PubMedCrossRefGoogle Scholar
  95. Mackensen A, Herbst B, Kohler G, Wolff-Vorbeck G, Rosenthal FM, Veelken H, Kulmburg P, Schaefer HE, Mertelsmann R, Lindemann A (1995) Delineation of the dendritic cell lineage by generating large numbers of Birbeck granule-positive Langerhans cells from human peripheral blood progenitor cells in vitro. Blood 86: 2699–2707PubMedGoogle Scholar
  96. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33: 153–159PubMedCrossRefGoogle Scholar
  97. Manyani H, Little MT, Dragowska W, Thornbury G, Lansdorp PM (1995) Differential effects of the hematopoietic inhibitors MlP-lalpha, TGF-(3, and TNF-alpha on cytokine induced proliferation of subpopulations of CD34+ cells purified from cord blood and fetal liver. Exp Hematol 23: 422–427Google Scholar
  98. Matsunaga T, Sakamaki S, Kohgo Y, Ohi S, Hirayama Y, Niitsu Y (1993) Recombinant human granulocyte colonystimulating factor can mobilize sufficient amounts of peripheral blood stem cells in healthy volunteers for allogeneic transplantation. Bone Marrow Transplant 11: 103–108PubMedGoogle Scholar
  99. McMannis JD (1991) Use of the cobe 2991™ cell processor for bone marrow processing. In: Gee AP (ed) Bone marrow processing and purging. A practical guide. CRC Press, Boca Raton, pp 73–84Google Scholar
  100. McNiece IK, Briddell RA, Yan XQ, Hartley CA, Gringeri A, Foote MA, Andrews RG (1994) The role of stem cell factor in mobilization of peripheral blood progenitor cells. Leukemia Lymphoma 15: 405–409PubMedCrossRefGoogle Scholar
  101. Miller AD, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6: 2895–2902PubMedGoogle Scholar
  102. Miller DG, Edwards RH, Miller D (1994) Cloning of the cellular receptor for amphotropic murine retroviruses reveales homology to that for gibbon ape leukemia virus. Proc Natl Acad Sci USA 91: 78–82PubMedCrossRefGoogle Scholar
  103. Morgan RA, Anderson WF (1993) Human gene therapy. Annu Rev Biochem 62: 191–217PubMedCrossRefGoogle Scholar
  104. Moritz T, Keller DC, Williams DA (1993) Human cord blood cells as targets for gene transfer: potential use in genetic therapies of severe combined immunodeficiency disease. J Exp Med 178: 529–536PubMedCrossRefGoogle Scholar
  105. Nagler A, Eldor A, Naparstek E, Mumcuoglu M, Slavin S, Deutsch VR (1995) Ex vivo expansion of megakaryocyte precursors by preincubation of marrow allografts with interleukin-3 and granulocyte-macrophage colony-stimulating factor in vitro. Exp Hematol 23: 1268–1274PubMedGoogle Scholar
  106. Negrin RS, Kusnierz-Glaz CR, Still BJ, Schriber JR, Chao NJ, Long GD, Hoyle C, Hu WW, Homing SJ, Brown BW et al. (1995) Transplantation of enriched and purged peripheral blood progenitor cells from a single apheresis product in patients with non-Hodgkin’s lymphoma. Blood 85: 3334–3341PubMedGoogle Scholar
  107. Neidhart J, Mangalik A, Kohler W, Stidley C, Saiki J, Duncan P, Souza L, Downing M (1989) Granulocyte colonystimulating-factor stimulates recovery of granulocytes in patients receiving dose-intense chemotherapy without bone marrow ablation. J Clin Oncol 7: 1685–1592PubMedGoogle Scholar
  108. Nienhuis AW, Walsh CE, Liu J (1993) Viruses as therapeutic vectors. In: Young NS (ed) Viruses and bone marrow. Dekker, New York Basel, pp 353–414Google Scholar
  109. Nolta JA, Hanley MB, Kohn DB (1994) Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood 83: 3041–3051PubMedGoogle Scholar
  110. Orlic D, Bodine DM (1994) What defines a pluripotent stem cell (PHSC): will the real PHSC please stand up! Blood 84: 3991–3994PubMedGoogle Scholar
  111. Orlic D, Fischer R, Nishikawa SI, Nienhuis AW, Bodine DM (1993) Purification and characterization of heterogenous pluripotent hematopoietic stem cell populations expressing high levels of c-kit receptor. Blood 82: 762–770PubMedGoogle Scholar
  112. Orlic D, Girard LJ, Jordan CT, Anderson SM, Cline AP, Bodine DM (1996) The level of mRNA encoding the amphotropic retrovirus receptor in mouse and human hematopoietic stem cells is low and correlates with the efficiency of retrovirus transduction. Proc Natl Acad Sci USA 93: 11097–11102PubMedCrossRefGoogle Scholar
  113. Osawa M, Hanada K, Hamada H, Nakauchi H (1996) Longterm lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273: 242–245PubMedCrossRefGoogle Scholar
  114. Petersen FB, Weinberg P, Hansen JA, Thomas ED (1991) Collection and transplantation of human bone marrow cells from unrelated donors. Transfus Sci 12: 155–159PubMedCrossRefGoogle Scholar
  115. Poeschla EM, Wong-Staal F (1995–1996) Gene therapy and HIV disease. AIDS Clin Rev: 1–45Google Scholar
  116. Rebel VI, Dragoswka W, Eaves CJ, Humphries RK, Lansdorp PM (1994) Amplification of Sca-1+, Lin-, WGA+ cells in serum-free cultures containing Steel factor, interleukin-6, and erythropoietin with maintenance of cells with longterm in vivo reconstitution potential. Blood 84: 2898–2903Google Scholar
  117. Richman CM, Weiner RS, Yankee RA (1976) Increase in circulating stem cells following chemotherapy in man. Blood 47: 1031–1039PubMedGoogle Scholar
  118. Rill DR, Buschle M, Foreman NK et al. (1992) Retrovirus mediated gene transfer as an approach to analyse neuroblastoma relapse after autologous bone marrow transplantation. Hum Gene Ther 3: 129–136PubMedCrossRefGoogle Scholar
  119. Rill DR, Moen RC, Buschle M et al. (1992) An approach for the analysis of relapse and marrow reconstitution after autologous marrow transplantation using retrovirus-mediated gene transfer. Blood 79: 2694–2700PubMedGoogle Scholar
  120. Rill DR, Santana VM, Roberts WM, Nilson T, Bowman LC, Krance RA, Heslop HE, Moen RC, Ihle JN, Brenner MK (1994) Direct demonstration that autologous bone marrow transplantation for solid tumors can return a multiplicity of tumorigenic cells. Blood 84: 380–383PubMedGoogle Scholar
  121. Rowley SD, Jones RJ, Piantadosi S, Braine HG, Colvin OM, Davis R, Sarai R, Sharkis S, Wingard J, Yeager AM et al. (1989) Efficacy of ex vivo purging for autologous bone marrow transplantation in the treatment of acute nonlymphoblastic leukemia. Blood 74: 501–506PubMedGoogle Scholar
  122. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179: 1109–1118PubMedCrossRefGoogle Scholar
  123. Samulski RJ, Zhu X, Xiao X et al. (1991) Targeted integration of adeno-associated virus (AAV) into chromosome 19. EMBO J 10: 3941–3950PubMedGoogle Scholar
  124. Sato N, Sawada K, Takahashi TA, Mogi Y, Asano S, Koike T, Sekiguchi S (1994) A time course study for optimal harvest of peripheral blood progenitor cells by granulocyte colony-stimulating factor in healthy volunteers. Exp Hematol 22: 973–978PubMedGoogle Scholar
  125. Schattner M, Lefebvre P, Spanier Mingolelli S, Goolsby CL, Rademaker A, White JG, Foster D, Cohen I (1995) Thrombopoietin stimulated ex vivo expansion of megakaryocytes in human bone marrow (abstract). Blood 86: 368aGoogle Scholar
  126. Scheding S, Bühring HJ, Ziegler B, Bock T, Kanz L, Brugger W (1995) Ex vivo generation of myeloid post-progenitor cells from mobilized peripheral blood CD34+ cells (abstract). Blood 86: 224aGoogle Scholar
  127. Scheding S, Franke H, Brugger W, Kanz L, Schmitz S (1995) How many myeloid post-progenitor cells have to be transplanted to completely abrogate neutropenia after high-dose chemotherapy and peripheral blood progenitor cell transplantation (abstract). Blood 86: 224aGoogle Scholar
  128. Scheding S, Brugger W, Vogel W, Kanz L (1996) Technical aspects of stem cell purification: implications for peripheral blood progenitor cell purging. Br J Haematol in pressGoogle Scholar
  129. Schmitz N, Dreger P, Suttorp M, Rohwedder EB, Haferlach T, Läffler H, Hunter A, Russell NH (1995) Primary transplantation of allogeneic peripheral blood stem cells mobilized by filgrastim (granulocyte colony-stimulating factor). Blood 85: 1666–1672PubMedGoogle Scholar
  130. Sheridan WP, Begley CG, Juttner CA, Szer J et al. (1992) Effect of peripheral blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 339: 640–644PubMedCrossRefGoogle Scholar
  131. Shimada T, Fujii H, Mitsuya H, Nienhuis AW (1991) Targeted and highly efficient gene transfer into CD4+ cells by a recombinant human immunodeficiency virus retroviral vector. J Clin Invest 88: 1043–1047PubMedCrossRefGoogle Scholar
  132. Sica S, Salutari P, Teofili L, Menichella G, Leone G (1992) G-CSF and peripheral blood progenitor cells. Lancet 339: 1411PubMedCrossRefGoogle Scholar
  133. Siena S, Bregni M, Brando B, Ravagnani F, Bonadonna G, Gianni AM (1989) Circulation of CD34+ hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte-macrophage colony-stimulating factor. Blood 74: 1905–1914PubMedGoogle Scholar
  134. Siena S, Bregni M, Brando B, Belli N, Ravagnani F, Gandola L, Stern AC, Lansdorp PM, Bonadonna G, Gianni AM Flow cytometry for clinical estimation of circulating hematopoietic progenitors for autologous transplantation in cancer patients. Blood 77: 400Google Scholar
  135. Siena S, Di Nicola M, Bregni M, Mortarini R, Anichini A, Lombardi L, Ravagnani F, Parmiani G, Gianni AM (1995) Massive ex vivo generation of functional dendritic cells from mobilized CD34+ blood progenitors for anticancer therapy. Exp Hematol 23: 1463–1471PubMedGoogle Scholar
  136. Smith C, Gasparetto C, Collins N, Gillio A, Muensch MO, Moore MA (1991) Purification and partial characterization of a human hematopoietic precursor population. Blood 77: 2122–2128PubMedGoogle Scholar
  137. Socinski MA, Cannistra SA, Elais A, Schnipper L, Antman KH, Griffin JD (1988) Granulocyte-macrophage colony-stimulating factor expands the circulating haemapoietic progenitor cell compartment in man. Lancet 1: 1194–1198PubMedCrossRefGoogle Scholar
  138. Sorrentino BP, Brandt SJ, Bodine D, Gottesman M, Pastan I, Cline A, Nienhuis AW (1992) Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR 1. Science 257: 99–103PubMedCrossRefGoogle Scholar
  139. Sphall EJ, Jones RB, Bearman SI, Franklin WA, Archer PG, Curiel T, Bitter M, Clamann HN, Stemmer SN, Purdy M et al. (1994) Transplantation of enriched CD34-positive autologous marrow into breast cancer patients following high-dose chemotherapy: influence of CD34-positive peripheral blood progenitors and growth factors on engraftment. J Clin Oncol 12: 28–36Google Scholar
  140. Stewart MF, Crittenden RB, Lowry PA, Pearson-White S, Quesenberry PJ (1993) Long-term engraftment of normal and post-5-fluorouracil murine bone marrow into normal nonmyeloablated mice. Blood 81: 2566–2571PubMedGoogle Scholar
  141. Sui X, Tsuji K, Tanaka R, Tajima S, Muraoka K, Ebihara Y, Ikebuchi K, Yasukawa K, Taga T, Kishimoto T, Nakahata T (1995) gp 130 and c-kit signalling synergize for ex vivo expansion of human primitive hematopoietic progenitor cells. Proc Natl Acad Sci USA 92: 2 859–2863Google Scholar
  142. Sutherland HJ, Eaves CJ, Lansdorp PM, Phillips GL, Hogge DE (1994) Kinetics of committed and primitive blood progenitor mobilization after chemotherapy and growth factor treatment and their use in autotransplants. Blood 83: 3808–3814PubMedGoogle Scholar
  143. Thomas ED, Storb R (1970) Technique for human marrow grafting. Blood 36: 507–515PubMedGoogle Scholar
  144. To BL, Shepperd KM, Haylock DN, Dyson PG, Charles P, Thorp DL, Dale BM, Dart GW, Roberts MM, Sage RE, Juttner CA (1990) Single high doses of cyclophosphamide enable the collection of high numbers of hematopoietic stem cells from the peripheral blood. Exp Hematol 18: 442–447PubMedGoogle Scholar
  145. To LB, Roberts MM, Haylock DN, Dyson PG, Branford AL, Thorp D, Ho JQ, Dart GW, Horvath N, Davy ML et al. Comparison of haematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 9: 277–284Google Scholar
  146. Uchida N, Murray L, Altenhofen J (1993) Kinetic analysis and isolation of CD34+ Thy+ Lin-cells from mobilized peripheral blood of multiple myeloma patients (abstract). Blood [Suppl] 8: 284aGoogle Scholar
  147. Uckun FM (1993) Immunotoxins for the treatment of leukaemia. Br J Haematol 85: 435–438PubMedCrossRefGoogle Scholar
  148. Vandendriessche T, Chuah MK, Chiang L, Chang HK, Ensoli B, Morgan RA (1995) Inhibition of clinical human immunodeficiency virus (HIV) type 1 isolates in primary CD4+ T lymphocytes by retroviral vectors expressing anti-HIV genes. J Virol 69: 4045–4052PubMedGoogle Scholar
  149. Vaziri H, Dragowska W, Allsopp RC, Thomas TE, Harley CB, Lansdorp PM (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91: 9857–9860PubMedCrossRefGoogle Scholar
  150. Ven van de, Ishizawa L, Law P, Cairo MS (1995) 11–11 in combination with SLF and G-CSF or GM-CSF significantly increases expansion of isolated CD34+ cell population from cord blood vs. adult bone marrow. Exp Hematol 23: 1289–1295PubMedGoogle Scholar
  151. Verma DS, Spitzer G, Zander AR, Fisher R, McCredie KB, Dicke KA (1980) The myeloid progenitor cell: a parallel study of subpopulations in human marrow and peripheral blood. Exp Hematol 8: 32–43PubMedGoogle Scholar
  152. Villeval JL, Dührsen U, Morstyn G, Metealf D (1990) Effect of recombinant human granulocyte-macrophage colonystimulating factor on progenitor cells in patients with advanced malignancies. Br J Haematol 74: 36–44PubMedCrossRefGoogle Scholar
  153. Vogel W, Behringer D, Scheding S, Kanz L, Brugger W (1996) Ex vivo expansion of CD34+ peripheral blood progenitor cells: implications for the expansion of contaminating tumor cells. Blood 88: 2707–2713PubMedGoogle Scholar
  154. Walsh CE, Liu JM, Young N, Xiao X, Nienhuis AW, Samulski RJ (1992) Regulated high level expression of a human gamma-globin gene introduced into erythroid cells by a novel adeno-associated virus (AAV) vector. Proc Natl Acad Sci USA 89: 7257–7261PubMedCrossRefGoogle Scholar
  155. Walsh CE, Nienhuis AW, Samulski RJ, Brown MG, Miller JL, Young NS, Liu JM (1994) Phenotypic correction of Fanconi anemia in human hematopoietic cells with a recombinant adeno-associated virus vector [see comments]. J Clin Invest 94: 1440–1448PubMedCrossRefGoogle Scholar
  156. Warren MK, Rose WL, Beall LD, Cone J (1995) CD34+ cell expansion and expression of lineage markers during liquid culture of human progenitor cells. Stem Cells (Dayt) 13: 167–174CrossRefGoogle Scholar
  157. Weaver CH, Bensinger W, Longin K, Appelbaum FR, Rowley S, Lilleby K, Miser J, Storb R, Buckner CD (1993) Syngeneic transplantation with peripheral blood mononuclear cells collected after the administration of recombinant human granulocyte colony-stimulating factor. Blood 82: 1981–1984PubMedGoogle Scholar
  158. Wolf JA, Lederberg J (1994) An early history of gene transfer and therapy. Hum Gene Ther 5: 469–443CrossRefGoogle Scholar
  159. Xi X, Schlegel N, Caen JP, Minty A, Fournier S, Caput D, Ferrara P, Han ZC (1995) Differential effects of recombinant human interleukin-13 on the in vitro growth of human haematopoietic progenitor cells. Br J Haematol 90: 921–927PubMedCrossRefGoogle Scholar
  160. Young JW, Szalbocs P, Moore MAS (1995) Identification of dendritic cell colony-forming units among normal human CD34+ bone marrow progenitors that are expanded by c-kit ligand and yield pure dendritic cell colonies in the presence of GM-CSF and TNFalpha. J Exp Med 182: 1111–1120PubMedCrossRefGoogle Scholar
  161. Zimmermann TM, Bender JG, Lee WJ, Swinney P, Blake M, Schilling M, Smith S, Van Epps D, Williams D, Williams SF (1995) Selection and expansion of CD34+ cells: feasibility and safety associated with clinical use. Blood 86: 294aGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Thomas A. Bock
  • Stefan Scheding
  • Wolfram Brugger
  • Lothar Kanz

There are no affiliations available

Personalised recommendations