Fremdstoffmetabolismus und Krebs: Molekular-epidemiologische Forschung

  • Jürgen Brockmöller
Part of the Handbuch der Molekularen Medizin book series (HDBMOLEK, volume 2)


Chemische Substanzen (Abb. 4.2.1) können Mutationen auslösen (Tumorinitiation) oder das Wachstum mutierter Zellen stimulieren (Tumorpromotion). Die meisten Krebserkrankungen lassen sich auf chemische Umwelteinflüsse zurückführen [Doll u. Peto 1981].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandrie EX, Sundberg MI, Seidegård J, Tornling G, Rannung A (1994) Genetic susceptibility to lung cancer with special emphasis on CYP1A1 and GSTM1: a study on host factors in relation to age at onset, gender and histological cancer types. Carcinogenesis 15: 1785–1790PubMedGoogle Scholar
  2. Ames BN, Dunston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70: 2281–2285PubMedGoogle Scholar
  3. Ayesh R, Idle JR, Ritchie JC, Crothers MJ, Hetzel MR (1984) Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 312: 169–171PubMedGoogle Scholar
  4. Badawi AF, Hirvonen A, Bell DA, Lang NP, Kadlubar FF (1995) Role of aromatic amine acetyltransferases, NATI and NAT2, in carcinogen-DNA-adduct formation in the human urinary bladder. Cancer Res 55: 5230–5237PubMedGoogle Scholar
  5. Bale AE, Nebert DW, Mride OW (1987) Subchromosomal localization of the dioxin-inducible PI-450 locus (CYP1) and description of two RFLPs detected with a 3’P 1–450 cDNA probe. Cytogenet Cell Genet 46: 574–575Google Scholar
  6. Bell DA, Taylor JA, Paulson DF, Robertson CN, Mohler JL, Lucier GW (1993) Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst 85: 1159–1164PubMedGoogle Scholar
  7. Bell DA, Badawi AF, Lang NP, Illett KF, Kadlubar FF, Hirvonen A (1995a) Polymorphism in the N-acetyltransferase 1 (NATI) polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue. Cancer Res 55: 5226–5229Google Scholar
  8. Bell DA, Stephens EA, Castranio T, Umbach DM, Watson M, Deakin M, Elder J, Hendrickse C, Duncan H, Strange RC (1995b) Polyadenylation polymorphism in the acetyl-transferase 1 gene (NAT1) increases risk of colorectal cancer. Cancer Res 55: 3537–3542PubMedGoogle Scholar
  9. Benitez J, Ladero JM, Fernández-Gundin MJ, Llerena A, Cobaleda J, Martinez C, Muñoz JJ, Vargaz E, Prados J, González-Rozas F, Rodrigues-Molina J, Usón AC (1990) Polymorphic oxidation of debrisoquine in bladder cancer. Ann Med 22: 157–160PubMedGoogle Scholar
  10. Benitez J, Ladero JM, Jara C, Carrillo JA, Cobaleda J, Llerena A, Vargas E, Muñoz JJ (1991) Polymorphic oxidation of debrisoquine in lung cancer. Eur J Cancer 27: 161–166Google Scholar
  11. Benowitz NL, Jacob P, Perez-Stable E (1996) CYP2D6 phenotype and the metabolism of nicotine and cotinine. Pharmacogenetics 6: 239–242PubMedGoogle Scholar
  12. Bertram JS, Kolonel LN, Meyskens FL (1987) Rationale and strategies for chemoprevention of cancer in humans. Cancer Res 47: 3012–3031PubMedGoogle Scholar
  13. Bicho MP, Breitenfeld L, Carvalho AA, Manso CF (1988) Acetylation phenotypes in patients with bladder carcinoma. Ann Genet 31: 167–171PubMedGoogle Scholar
  14. Bock KW (1991) Role of UDP-glucuronosyltransferases in chemical carcinogenesis. Crit Rev Biochem Mol Biol 26: 129–150PubMedGoogle Scholar
  15. Boobis AR, Lynch AM, Murray S, Torre R de la, Solans A, Farre M, Segura J, Gooderham NJ, Davies DS (1994) CYP1A2-catalyzed conversion of dietary heterocyclic amines to their proximate carcinogens is their major route of metabolism in humans. Cancer Res 54: 89–94PubMedGoogle Scholar
  16. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, Boer A de, Oostra BA, Lindhout D, Tytgat GNJ, Jansen PLM, Oude Elferink RPJ, Chowdhury NR (1995) The genetic basis of the reduced expression of bilirubin UDP-glucuronosyl-transferase 1 in Gilbert’s syndrome. N Engl J Med 333: 1171–1175PubMedGoogle Scholar
  17. Breslow NE, Day NE (1980) Statistical methods in cancer research, vol 1. The analysis of case-control studies. I ARC Sci Publ 32: 1–350Google Scholar
  18. Breslow NE, Day NE (1987) Statistical methods in cancer research, vol 2. The design and analysis of cohort studies. I ARC Sci Publ 82: 1–406Google Scholar
  19. Brockmoller J, Roots I (1994) Assessment of liver metabolic function Clinical implications. Clin Pharmakokinet 27: 216–248Google Scholar
  20. Brockmoller J, Gross D, Kerb R, Drakoulis N, Roots I (1992) Correlation between trans-stilbene oxide-glutathione conjugation activity and the deletion mutation in the glutathione-S-transferase class Mu gene detected by polymerase chain reaction. Biochem Pharmacol 43: 647–650PubMedGoogle Scholar
  21. Brockmoller J, Kerb R, Drakoulis N, Nitz M, Roots I (1993) Genotype and phenotype of glutathione S-transferase class N isoenzymes N and O in lung cancer patients and controls. Cancer Res 53: 1004–1009Google Scholar
  22. Brockmoller J, Kerb R, Drakoulis N, Staffeldt B, Roots I (1994) Glutathione S-transferase M1 and its variants A and B as host factors of bladder cancer susceptibility: a case-control study. Cancer Res 54: 4103–4111PubMedGoogle Scholar
  23. Brockmoller J, Cascorbi I, Kerb R, Roots I (1996) Combined genetical analysis of arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, and cytochrome enzymes as heritable modulators of bladder cancer risk. Cancer Res 56: 3915–3925PubMedGoogle Scholar
  24. Bryant MS, Skipper PL, Tannenbaum ST, Maclure M (1987) Hemoglobin adducts of 4-aminobiphenyl in smokers and nonsmokers. Cancer Res 47: 602–608PubMedGoogle Scholar
  25. Buehler BA, Delimont, D, Van Waes M, Finell RH (1990) Prenatal prediction of risk of the fetal hydantoin syndrome. N Engl J Med 322: 1567–1572PubMedGoogle Scholar
  26. Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF (1989) Human cytochrome P-450PA (P-450IA2), the phenacetin-O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Acad Sci USA 86: 7696–7700PubMedGoogle Scholar
  27. Caporaso N, Goldstein A (1995) Cancer genes: single and susceptibility: exposing the difference. Pharmacogenetics 5: 59–63PubMedGoogle Scholar
  28. Caporaso N, Hayes RB, Dosemeci M, Hoover R, Ayesh R, Hetzel M, Idle JR (1989) Lung cancer risk, occupational exposure, and the debrisoquine metabolic phenotype. Cancer Res 49: 3675–3679PubMedGoogle Scholar
  29. Carmella SG, Akerbar S, Hecht SS (1993) Metabolism of the tobacco-specific nitrosamine 4-(methyl nitrosamino)-l-(3-pyridyl)-l-butanone in smoker’s urine. Cancer Res 53: 721–724PubMedGoogle Scholar
  30. Carriere V, Goasduff T, Ratanasavanh D, Morel F, Gautier J-C, Guillouzo A, Beaune P, Berthou F (1993) Both cytochromes P450 2E1 and 1A1 are involved in the metabolism of chlorzoxazone. Chem Res Toxicol 6: 852–857PubMedGoogle Scholar
  31. Cartwright RA, Glashan RW, Rogers HJ, Ahmod RA, Barham-Hall D, Higgins E, Kahn MA (1982) The role of N-acetyltransferase in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer. Lancet II: 842–845Google Scholar
  32. Cartwright RA, Philip PA, Rogers HJ, Glashan RW (1984) Genetically determined debrisoquine oxidation capacity in bladder cancer. Carcinogenesis 5: 1191–1192PubMedGoogle Scholar
  33. Cascorbi I, Drakoulis N, Brockmoller J, Maurer A, Sperling K, Roots I (1995) Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 57: 581–592PubMedGoogle Scholar
  34. Cascorbi I, Brockmoller J, Mrozikiewicz PM, Bauer S, Loddenkemper R, Roots I (1996a) Homozygous rapid arylamine N-acetyltransferase (NAT2) genotype as susceptibility factor for lung cancer. Cancer Res 56: 3961–3966PubMedGoogle Scholar
  35. Cascorbi I, Brockmoller J, Roots I (1996b) A C4887A polymorphism in exon 7 of human CYP1A1: population frequency, mutation linkages, and the impact to lung cancer susceptibility. Cancer Res 56: 4965–4969PubMedGoogle Scholar
  36. Case RAM, Hosker ME, Monald DB, Pearson JT (1954) Tumors of the urinary bladder in workmen engaged in the manufacture and use of cartain dyestuff intermediates in the British chemical industry. Part 1. The role of aniline, benzidine, alpha-napthylamine and beta-naphthylamine. Br J Ind Med 11: 75–104PubMedGoogle Scholar
  37. Chen H, Sandler DP, Taylor JA, Shore DL, Liu E, Bloomfield CD, Bell DA (1996) Increased risk for myelodysplasia syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet 347: 295–297PubMedGoogle Scholar
  38. Cheng TJ, Christiani DC, Xu X, Wain JC, Wiencke JK, Kelsey KT (1995) Glutathione S-transferase mu genotype, diet, and smoking as determinants of sister chromatid exchange frequency in lymphocytes. Cancer Epidemiol Biomarkers Prev 4: 535–542PubMedGoogle Scholar
  39. Cholerton S, Arpanahi A, Mracken N, Boustead C, Taber H, Johnstone E, Leathart J, Daly AK, Idle JR (1994) Poor metabolizers of nicotine and CYP2D6 polymorphism. Lancet 343: 62–63PubMedGoogle Scholar
  40. Clifford SC, Neal DE, Lunec J (1996) High level expression of the multidrug resistance (MDR1) gene in the normal bladder urothelium: a potential involvement in protection against carcinogens? Carcinogenesis 17: 601–604PubMedGoogle Scholar
  41. Conney AH (1982) Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: GHA Clowes memorial lecture. Cancer Res 42: 4857–4917Google Scholar
  42. Conney AH, Pantuck EJ, Hsiao KC, Garland WA, Anderson KE, Alvarez AP, Kappas, A (1976) Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther 20: 633–642PubMedGoogle Scholar
  43. Crespi CL, Penman BW, Gelboin HV, Gonzalez FJ (1991) A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-l-(3-pyridyl)-l-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P450 2D6. Carcinogenesis 12: 1197–1201PubMedGoogle Scholar
  44. Crofts F, Taioli E, Trachman J, Cosma GN, Currie D, Toniolo P, Garte SJ (1994) Functional significance of different human CYP1A1 genotypes. Carcinogenesis 15: 2961–2963PubMedGoogle Scholar
  45. Daly AK, Thomas DJ, Cooper J, Pearson WR, Neal DE, Idle JR (1993) Homozygous deletion of gene for glutathione S-transferase M1 in bladder cancer. BMJ 307: 481–482PubMedGoogle Scholar
  46. Daly AK, Brockmoller J, Broly F, Eichelbaum M, Evans WE, Gonzalez FJ, Huang JD, Idle JR, Ingelman-Sundberg M, Ishizaki T, Jacqz-Aigrain E, Meyer UA, Nebert D, Steen V, Wolf CR, Zanger UM (1996) Nomenclature for human CYP2D6 alleles. Pharmacogenetics 6: 193–201PubMedGoogle Scholar
  47. Doll R, Peto R (1981) The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J Natl Cancer Inst 66: 1192–1308Google Scholar
  48. Drakoulis N, Cascorbi I, Brockmoller J, Gross CR, Roots I (1994) Polymorphisms in the human CYP1A1 gene as susceptibility factors for lung cancer: exon-7 mutation (4889 A to G), and a T to C mutation in the 3’-flanking region. Clin Invest 72: 240–248Google Scholar
  49. Duche JC, Joanne C, Barre J, Cremoux H de, Dalphin JC, Depierre A, Brochard P, Tillement JP, Bechtel P (1991) Lack of relationship between the polymorphism of debrisoquine oxidation and lung cancer. Br J Clin Pharmacol 31: 533–536PubMedGoogle Scholar
  50. Eichelbaum M, Spannbrucker N, Steincke B, Dengler H (1979) Defective N-oxidation of spartein in man: a new pharmacogenetic defect. Eur J Clin Pharmacol 16: 183–187PubMedGoogle Scholar
  51. Evans DAP (1992) N-Acetyltransferase. In: Kalow W (ed) Pharmacogenetics of drug metabolism. Pergamon Press, Oxford New York, pp 95–178Google Scholar
  52. Evans DAP, Eze LC, Whibley EJ (1983) The association of the slow acetylator phenotype with bladder cancer. J Med Genet 20: 330–333PubMedGoogle Scholar
  53. Fernandez-Salguero P, Pineau T, Hilbert DM, Mhail T, Lee SS, Kimura S, Nebert DW, Rudikoff S, Ward JM, Gonzalez FJ (1995) Immune system impairment and hepatic fibrosis in mice lacking the dioxin-binding Ah receptor. Science 268: 638–639Google Scholar
  54. Fleming CM, Persad R, Kaisary A, Smith P, Adedoyin A, Porter J, Wilkinson GR, Branch RA (1994) Low activity of dapsone N-hydroxylation as a susceptibility risk factor in aggressive bladder cancer. Pharmacogenetics 4: 199–207PubMedGoogle Scholar
  55. Gaedigk A, Spielberg SP, Grant DM (1994) Characterization of the microsomal epoxide hydrolase gene in patients with anticonvulsant adverse drug reactions. Pharmacogenetics 4: 142–153PubMedGoogle Scholar
  56. Gold LS, Slone TH, Stern BR, Manley NB, Ames BN (1992) Rodent carcinogens: setting priorities. Science 258: 261–265PubMedGoogle Scholar
  57. Gooderham NJ, Murray S, Lynch AM, Edwards RJ, Yadollahi-Farsani M, Bratt C, Rich KJ, Zhao K, Murray BP, Bhadresa S, Crosbie SJ, Boobis AR, Davies DS (1996) Heterocyclic amines: evaluation of their role in diet associated human cancer. Br J Clin Pharmacol 42: 91–98PubMedGoogle Scholar
  58. Gorrod JW, Jenner P, Keysell GR, Mikhael BR (1974) Oxidative metabolism of nicotine by cigarette smokers with cancer of the urinary bladder. J Natl Cancer Inst 52: 1421–1424PubMedGoogle Scholar
  59. Green VJ, Pirmohamed M, Kitteringham NR, Gaedigk A, Grant DM, Boxer M, Burchell B, Park BK (1995) Genetic analysis of microsomal epoxide hydrolase in patients with carbamazepine hypersensitivity. Biochem Pharmacol 50: 1353–1359PubMedGoogle Scholar
  60. Greenwald P (1994) Experience from clinical trials in cancer prevention. Ann Med 26: 73–80PubMedGoogle Scholar
  61. Grinberg-Funes RA, Singh VN, Perera FP, Bell DA, Young TL, Dickey C, Wang LW, Santella RM (1994) Polycyclic aromatic hydrocarbon – DNA adducts in smokers and their relationship to micronutrient levels and the glutathione-S-transferase M1 genotype. Carcinogenesis 15: 2449–2454PubMedGoogle Scholar
  62. Guengerich FP, Kim D-H, Iwasaki M (1991) Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 4: 168–179PubMedGoogle Scholar
  63. Guggenmoos-Holzman I, Wernecke K-D (1996) Medizinische Statistik. Blackwell, Oxford London, S 1–220Google Scholar
  64. Hanssen H-P, Agarwal DP, Goedde HW, Bucher H, Huland H, Brachmann W, Ovenbeck R (1985) Association of N-Google Scholar
  65. acetyltransferase polymorphism and environmental factors with bladder carcinogenesis. Eur Urol 11: 263–266Google Scholar
  66. Hassett C, Aicher L, Sidhu JS, Omiecinski CJ (1994) Human microsomal epoxide hydrolase: genetic polymorphism functional expression in vitro of amino acid variants. Hum Mol Genet 3: 421–428PubMedGoogle Scholar
  67. Hayashi SI, Watanabe J, Kawajiri K (1991) Genetic polymorphisms in the 5’-flanking region change translational regulation of the human cytochrome P450IIE1 gene. J Biochem 110: 559–565PubMedGoogle Scholar
  68. Hayashi SI, Watanabe J, Kawajiri K (1992) High susceptibility to lung cancer analyzed in terms of combined genotypes of P4501A1 and mu-class glutathione S-transferase genes. Jpn J Cancer Res 83: 866–870PubMedGoogle Scholar
  69. Hayes JD, Pulford DJ (1995) The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol 30: 445–600PubMedGoogle Scholar
  70. Hayes RB, Bi W, Rothman N, Broly F, Caporaso N, Feng P, You X, Yin S, Woosley RL, Meyer UA (1993) N-Acetylation phenotype and genotype and risk of bladder cancer in benzidine-exposed workers. Carcinogenesis 14: 675–678PubMedGoogle Scholar
  71. Hecht SS, Chung FL, Richie JP, Akerkar SA, Borukhova A, Skowronski L, Carmella SG (1995) Effects of watercress consumption on metabolism of a tobacco-specific lung carcinogen in smokers. Cancer Epidemiol Biomarkers Prev 4: 877–884PubMedGoogle Scholar
  72. Heckbert SR, Weiss NS, Hornung SK, Eaton DL, Motulsky AG (1992) Glutathione S-transferase and epoxide hydrolase activity in human leucocytes in relation to risk of lung cancer and other smoking-related cancers. J Natl Cancer Inst 84: 414–422PubMedGoogle Scholar
  73. Hein DW (1988) Acetylator genotype and arylamine induced carcinogenesis. Biochem Biophys Acta 948: 37–66PubMedGoogle Scholar
  74. Hein DW, Rustan TD, Ferguson RJ, Doll MA, Gray K (1994) Metabolic activation of aromatic and heterocyclic N-hydroxyarylamines by wild-type and mutant recombinant human NAT1 and NAT2 acetyltransferases. Arch Toxicol 68: 129–133PubMedGoogle Scholar
  75. Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, Belanger C, Lotte F, Gaziano JM, Ridker PM, Willett W, Peto R (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334: 1189–1190Google Scholar
  76. Hill AB (1967) Statistical evidence and interference. In: Hill AB (ed) Principles of medical statistics. Oxford University Press, Oxford, pp 302–325Google Scholar
  77. Hirvonen A, Husgafvel-Pursiainen K, Anttila S, Vainio H (1993) The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis 14: 1479–1481PubMedGoogle Scholar
  78. Hirvonen A, Nylund L, Kociba P, Husgafvel-Pursianinen K, Vainio H (1994) Modulation of urinary mutagenicity by genetically determined carcinogen metabolism in smokers. Carcinogenesis 15: 813–815PubMedGoogle Scholar
  79. Idle JR (1991) Is environmental carcinogenesis modulated by host polymorphism? Mutat Res 247: 259–266PubMedGoogle Scholar
  80. Illet KF, David BM, Detchon P et al. (1987) Acetylation phenotype in colorectal carcinoma. Cancer Res 47: 1466–1469Google Scholar
  81. Ishikawa T (1992) The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci 17: 463–468PubMedGoogle Scholar
  82. Izzotti A, De Flora S, Petrilli GL, Gallagher J, Rojas M, Alexandrov K, Bartsch H, Lewtas J (1995) Cancer biomarkers in human atherosclerotic lesions: detection of DNA adducts. Cancer Epidemiol Biomarkers Prev 4: 105–110PubMedGoogle Scholar
  83. Jones AL, Hagen M, Coughtrie MWH, Roberts RC, Glatt H (1995) Human platelet phenolsulfotransferase: NA cloning, stable expression in V79 cells and identification of a novel allelic variant of the phenol-sulfating form. Biochem Biophys Res Commun 208: 855–862PubMedGoogle Scholar
  84. Joseph P, Jaiswal A (1994) NAD(P)H:quinone oxidoreductasel (DT diaphorase) specifically prevents the formation of benzo[a]pyrene quinone-DNA adducts generated by cytochrome P450 1A2 and P450 reductase. Proc Natl Acad Sci USA 91: 8413–8417PubMedGoogle Scholar
  85. Jounaidi Y, Hyrailles V, Gervot L, Maurel P (1996) Detection of a CYP3A5 allelic variant: a candidate for the polymorphic expression of the protein. Biochem Biophys Res Commun 221: 466–470PubMedGoogle Scholar
  86. Kaisary A, Smith P, Jaczq E, Mllister CB, Wilkinson GR, Ray WA, Branch RA (1987) Genetic predisposition to bladder cancer: ability to hydroxylate debrisoquine and mephenytoin as risk factors. Cancer Res 47: 5488–5493PubMedGoogle Scholar
  87. Karakaya AE, Cok I, Sardas S, Gogus O, Sardas OS (1986) N-Acetyltransferase phenotype of patients with bladder cancer. Hum Toxicol 5: 333–335PubMedGoogle Scholar
  88. Kato S, Bowman ED, Harrington AM, Blomeke B, Shields PG (1995) Human lung carcinogen-DNA adduct levels mediated by genetic polymorphisms in vivo. J Natl Cancer Inst 87: 861–862Google Scholar
  89. Kawajiri K, Nakachi K, Imai K, Watanabe J, Hayashi S-I (1993) The CYP1A1 gene and cancer susceptibility. Crit Rev Oncol Hematol 14: 77–87PubMedGoogle Scholar
  90. Kawajiri K, Watanabe J, Eguchi H, Hayashi S-I (1995) Genetic polymorphisms of drug-metabolizing enzymes and lung cancer susceptibility. Pharmacogenetics 5: S70-S73PubMedGoogle Scholar
  91. Kellerman G, Shaw CR, Luy ten-Keller man M (1973) Aryl-hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. N Engl J Med 289: 934–937Google Scholar
  92. Ketley JN, Habig WH, Jakoby WB (1975) Binding of nonsubstrate ligands to the glutathione S-transferases. J Biol Chem 250: 8670–8673PubMedGoogle Scholar
  93. Kerb R, Brockmoller J, Reum T, Roots I (1997) Deficiency of glutathione S-transferases M1 and T 1 as heritable factors of increased cutaneous UV-sensitivity. J Invest Dermatol 108: 229–232PubMedGoogle Scholar
  94. Kihara M, Kihara M, Noda K (1994) Lung cancer risk of GSTM1 null genotype is dependent on the extent of tobacco smoke exposure. Carcinogenesis 15: 415–418PubMedGoogle Scholar
  95. Kim RB, O’Shea D, Wilkinson GR (1995) Interindividual variability of chlorzoxazone 6-hydroxylation in men and women and its relationship to CYP2E1 genetic polymorphisms. Clin Pharmacol Ther 57: 645–555PubMedGoogle Scholar
  96. Koob M, Dekant W (1991) Bioactivation of xenobiotics by formation of toxic glutathione conjugates. Chem Biol Interact 77: 107–139PubMedGoogle Scholar
  97. Koop DR (1992) Oxidative and reductive metabolism by cytochrome P450 2E1. FASEB J 6: 724–730PubMedGoogle Scholar
  98. Kouri RE, Minney CE, Slomianry DJ, Snodgrass DR, Wray N, Memore TL (1982) Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analysed in cryopreserved lymphozytes. Cancer Res 42: 5030–5037PubMedGoogle Scholar
  99. Kramer MS (1988) Clinical epidemiology and biostatistics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  100. Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA (1989) Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 36: 89PubMedGoogle Scholar
  101. Ladero JM, Kwok CK, Jara C, Fernandez L, Silmi AM, Tapia D, Uson AC (1985) Hepatic acetylator phenotype in bladder cancer patients. Ann Clin Res 17: 96–99PubMedGoogle Scholar
  102. Ladero JM, Gonzalez JF, Benitez J et al. (1991) Acetylator polymorphism in human colorectal carcinoma. Cancer Res 51: 2098–2100PubMedGoogle Scholar
  103. Lafuente A, Pujol F, Carretero P, Villa JP, Cuchi A (1993) Human glutathione S-transferase N (GSTN) deficiency as a marker for the susceptibility to bladder and larynx cancer among smokers. Cancer Lett 68: 49–54PubMedGoogle Scholar
  104. Lang NP, Chu DZ, Hunter CF et al. (1986) Role of aromatic amine acetyltransferase in human colorectal cancer. Arch Surg 121: 1259–1261PubMedGoogle Scholar
  105. Law MR, Hetzel MR, Idle JR (1989) Debrisoquine metabolism and genetic predisposition to lung cancer. Br J Cancer 59: 686–688PubMedGoogle Scholar
  106. Lemeshow S, Hosmer DW, Klar J, Lwanga SK (1990) Adequacy of sample size in health studies. Wiley & Sons, Chichester, pp 1–239Google Scholar
  107. Levin ML (1953) The occurrence of lung cancer in man. Acta Unio Internat Contra Cancrum 9: 531–541Google Scholar
  108. Lewalter J, Korallus U (1985) Blood protein conjugates and acetylation of aromatic amines. New findings on biological monitoring. Int Arch Occup Environ Health 56: 179–196PubMedGoogle Scholar
  109. Lin HJ, Han C-Y, Bernstein DA, Hsiao W, Lin BK, Hardy S (1994) Ethnic distribution of the glutathione transferyse Mu 1–1 (GSTM1) null genotype in 1473 individuals and application to bladder cancer susceptibility. Carcinogenesis 15: 1077–1081PubMedGoogle Scholar
  110. Lindberg RL, Negishi M (1989) Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339: 632–634PubMedGoogle Scholar
  111. Lindpaintner K, Pfeffer MA, Kreutz R, Stampfer MJ, Grodstein F, Lotte F, Buring J, Hennekens CH (1995) A prospective evaluation of an angiotensin-converting-enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 332: 706–711PubMedGoogle Scholar
  112. Llerena A, Edman G, Cobaleda J, Benitez J, Schalling D, Bertilsson L (1993) Relationship between personality and debrisoquine hydroxylation capacity. Acta Psychiatr Scand 87: 23–28PubMedGoogle Scholar
  113. London SJ, Daly AK, Fairbrother KS, Holmes C, Carpenter CL, Navidi WC, Idle JR (1995) Lung cancer risk in African-Americans in relation to a race-specific CYP1A1 polymorphism. Cancer Res 55: 6035–6037PubMedGoogle Scholar
  114. Lower G (1983) Molecular epidemiology of arylamine-induced urinary bladder cancer: some theoretical considerations. In: Weber WW, Hein DW, Litwin A, Lower GM (eds) Relationship of acetylator status to isoniazid toxicity, lupus erythematosus and bladder cancer. Fedn Proc 42: 3086–3097Google Scholar
  115. Lower GM, Nilsson T, Nelson CE, Wolf H, Gamsky TW, Bryan GT (1979) N-Acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ Health Perspect 29: 71–79Google Scholar
  116. Mannervik B, Awasthi YC, Yoard PG, Hayes JD, Dillio C, Ketterer B, Listowsky I, Morgenstern R, Muramatsu M, Pearson WR, Pickett CB, Sato K, Widersten M, Wolf CR (1992) Nomenclature for human glutathione transferases. Biochem J 282: 305–308PubMedGoogle Scholar
  117. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22: 719–748PubMedGoogle Scholar
  118. McGlynn K, Rosvold EA, Lustbader ED, Hu Y, Clapper ML, Zhou T, Wild CP, Xia X-L, Baffoe-Bonnie A, Ofori-Adjei D, Chen G-C, London WT, Shen F-M, Buetow KH (1995) Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin Bl. Proc Natl Acad Sci USA 92: 2384–2387PubMedGoogle Scholar
  119. McWilliams JE, Sanderson BJS, Harris EL, Richert-Boe KE, Henner WD (1995) Glutathione S-transferase M1 (GSTM1) deficiency and lung cancer risk. Cancer Epidemiol Biomarkers Prev 4: 589–594PubMedGoogle Scholar
  120. Miller ME, Cosgriff JM (1983) Acetylator phenotype in human bladder cancer. J Urol 130: 65–66PubMedGoogle Scholar
  121. Miller EC, Miller JA (1983) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47: 2327–2345Google Scholar
  122. Minchin RF, Kadlubar FF, Illett KF (1993) Role of acetylation in colorectal cancer. Mutat Res 200: 35–42Google Scholar
  123. Miners JO, Mackenzie PI (1991) Drug glucuronidation in humans. Pharmacol Ther 51: 347–369PubMedGoogle Scholar
  124. Mommsen S, Aagaard J (1986) Susceptibility in urinary bladder cancer: acetyltransferase phenotypes and related risk factors. Cancer Lett 32: 199–205PubMedGoogle Scholar
  125. Nakachi K, Imai K, Hayashi S, Kawajiri K (1993) Polymorphisms of the CYP1A1 and glutathione S-transferase genes associated with susceptibility to lung cancer in relation to cigarette dose in a Japanese population. Cancer Res 53: 2994–2999PubMedGoogle Scholar
  126. Nazar-Steward V, Motulsky AG, Eaton DL, White E, Hornung SK, Leng Z-T, Stapleton P, Weiss NS (1993) The glutathione S-transferase N polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res 53: 2313–2318Google Scholar
  127. Nebert DW (1994) Drug-metabolizing enzymes in ligand-modulated transcription. Biochem Pharmacol 47: 25–37PubMedGoogle Scholar
  128. Nelson DR, Koymans L, Kamataki T, Stegeman J, Feyereisen R, Waxman DJ, Waterman MR, Gotoh O, Coon MJ, Wstabrook RW, Gunsalus IC, Nebert DW (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6: 1–42PubMedGoogle Scholar
  129. Neumann H-G, Albrecht O, Dorp C van, Zwirner-Baier I (1995) Macromolecular adducts caused by environmental chemicals. Clin Chem 41: 1835–1840PubMedGoogle Scholar
  130. Okey AB, Riddick DA, Harper PA (1994) Molecular biology of the aromatic hydrocarbon (dioxin) receptor. Trends Pharmacol Sci 15: 226–232PubMedGoogle Scholar
  131. Okkels H, Sigsgaard T, Wolf H, Autrup H (1996) Glutathione S-transferase mu as a risk factor in bladder tumors. Pharmacogenetics 6: 251–256PubMedGoogle Scholar
  132. Owens IS, Ritter JK (1992) The novel bilirubin/phenol UDP-glucuronosyltransferase UGT1 gene locus: implications for multiple familial hyperbilirubinaemia phenotypes. Pharmacogenetics 2: 93–108PubMedGoogle Scholar
  133. Paigen B, Gurtoo HL, Minowada J, Houton L, Vincent R, Paigen K, Parker NB, Ward E, Hayner NT (1977) Questionable relation of aryl hydrocarbon hydroxylase to lung cancer risk. N Engl J Med 297: 346–350PubMedGoogle Scholar
  134. Pearson WR, Vorachek WR, Xu S-J, Berger R, Hart I, Vannais D, Patterson D (1993) Identification of class-mu glutathione transferase genes GSTM1-GSTM5 on human chromosome 1p13. Am J Hum Genet 53: 220–233PubMedGoogle Scholar
  135. Peluso M, Castegnaro M, Malaveille C, Friesen M, Garren L, Hautefeuille A, Vineis P, Kadlubar F, Bartsch H (1991) 32 Postlabeling analysis of urinary mutagens from smokers of black tobacco implicates 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PP) as a major DNA-damaging agent. Carcinogenesis 12: 713–717Google Scholar
  136. Pemble S, Schroeder KR, Spencer SR, Meyer DJ, Hallier E, Bolt HM, Ketterer B, Taylor JB (1994) Human glutathione S-transferase theta (GSTT1): NA cloning and the characterization of a genetic polymorphism. Biochem J 300: 271–276PubMedGoogle Scholar
  137. Perera FP, Weinstein IB (1982) Molecular epidemiology and carcinogen-DNA adduct detection: new approaches to studies of human cancer causation. J Chron Dis 35: 581–600PubMedGoogle Scholar
  138. Pero RW, Olsson A, Berglund G, Janzon L, Larsson SA, Elmstahl S (1993) The Malmo biological bank. J Intern Med 233: 63–67PubMedGoogle Scholar
  139. Probst MR, Blum M, Fasshauer I, D’Orazio D, Meyer UA, Wild D (1992) The role of the human acetylation polymorphism in the metabolic activation of the food carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline (IQ). Carcinogenesis 13: 1713–1717PubMedGoogle Scholar
  140. Probst-Hensch N, Haile RW, Ingles SA, Longnecker MP, Han C-Y, Lin BK, Lee DB, Sakamoto GT, Frankl HD, Lee ER, Lin HJ (1995) Acetylation polymorphism and prevalence of colorectal adenomas. Cancer Res 55: 2017–2020PubMedGoogle Scholar
  141. Prochaska HJ, Talalay P (1988) Regulatory mechanisms of monofunctional and bifunctional anticarcinogenic enzyme inducers in murine liver. Cancer Res 48: 4776–4782PubMedGoogle Scholar
  142. Rehn L (1895) Blasengeschwülste bei Fuchsin-Arbeitern. Arch Klin Chir 50: 588–590Google Scholar
  143. Risch A, Wallace DMA, Bathers S, Sim E (1995) Slow N-acetylation genotype is a susceptibilty factor in occupational and smoking related bladder cancer. Hum Mol Genet 4: 231–236PubMedGoogle Scholar
  144. Roots I, Brockmöller J (1996) Pharmakogenetik. In: Rietbrock N, Staib AH, Loew D (Hrsg) Klinische Pharmakologie, 3. Aufl. Steinkopf, Darmstadt, S 101–120Google Scholar
  145. Roots I, Drakoulis N, Ploch M, Heinemeyer G, Loddenkemper R, Minks T, Nitz M, Otte F, Koch M (1988) Debrisoquine hydroxylation phenotype, acetylation phenotype, and ABO blood groups as genetic host factors of lung cancer risk. Klin Wochenschr [Suppl 11] 66: 87–97PubMedGoogle Scholar
  146. Roots I, Drakoulis N, Brockmöller J, Janicke I, Cuprunov M, Ritter J (1989) Hydroxylation and acetylation phenotypes as genetic risk factors in certain malignancies. In: Kato R, Estabrook RW, Cayen MN (eds) Xenobiotic metabolism and disposition. Taylor & Francis, London, pp 499–506Google Scholar
  147. Roots I, Drakoulis N, Brockmöller J (1992) Polymorphic enzymes and cancer risk: concepts, methodology and data review. In: Kalow W (ed) Pharmacogenetics of drug metabolism. Pergamon Press, Oxford New York, pp 815–841Google Scholar
  148. Rost KL, Roots I (1994) Accelerated caffeine metabolism after omeprazole treatment is indicated by urinary metabolite ratios – coincidence with plasma clearance and breath test. Clin Pharmacol Ther 55: 402–411PubMedGoogle Scholar
  149. Rost KL, Brösicke H, Brockmöller J, Scheffler M, Helge H, Roots I (1992) Increase of cytochrome P450IA2 activity by omeprazole: evidence by the 13C-[N-3-methyl]-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 52: 170–180PubMedGoogle Scholar
  150. Rostami-Hodjegans A, Nurminen S, Jackson PR, Tucker GT (1996) Caffeine urinary metabolite ratios as markers of enzyme activity: a theoretical assessment. Pharmacogenetics 6: 121–150Google Scholar
  151. Rosvold EA, Mlynn KA, Lustbader ED, Buetow KH (1995) Identification of an NAD(P)H:quinone oxidoreductase polymorphism and its association with lung cancer and smoking Pharmacogenetics 5: 199–206PubMedGoogle Scholar
  152. Rothman KJ (1986) Modern epidemiology. Little, Brown & Co, BostonGoogle Scholar
  153. Ruffalo RL, Thompson JF (1982) Cimetidine and acetylcysteine as antidote for acetaminophen overdose. South Med J 75: 954–962PubMedGoogle Scholar
  154. Ryberg D, Kure E, Lystad S, Skaug V, Stangeland L, Mercy I, Borrensen A-L, Haugen A (1994) P53 mutations in lung tumors: relationship to putative susceptibility markers for cancer. Cancer Res 54: 1551–1555PubMedGoogle Scholar
  155. Sackett DL (1979) Bias in analytic research. J Chron Dis 32: 51–63PubMedGoogle Scholar
  156. Sato K, Kitahara A, Yin Z, Ebina T, Saroh K, Tsuda H, Ito N, Dempo K (1984) Molecular forms of glutathione-S-transferase and UDP-glucuronyltransferase as hepatic preneoplastic marker enzymes. Ann NY Acad Sci 47: 213 Schlesselman JJ (1982) Case-control studies – Design, conduct, analysis. Oxford University Press, Oxford, pp 1–354Google Scholar
  157. Schroder KR, Wiebel FA, Reich S, Dannappel D, Bolt HM, Hallier E (1995) Glutathione-S-transferase (GST) theta polymorphism influences background SCE rate. Arch Toxicol 69: 505–507PubMedGoogle Scholar
  158. Schuetz JD, Beach DL, Guzelian PS (1994) Selective expression of cytochrome P450 CYP3A NAs in embryonic and adult human liver. Pharmacogenetics 4: 11–20PubMedGoogle Scholar
  159. Schuetz EG, Schinkel AH, Relling MV, Schuetz JD (1996) P-glycoprotein: a major determinant of rifampicin-inductible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci USA 93: 4001–4005PubMedGoogle Scholar
  160. Schulte PA (1988) The role of genetic factors in bladder cancer. Cancer Detect Prev 11: 379–388PubMedGoogle Scholar
  161. Seidegard J, De Pierre JW, Pero RW (1985) Hereditary interindividual differences in the glutathione transferase activity towards trans-stilbene oxide in resting human mononuclear leukocytes are due to a particular isozyme(s). Carcinogenesis 6: 1211–1216PubMedGoogle Scholar
  162. Seidegard J, Pero RW, Miller DG, Beattie EJ (1986) A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis 7: 751–753PubMedGoogle Scholar
  163. Seidegard J, Vorachek WR, Pero RW, Pearson WR (1988) Hereditary differences in the expression of the human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85: 7293–7297PubMedGoogle Scholar
  164. Seidegrd J, Pero RW, Markowitz MM, Roush G, Miller DG, Beattie EJ (1990) Isoenzyme(s) of glutathione transferase (class Mu) as a marker for the susceptibility to lung cancer: a follow up study. Carcinogenesis 11: 33–36Google Scholar
  165. Sesardic D, Boobis AR, Murray BP, Murray S, Segura J, Torre R de la, Davies DS (1990) Furafylline is a potent and selective inhibitor of cytochrome P450 1A2 in man. Br J Clin Pharmacol 20: 651–653Google Scholar
  166. Shaw GL, Falk RT, Deslauriers J, Frame JN, Nesbitt JC, Pass HI, Issaq HJ, Hoover RN, Tucker MA (1994) Debrisoquine metabolism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 4: 41–48Google Scholar
  167. Shields PG, Bowman ED, Harrington AM, Doan VT, Weston A (1993) Polycyclic aromatic hydrocarbon-DNA adducts in human lung and cancer susceptibility genes. Cancer Res 53: 3486–3492PubMedGoogle Scholar
  168. Shimada T, Iwasaki M, Martin MV, Guengerich FP (1989) Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TAI 535/ Kl002. Cancer Res 49: 3218–3228PubMedGoogle Scholar
  169. Sinha R, Rothman N, Brown ED, Mark SD, Hoover RN, Caporaso NE, Levander OA, Knize MG, Lang NP, Kadlubar FF (1994) Pan-fried meat containing high levels of heterocyclic aromatic amines but low levies of polycyclic aromatic hydrocarbons induces cytochrome P4501A2 activity in humans. Cancer Res 54: 6154–6159PubMedGoogle Scholar
  170. Smigel K (1996) Beta carotene fails to prevent cancer in two major studies, CARET intervention stopped. J Natl Cancer Inst 88: 145PubMedGoogle Scholar
  171. Spielberg SP, Gordon GB, Blake DA, Goldstein DA, Herlong HF (1981) Predisposition to phenytoin hepatotoxicity assessed in vitro. N Engl J Med 305: 722–727PubMedGoogle Scholar
  172. Spitzer WO, Horwitz SM (1991) Selected nonexperimental methods: an orientation. In: Troidl H, Spitzer WO, Meek B, Mulder DS, Mneally MF, Wechsler AS, Balch CM (Hrsg) Principles and practice of research strategies for surgical investigators, 2nd edn. Springer, Berlin Heidelberg New York, pp 104–113Google Scholar
  173. Spurr NK, Gough AC, Stevenson K, Wolf CR (1987) Msplpolymorphism detected with a NA probe for the P-450 I family on chromosome 15. Nucleic Acids Res 15: 5901PubMedGoogle Scholar
  174. Sugimura T, Sato S (1983) Mutagens – carcinogens in foods. Cancer Res [Suppl] 43: 2415s-2421sGoogle Scholar
  175. Talaska G, AI Juburi AZ, Kadlubar FF (1991) Smoking related carcinogen-DNA adducts in biopsy samples of human urinary bladder: identification of N-(deoxyguanosin-8-l)-4-aminobiphenyl as a major adduct. Proc Natl Acad Sci USA 88: 5350–5354PubMedGoogle Scholar
  176. Talaska G, Schamer M, Skipper P, Tannenbaum S, Caporaso N, Kadlubar F, Bartsch H, Vineis P (1993) Carcinogen-DNA adducts in exfoliated urothelial cells: techniques for noninvasive human monitoring. Environ Health Perspect 99: 289–291PubMedGoogle Scholar
  177. Tang BK, Zhou Y, Kadar D, Kalow W (1994) Caffeine as a probe for CYP1A2 activity: potential influence of renal factors on urinary phenotypic trait measurements. Pharmacogenetics 4: 117–124PubMedGoogle Scholar
  178. Thier R, Taylor JB, Pemble SE, Humphreys WG, Persmark M, Ketterer B, Guengerich FP (1993) Expression of mammalian glutathione S-transferase 5–5 in Salmonella typhimurium TAI535 leads to base-pair mutations upon exposure to dihalomethanes. Proc Natl Acad Sci USA 90: 8576–8580PubMedGoogle Scholar
  179. Traver RD, Horikoshi T, Danenberg KD, Stadlbauer THW, Danenberg PV, Ross D, Gibson NW (1992) NAD(P)H: Quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res 52: 797–802PubMedGoogle Scholar
  180. Vatsis KP, Weber WW, Bell DA, Dupret J-M, Evans DAP, Grant DM, Hein DW, Lin HJ, Meyer UA, Relling MV, Sim E, Suzuki T, Yamazoe Y (1995) Nomenclature of N-acetyl-transferases. Pharmacogenetics 5: 1–17PubMedGoogle Scholar
  181. Vaury C, Laine R, Noguiez P, Coppet P de, Jaulin C, Praz F, Pompon D, Amor-Gueret M (1995) Human glutathione S-transferase M1 null genotype is associated with a high inducibility of cytochrome P450 1A1 gene transcription. Cancer Res 55: 5520–5523PubMedGoogle Scholar
  182. Vineis P, Caporaso N, Tannenbaum SR, Skipper PL, Glogowski J, Bartsch H, Coda M, Talaska G, Kadlubar F (1990) Acetylation phenotype, carcinogen-hemoglobin adducts, and cigarette smoking. Cancer Res 50: 3002–3004PubMedGoogle Scholar
  183. Vineis P, Bartsch H, Caporaso N, Harrington AM, Kadlubar FF, Landi MT, Malaveille C, Shields PG, Skipper P, Talaska G, Tannenbaum SR (1994) Genetically based N-acetyl-transferase metabolic polymorphism and low-level environmental exposure to carcinogens. Nature 369: 154–156PubMedGoogle Scholar
  184. Vogelstein B, Kinzler KW (1992) Carcinogens leave fingerprints. Nature 355: 209–210PubMedGoogle Scholar
  185. Ward E, Paigen B, Steenland K, Vincent R, Mnowada J, Gurtoo HL, Sartori P, Havens MB (1978) Aryl hydrocarbon hydroxylase in persons with lung or laryngeal cancer. Int J Cancer 22: 384–389PubMedGoogle Scholar
  186. Watkins PB (1990) Role of cytochrome P450 in drug metabolism and hepato toxicity. Semin Liver Dis 10: 235–250PubMedGoogle Scholar
  187. Weinshilboum R, Aksoy I (1991) Sulfatation pharmacogenetics in humans. Chem Biol Interact 92: 233–246Google Scholar
  188. Wiencke JK, Kelsey KT, Lamela RA, Toscano WA (1990) Human glutathione S-transferase deficiency as a marker of susceptibility to epoxide-induced cytogenetic damage. Cancer Res 50: 1585–1590PubMedGoogle Scholar
  189. Wiencke JK, Pemble S, Ketterer B, Kelsey KT (1995) Gene deletion of glutathione S-transferase I: Correlation with induced genetic damage and potential role in endogenous mutagenesis. Cancer Epidemiol Biomarkers Prev 4: 253–259PubMedGoogle Scholar
  190. Willett WC (1994) Diet and health: what should we eat? Science 264: 532–537PubMedGoogle Scholar
  191. Willett WC, Stampfer MJ, Colditz GA, Rosner BA, Speizer FE (1990) Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. N Engl J Med 323: 1664–1672PubMedGoogle Scholar
  192. Woodhouse KW, Adams PC, Clothier A, Mucklow JC, Rawlings MD (1982) N-Acetylation phenotype in bladder cancer. Hum Toxicol 1: 443–445PubMedGoogle Scholar
  193. Yang CS, Brady JE, Hong JY (1992) Dietary effects on cytochromes P450, xenobiotic metabolism and toxicity. FASEB J 6: 737–744PubMedGoogle Scholar
  194. Yu MC, Skipper PL, Taghizadeh K, Tannenbaum SR, Chan KK, Henderson BE, Ross RK (1994) Acetylator phenotype, aminobiphenyl-hemoglobin adduct levels, and bladder cancer risk in white, black and Asian men in Los Angeles, California. J Natl Cancer Inst 86: 712–716PubMedGoogle Scholar
  195. Yu MC, Ross RK, Chan KK, Henderson BE, Skipper PL, Tannenbaum SR, Coetzee GA (1995) Glutathione S-transferase M1 genotype affects aminobiphenyl-hemoglobin adduct levels in white, black and Asian smokers and nonsmokers. Cancer Epidemiol Biomarkers Prev 4: 861–864PubMedGoogle Scholar
  196. Zhong S, Howie AF, Ketterer B, Taylor J, Hayes JD, Beckett GJ, Wathen CG, Wolf CR, Spurr NK (1991) Glutathione S-transferase mu locus: use of genotyping and phenotyping assays to assess association with lung cancer susceptibility. Carcinogenesis 12: 1533–1537PubMedGoogle Scholar
  197. Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK (1993) Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 14: 1821–1824PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Jürgen Brockmöller

There are no affiliations available

Personalised recommendations