Skip to main content

Molekulargenetik hereditärer Hämostasedefekte

  • Chapter
Herz-Kreislauf-Erkrankungen

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 3))

  • 189 Accesses

Zusammenfassung

Die Hämostase zählt zu den wichtigsten Abwehrmechanismen des Organismus. Ein komplexes Zusammenspiel von zellularen, vaskulären und humoralen Mechanismen gewährleistet einerseits, daß das Blut innerhalb des intakten Gefäßsystems flüssig bleibt, andererseits wird nach einer Gefäßverletzung der Blutverlust durch die Ausbildung spezifischer Strukturen (primärer hämostatischer Pfropf, definitives Gerinnsel, Narbe) minimiert. Im Mittelpunkt der Hämostaseprozesse steht die Blutgerinnung, d. h. die Umwandlung des im Plasma gelösten Fibrinogens in das unlösliche Fibrin. Es handelt sich bei der Fibrinogen-Fibrin-Umwandlung um einen proteolytischen Prozeß. Das Gerinnungsenzym Thrombin spaltet vom Fibrinogenmolekül die Fibrinpeptide A und B ab. Die entstehenden Fibrinmonomere weisen eine elektrische Ladung auf, die zu einer zunächst reversiblen Polymerisation der Monomere [Fibrins (s=solubilis)] führt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Allgemeine Übersichten

  1. High KA, Roberts HR (1995) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel

    Google Scholar 

  2. Tuddenham EGD, Cooper DN (1994) The molecular genetics of haemostasis and is inherited disorders. Oxford University Press, Oxford

    Google Scholar 

  3. Broze GJ Jr, Girard TJ, Novotny WF (1990) Regulation of coagulation by a multivalent Kunitz-type inhibitor. Biochemistry 29: 7. 539

    Google Scholar 

  4. Colman R, Marder V, Salzman E, Hirsh J (1994) Overview of hemostasis. In: Colman R et al. (eds) Hemostasis and thrombosis. Basic principles and clinical practice. Lippincott, Philadelphia, pp 3–18

    Google Scholar 

  5. Esmon CT (1993) Molecular events that control the protein C anticoagulant pathway. Thromb Haemost 70: 29

    PubMed  CAS  Google Scholar 

  6. Rapaport SI (1991a) The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thromb Haemost 66: 6–15

    PubMed  CAS  Google Scholar 

  7. Rapaport SI, Rao LVM (1992) Initiation and regulation of tissue-factor dependent blood coagulation. Arterioscler Thromb Vasc Biol 12: 111

    Google Scholar 

  8. Berg K, Kierulf P (1989) DNA polymorphisms at fibrinogen loci and plasma fibrinogen concentration. Clin Genet 36: 229–235

    PubMed  CAS  Google Scholar 

  9. Chung DW, Harris JE, Davie EW (1990) Nucleotide sequences of the three genes coding for human fibrinogen. In: Liu CY, Chien S (eds) Fibrinogen, thrombosis, coagulation and fibrinolysis. Plenum Press, New York, pp 3948

    Google Scholar 

  10. Doolittle RF (1987) Fibrinogen and fibrin. In: Bloom AL, Thomas DP (eds) Haemostasis and thrombosis, 2nd edn. Churchill Livinstone, Edinburgh London New York, pp 192–215

    Google Scholar 

  11. Henschen A, Southan C, Kehl M, Lottspeich F (1981) The structural error and its relation to the malfunction in some abnormal fibrinogens. Thromb Haemost 46: 181

    Google Scholar 

  12. Humphries SE, Imam AMA, Robbins TP et al. (1984) The identification of a DNA polymorphism of the a fibrinogen gene and the regional assignment of the human S fibrinogen gene to 4q26-qter. Hum Genet 68: 148–153

    PubMed  CAS  Google Scholar 

  13. Lord ST (1995) Fibrinogen. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel

    Google Scholar 

  14. Medved LV (1990) Relationship between exons and domains in the fibrinogen molecule. Blood Coagul Fibrinolysis 1: 439–442

    PubMed  CAS  Google Scholar 

  15. Mosesson MW (1992) The role of fibrinogen and fibrin in hemostasis and thrombosis. Semin Hematol 29: 177–188

    PubMed  CAS  Google Scholar 

  16. Stubbs MT, Oschkinat H, Mayr I et al. (1991) The interaction of thrombin with fibrinogen. Eur J Biochem 206: 187–195

    Google Scholar 

  17. Wilhelmsen L, Svardsudd K, Korsan-Bengtsson K, Larsson B, Welin L, Tibblin G (1984) Fibrinogen as a risk factor for strike and myocardial infarction. N Engl J Med 311: 501–505

    PubMed  CAS  Google Scholar 

  18. Degen SJF (1995) Prothrombin. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 75–99

    Google Scholar 

  19. Iwahane H, Yoshimoto K, Itakura M (1992) Highly polymorphic region of the human prothrombin ( F2) gene. Hum Genet 89: 123–124

    Google Scholar 

  20. Soute BAM, Vermeer C, DeMetz M, Hemker HC, Lijnen HR (1981) In vitro prothrombin synthesis from a purified precursor protein. Biochim Biophys Acta 67: 101–107

    Google Scholar 

  21. Tamary H, Surrey S, Augustine JG, Schwartz E, Rappaport EF (1991) Molecular characterization of hypoprothombinemia. Blood 78: 65a

    Google Scholar 

  22. Broze GJ Jr, Girard TJ, Novotny WF (1991) The lipoprotein-associated coagulation inhibitor: why do hemophiliacs bleed? Prog Hemost Thromb 10: 243–268

    PubMed  CAS  Google Scholar 

  23. Morrissey JH (1995) Tissue factor: In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 101–118

    Google Scholar 

  24. Rapaport SI (1991b) Regulation of the tissue factor pathway. Ann N Y Acad Sci 614: 51–62

    PubMed  CAS  Google Scholar 

  25. Bertina RM, Koeleman BPC, Koster T, Rosendaal FR, Dirven RJ, Ronde H de, Velden PA van der, Reitsma PH (1994) Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 369: 64–67

    PubMed  CAS  Google Scholar 

  26. Dahlbäck B (1995) New molecular insights into the genetics of thrombophilia. Resistance to activated protein C caused by Arg506 to Gln mutation in factor V as a pathogenic risk factor for venous thrombosis. Thromb Haemost 74: 139–148

    PubMed  Google Scholar 

  27. Fujimura H, Kambayashi J, Monden M, Kato H, Miyata T (1995) Coagulation factor V Leiden mutation may have a racial background. Thromb Haemost 74: 1. 381

    Google Scholar 

  28. Griffin JH, Heeb MJ, Kojima Y, Fernandez JA, Kojima K, Hackeng TM, Greengard JS (1995) Activated protein C resistance: molecular mechanisms. Thromb Haemost 74: 444–448

    PubMed  CAS  Google Scholar 

  29. Herrmann FH (Hrsg) (1997) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 1–173

    Google Scholar 

  30. Herrmann FH, Koesling M, Schröder W, Altman R, Jiménez Bonilla R, Lopaciuk S, Perez-Requejo JL, Sing JR (1997) Prevalence of factor V Leiden mutation in various populations. Genet Epidemiol 14: 403–411

    PubMed  CAS  Google Scholar 

  31. Ortel TL, Kane WH, Keller FG (1995) Faktor V. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 119–146

    Google Scholar 

  32. Owren PA (1947) The coagulation of blood: investigations on a new clotting factor. Acta Med Scand [Suppl] 194: 1–327

    Google Scholar 

  33. Schröder W, Koesling M, Wulff K, Wehnert M, Herrmann FH (1996b) Large scale screening for factor V Leiden mutation in a north-eastern German population. Haemostasis 26: 233–236

    PubMed  Google Scholar 

  34. Tracy PB, Mann KG (1987) Abnormal formation of the prothrombinase complex: factor V deficiencies and related disorders. Hum Pathol 18: 162–169

    PubMed  CAS  Google Scholar 

  35. Tuddenham EGD, Cooper DN (1994) The molecular genetics of haemostasis and is inherited disorders. Oxford University Press, Oxford

    Google Scholar 

  36. Bernardi F, Castaman G, Pinotti M, Ferraresi P, Di Iasio MG, Lunghi B, Rodeghiero F, Marchetti G (1996) Mutation pattern in clinically asymptomatic coagulation factor VII deficiency. Hum Mutat 8: 108–115

    PubMed  CAS  Google Scholar 

  37. Green F, Kelleher C, Wilkes H, Temple A, Meade T, Humphries S (1991) A common genetic polymorphism associated with lower coagulation factor VII levels in healthy individuals. Arterioscler Thromb Vasc Biol 11: 540–546

    CAS  Google Scholar 

  38. Herrmann FH (Hrsg) (1997) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 1–173

    Google Scholar 

  39. Humphries SE, Temple A, Lane A, Green F, Cooper J, Miller G (1996) Low plasma levels of factor VIIc and antigen are more strongly associated with the 10 base pair promoter (-232) insertion than the glutamine 353 variant. Thromb Haemost 75: 567–572

    PubMed  CAS  Google Scholar 

  40. Marchetti G, Patracchini P, Papacchini M, Ferrati M, Bernardi F (1993a) A polymorphism in the 5’ region of coagulation factor VII gene ( F7) caused by an inserted decanucleotide. Hum Genet 90: 575–576

    Google Scholar 

  41. Mariani G, Marchetti G, Arcieri P, Bernardi F (1994) The role of factor VII gene polymorphism in determining FVII activity and antigen plasma level. Blood 84: 86a

    Google Scholar 

  42. Peake I, Thomson J, Poller I, Crowe W, Goodeve A (1993) The factor VII Arg 353 Gln polymorphism as a predictor of high plasma factor VII levels in a normal population. Thromb Haemost 69: 624

    Google Scholar 

  43. Tamary H, Fromovich Y, Shalmon L, Reich Z, Dym O, Lanir N, Brenner B, Paz M, Luder AS, Blau O, Korostishevsky M, Zaizov R, Seligsohn U (1996) Ala244Val is a common, probably ancient mutation causing factor VII deficiency in Maroccan in Iranian jews. Thromb Haemost 76: 283–291

    PubMed  CAS  Google Scholar 

  44. Tuddenham EGD, Pemberton S, Cooper DN (1995) Inherited factor VII deficiency: genetics and molecular pathology. Thromb Haemost 74: 313–321

    PubMed  CAS  Google Scholar 

  45. Wulff K, Schröder W, Herrmann FH (1997) Molekulare Defekte bei 116 Hämophilie B (Faktor IX-Mangel) Patienten und bei Patienten mit Faktro VII-Mangel. In: Herrmann FH (Hrsg) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 35–56

    Google Scholar 

  46. Wulff K, Glenschek C, Bergmann F, Herrmann FH (1996) Molekulargenetische Diagnostik bei einer Familie mit Faktor VII-Mangel. In: Scharrer I, Schramm W (Hrsg) Hämophilie-Symposion Hamburg 1996. Springer, Berlin Heidelberg New York, S 323–329

    Google Scholar 

  47. Antonarakis SE, Kazazian HH, Tuddenham EGD (1995) Molecular etiology of factor VIII deficiency in hemophilia A. Hum Mutat 5: 1–22

    PubMed  CAS  Google Scholar 

  48. Becker J, Schwaab R, Möller-Taube A, Schwaab U, Schmidt W, Brackmann HH, Grimm T, Olek K, Oldenburg J (1996) Characterization of the factor VIII defect in 147 patients with sporadic hemophilia A: family studies indicate a mutation type-dependent sex ratio of mutation frequencies. Am J Hum Genet 58: 657–670

    PubMed  CAS  Google Scholar 

  49. Herrmann FH (Hrsg) (1997) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 1–173

    Google Scholar 

  50. Herrmann FH, Schröder W, Wehnert M, Wulff K (1994) Zur genomischen Diagnostik von Hämophilie A und B in den 5 neuen Bundesländern. In: Kurme A, Klose HJ, Beer H-J (Hrsg) Psychosoziale Aspekte bei Hämophilie und HIV. Thieme, Stuttgart New York, S 222–231

    Google Scholar 

  51. Kazazian HH Jr, Wong C, Youssoufian HG, Scott AF, Phillips D, Antonarakis SE (1988) A novel mechanism of mutation in man: hemophilia A due to de novo insertion of L1 sequences. Nature 332: 164–166

    PubMed  CAS  Google Scholar 

  52. Lakich D, Kazazian HH, Antonarakis SE, Gitschier J (1993) Inversions disrupting the factor VIII gene as a common cause of severe haemophilia A. Nat Genet 5: 236–241

    PubMed  CAS  Google Scholar 

  53. Peake I (1995) Molecular genetics and counselling in haemophilia. Thromb Haemost 74: 40–44

    PubMed  CAS  Google Scholar 

  54. Tuddenham EGD (1995) Factor VIII. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 167–195

    Google Scholar 

  55. Mancuso DJ, Tuley EA, Westfield LA et al. (1991) Human von Willebrand factor gene and pseudogene: structural analysis and differentiation by polymerase chain reaction. Biochemistry 30: 253–269

    PubMed  CAS  Google Scholar 

  56. Marder VJ, Mannucci PM, Firkin BG, Hoyer LW, Meyer D (1985) Standard nomenclature for factor VIII and von Willebrand factor: a recommendation by the International committee on thrombosis and haemostasis. Thromb Haemost 54: 871–872

    PubMed  CAS  Google Scholar 

  57. Ruggeri ZM, Ware J (1992) The structure and function of

    Google Scholar 

  58. von Willebrand factor. Thromb Haemost 67: 594–599 Ruggeri ZM, Ware J (1993) Von Willebrand factor. FASEB J

    Google Scholar 

  59. -316

    Google Scholar 

  60. Sadler JE (1994) A revised classification of von Willebrand disease. Thromb Haemost 71: 520–525

    PubMed  CAS  Google Scholar 

  61. Sadler JE, Ginsburg D (1993) A database of polymorphisms in the von Willebrand factor gene and pseudogene. Thromb Haemost 69: 185–191

    PubMed  CAS  Google Scholar 

  62. Herrmann FH (Hrsg) (1997) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 1–173

    Google Scholar 

  63. High KA, Roberts HR (1995a) Factor IX. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 215–237

    Google Scholar 

  64. Peake I (1995) Molecular genetics and counselling in haemophilia. Thromb Haemost 74: 40–44

    PubMed  CAS  Google Scholar 

  65. Tuddenham EGD, Cooper DN (1994) The molecular genetics of haemostasis and is inherited disorders. Oxford University Press, Oxford

    Google Scholar 

  66. Wulff K, Schröder W, Wehnert M, Herrmann FH (1995) Twenty-five novel mutations of the factor IX gene in haemophilia B. Hum Mutat 6: 346–348

    PubMed  CAS  Google Scholar 

  67. Wulff K, Schröder W, Herrmann FH (1997) Molekulare Defekte bei 116 Hämophilie B (Faktor IX-Mangel) Patienten und bei Patienten mit Faktro VII-Mangel. In: Herrmann FH (Hrsg) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 35–56

    Google Scholar 

  68. Fung MR, Hay CW, MacGillivray RTA (1985) Characterization of an almost full-length cDNA coding für human blood coagulation factor X. Proc Natl Acad Sci USA 82: 3. 591

    Google Scholar 

  69. Girolami A (1986) Tentative and update classification of factor X variants. Acta Haematol 75: 58

    PubMed  CAS  Google Scholar 

  70. Jaey R, Ricca G, Kaplan R et al. (1985) Polymorphisms associated with the human factor X (F10) gene. Nucleic Acids Res 22: 8. 268

    Google Scholar 

  71. Jagadeeswaran P, Reddy SV, Rao KJ, Hamsabhushanam K, Lyman G (1989) Cloning and characterization of the 5’ end (exon 1) of the gene encoding human factor X. Gene 84: 517

    PubMed  CAS  Google Scholar 

  72. Watzke HH, High KA (1995) Factor X. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel

    Google Scholar 

  73. Saito H, Ratnoff OD, Bouma BN, Seligsohn U (1985) Failure to detect variable (CRM+) plasma thromboplastin antecedent (PTA, factor XI) molecule in hereditary PTA deficiency: a study of 125 patients of several ethnic backgrounds. J Lab Clin Med 106: 718–722

    PubMed  CAS  Google Scholar 

  74. Seligsohn U (1979) Factor XI (PTA) deficiency in Ashkenazi Jews. In: Goodman RM, Motulsky AG (eds) Genetic diseases among Ashkenazi Jews. Raven Press, New York, pp 141–148

    Google Scholar 

  75. Walsh PN (1992) Faktor XI: a renaissance. Semin Hematol 29: 189–201

    PubMed  CAS  Google Scholar 

  76. Bennett B, Ratnoff OD, Hold JB, Roberts HR (1972) Hage-man trait (factor XII deficiency) a probable second genotype inherited as on autosomal dominant characteristics. Blood 40: 412–415

    PubMed  CAS  Google Scholar 

  77. Bernardi F, Marchetti G, Paniucucci F, Tripodi M (1986) Taq I polymorphism at the human coagulation factor XII locus (F12). Nucleic Acids Res 14: 5. 119

    Google Scholar 

  78. Bernardi F, Marchetti G, Volinia S, Patracchini P, Casonato A, Girolami A, Conconi F (1988) A frequent factor XII gene mutation in Hageman trait. Hum Genet 80: 149–151

    PubMed  CAS  Google Scholar 

  79. Fujikawa K, Saito H (1987) Contact activation. In: Scriver CR, Beaudet Al, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 2.189–2. 206

    Google Scholar 

  80. Gordon EM, Gallagher CA, Johnson TR, Blossey BK, Ilan J (1990) Hepatocytes express blood coagulation factor XII ( Hageman factor ). J Lab Clin Med 115: 463–469

    Google Scholar 

  81. Hofferbert S, Müller J, Köstering H, Ohlen W-D von, Schlösser M (1996) A novel 5’-upstream mutation in the factor XII gene is associated with a Taq I restriction site in an Alu repeat in factor XII-deficient patients. Hum Genet 97: 838–841

    PubMed  CAS  Google Scholar 

  82. Ratnoff OD (1954) A familial trait characterized by deficiency of clot-promoting fraction of plasma. J Lab Clin Med 44: 915–916

    Google Scholar 

  83. Kato A, Asakai R, Davie EW, Aoki N (1989) Factor XI gene (F11) is located on the distal end of the long arm of chromosome 4. Cytogenet Cell Genet 52: 77–78

    PubMed  CAS  Google Scholar 

  84. Saito H (1987) Contact factors in health and disease. Semin Thromb Hemost 13: 36–49

    PubMed  CAS  Google Scholar 

  85. Saito H, Kojima T (1995) Faktor XII, prekallikrein, and high-molecular-weight kininogen. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 269–285

    Google Scholar 

  86. Kitamura N, Kitagawa H, Fukushima D, Takagaki Y, Miyata T, Nakanishi S (1985) Structural organization of the hu-

    Google Scholar 

  87. man kininogen gene and a model for its evolution. J Biol Chem 260: 8.610–8.617

    Google Scholar 

  88. Saito H, Kojima T (1995) Faktor XII, prekallikrein, and high-molecular-weight kininogen. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 269–285

    Google Scholar 

  89. Duckert F, Jung E, Sherling DH (1960) A undescribed congenital haemorrhagic diathesis probable due to fibrin stabilizing factor deficiency. Thromb Diath Haemorrh 5: 179–186

    PubMed  CAS  Google Scholar 

  90. Lorand L (1986) Activation of blood coagulation factor XIII. Ann N Y Acad Sci 485: 144–158

    PubMed  CAS  Google Scholar 

  91. McDonagh JA (1987) Structure and function of factor XIII. In: Colman RW, Hirsh J, Marter VJ, Salznan EW (eds) Hemostasis and thrombosis. Lippincott, Philadelphia, pp 289–300

    Google Scholar 

  92. Saito M, Asakura H, Yoshida T et al. (1990) A familial factor XIII subunit B deficiency. Br J Haematol 74: 290–294

    PubMed  CAS  Google Scholar 

  93. Lindahl AK, Jacobsen PB, Sandset PM, Abildgaard U (1991) Tissue factor pathway inhibitor with high anticoagulant activity is increased in post-heparin plasma and in plasma from cancer patients. Blood Coagul Fibrinolysis 2: 713–721

    PubMed  CAS  Google Scholar 

  94. Palmier MO, Hall LJ, Reisch CM, Baldwin MK, Wilson AGE, Wun T-C (1992) Clearance of recombinant tissue factor pathway inhibitor ( TFPI) in rabbits. Thromb Haemost 68: 33–36

    Google Scholar 

  95. Rapaport SI (1991 a) The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thromb Haemost 66: 6–15

    Google Scholar 

  96. Wun T-C (1995) Tissue factor pathway inhibitor. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 331–424

    Google Scholar 

  97. Agostini de AI, Watkins SC, Slayter HS, Youssoufian H, Rosenberg RD (1990) Localization of anticoagulantly active heparin sulfate proteoglycans in vascular endothelium: antithrombin binding on cultured endothelial cells and perfused rat aorta. J Cell Biol 111: 1. 293–1. 304

    Google Scholar 

  98. Demers C, Ginsberg JS, Hirsh J, Henderson P, Blajchman MA (1992) Thrombosis in antithrombin-III-deficient persons: report of a large kindred and literature review. Ann Intern Med 116: 754–761

    PubMed  CAS  Google Scholar 

  99. Egeberg 0 (1965) Inherited antihrombin deficiency causing

    Google Scholar 

  100. thrombophilia. Thromb Diath Haemorrh 13: 516–530 Nemerson Y (1992) The tissue factor pathway of blood co-

    Google Scholar 

  101. agulation. Semin Hematol 29: 170–176

    Google Scholar 

  102. Olds RJ, Chowdury V, Lane DA et al. (1993) Gene rearrangement within the antithrombin locus as the basis for an inherited thrombophilic tendency. Thromb Haemost 69: 576a

    Google Scholar 

  103. Sheffield WP, Wu Yei (1995) Antithrombin: structure and function. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel

    Google Scholar 

  104. Winter JH, Bennett B, Watt JL et al. (1982) Confirmation of linkage between antithrombin III and Duffy blood group antigen and assignment of AT3 to 1q22–25. Ann Hum Genet 26: 29–34

    Google Scholar 

  105. Blinder MA, Marasa JC, Reynolds CH, Deaven LL, Tollefsen DM (1988) Heparin cofactor II: cDNA sequence, chromosome localization, restriction fragment length polymorphism, and expression in Escherichia coli. Biochemistry 27: 752–759

    PubMed  CAS  Google Scholar 

  106. Conrad HE (1989) Structure of heparin sulfate and derma-tan sulfate. Ann N Y Acad Sci 556: 18–28

    PubMed  CAS  Google Scholar 

  107. Roberts HR, Lozier JN (1992) New perspectives on the coagulation. Hosp Pract (Off Ed) 1992: 97–111

    Google Scholar 

  108. Simoni P, Lazzaro AR, Coser E, Salmistraro G, Girolami A (1990) Heredity heparin cofactor II deficiency and thrombosis: report of six patients belonging to two separate kindreds. Blood Coagul Fibrinolysis 1: 351–356

    Google Scholar 

  109. Wunderwald P, Schrenk WJ, Port H (1982) Antithrombin BM from human plasma: an antithrombin binding moderately to heparin. Thromb Res 25: 177–191

    PubMed  CAS  Google Scholar 

  110. Aiach M, Gandrille S, Emmerich J (1995) A review of mutations causing deficiencies of protein C and protein S. Thromb Haemost 74: 81–89

    PubMed  CAS  Google Scholar 

  111. Gandrille S, Alach M (1991) Polymorphism in the protein C gene detected by denaturing gradient gel electrophoresis. Nucleic Acids Res 19: 6. 982

    Google Scholar 

  112. Herrmann FH (Hrsg) (1997) Molekulargenetik hereditärer Hämostasedefekte. Pabst, Lengrich, S 1–173

    Google Scholar 

  113. Hogg PJ, Ohlin A-K, Stenflo J (1992) Identification of structural domains in protein C involved in its interaction with thrombin-thrombomodulin on the survace of endothelial cells. J Biol Chem 267: 703–706

    PubMed  CAS  Google Scholar 

  114. Mammen E, Thomas WR, Seegers WH (1960) Activation of purified prothrombin to antiprothrombin II-A. Thromb Diath Haemorrh 5: 218–250

    PubMed  CAS  Google Scholar 

  115. Reitsma PH, Lintel Hekkert W te, Koenhen E et al. (1990) Application of two neutral MspI DNA polymorphisms in the analysis of hereditary protein C deficiency. Thromb Haemost 64: 239–244

    PubMed  CAS  Google Scholar 

  116. Reitsma PH, Poort SR, Bernardi F et al. (1993) Protein C deficiency: a database of mutations. Thromb Haemost 69: 77–84

    PubMed  CAS  Google Scholar 

  117. Reitsma PH, Bernardi F, Doig G, Gandrille S, Greenhard S, Ireland H, Krawczak M, Lind B, Long GL, Poort SR, Saito H, Sala N, Witt I, Cooper DN (1995) Protein C deficiency: a database of mutations. Thromb Haemost 73: 876–889

    PubMed  CAS  Google Scholar 

  118. Stenflo J (1988) The biochemistry of protein C. In: Bertina RM (ed) Protein C and related proteins. Churchill Livingstone, New York, pp 21–54

    Google Scholar 

  119. Suzuki K (1988) Protein C inhibitor. In: Bertina RM (ed) Protein C and related proteins. Churchill Livingstone, New York, pp 106–116

    Google Scholar 

  120. Suzuki K (1995a) Protein C. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 393–424

    Google Scholar 

  121. Dahlbäck B, Stenflo J (1994) In: Bloom AL, Forbes ChD, Thomas DP, Tuddenham EGP (ed) Haemostasis and Thrombosis. Churchill Livingsten, Edingburgh, London, Madrid, Melbourne, New York, Tokio

    Google Scholar 

  122. Esmon CT (1989) The roles of protein C and thrombomodulin in the regulation of blood coagulation. J Biol Chem 264: 4. 743

    Google Scholar 

  123. Espinosa R, Sadler JE, LeBeau M (1989) Regional localization of the human thrombomodulin gene to 20p12-cen. Genomics 5: 649–650

    PubMed  Google Scholar 

  124. Parkinson J, Vlahos C, Yan S, Bang N (1992) Recombinant human thrombomodulin: regulation of cofactor activity and anticoagulant function by a glycosaminoglycan side-chain. Biochem J 283: 151–157

    PubMed  CAS  Google Scholar 

  125. Suzuki K, Kusumoto H, Deyashiki Y et al. (1987b) Structure and expression of human thrombomodulin, a thrombin receptor on endothelium acting as a cofactor for protein C activation. EMBO J 6: 1. 891

    Google Scholar 

  126. Takaya M, Ichikawa Y, Kobayashi N et al. (1991) Serum thrombomodulin and anticardiolipin antibodies in patients with systemic lupus erythematosus. Clin Exp Rheumatol 9: 495–499

    PubMed  CAS  Google Scholar 

  127. Thompson EA, Salem HH (1988) Modification of human thrombin: effect on thrombomodulin binding. Thromb Haemost 59: 415

    PubMed  CAS  Google Scholar 

  128. Wen D, Dittmann WA, Ye RD, Deaven LL, Majerus PW, Sadler JE (1987) Human thrombomodulin: complete cDNA sequence and chromosome localization of the gene. Biochemistry 26: 4. 350

    Google Scholar 

  129. Esmon CT (1992) The protein C anticoagulant pathway. Arterioscler Thromb Vasc Biol 12: 135–146

    CAS  Google Scholar 

  130. Suzuki K, Nishioka J, Hashimoto S (1983) Protein C inhibitor: purification from human plasma and characterization. J Biol Chem 258: 163–168

    PubMed  CAS  Google Scholar 

  131. Suzuki K, Deayshiki Y, Nishioka J et al. (1987a) Characterization of a cDNA for human protein C inhibitor. A new member of the plasma serine protease inhibitor super-family. J Biol Chem 262: 611–616

    PubMed  CAS  Google Scholar 

  132. Aiach M, Gandrille S, Emmerich J (1995) A review of mutations causing deficiencies of protein C and protein S. Thromb Haemost 74: 81–89

    PubMed  CAS  Google Scholar 

  133. Dahlbäck B (1991) Protein S and C4b-binding protein: components involved in the regulation of the protein C anticoagulant system. Thromb Haemost 66: 49–61

    PubMed  Google Scholar 

  134. Griffin JH (1992) Report in subcommittee on protein C and S. The 38th scientific and standardization committee (SSC) of International society on thrombosis and haemostasis (ISTH), Munich, Juli 7

    Google Scholar 

  135. Harris TJR, Patel T, Martson RAO, Little S, Emtage JS (1986) Cloning of cDNA coding for human tissue-type plasminogen activator and its expression in E. coli. Mol Biol Med 3: 279–292

    CAS  Google Scholar 

  136. Suzuki K (1995b) Protein S. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 459–478

    Google Scholar 

  137. Edlund T, Ny T, Ranby M et al. (1983) Isolation of cDNA sequences coding for a part of human tissue plasminogen activator. Proc Natl Acad Sci USA 80: 349–352

    PubMed  CAS  Google Scholar 

  138. Kluft C, Wijngaards G, Jie AFH (1981) The factor XII-independent plasminogen proactivator system includes urokinase-related activators. Thromb Haemost 46: 343–350

    Google Scholar 

  139. Stack MS, Madison EL, Pizzo SV (1995) Tissue-type plasminogen activator. In: High KA, Roberts HR (eds) Molecular basis of thrombosis and hemostasis. Dekker, New York Basel, pp 479–494

    Google Scholar 

  140. Bissbort S, Bender K, Mayerova A, Wienker TF, Mauff G, Raum D, Marcus A, Alper CA (1983) Genetic linkage relations of the human plasminogen gene. Hum Genet 63: 126–131

    PubMed  CAS  Google Scholar 

  141. Dykes D (1983) Distribution of plasminogen allotypes in eight populations of the Western hemisphere. Electrophoresis 4: 417–440

    CAS  Google Scholar 

  142. Plow EF, Felez J, Miles LA (1991) Cellular regulation of fibrinolysis. Thromb Haemost 66: 32–36

    PubMed  CAS  Google Scholar 

  143. Raum D, Marcus A, Alper CA (1980) Genetic polymorphism of human plasminogen. Am J Hum Genet 32: 681–689

    Google Scholar 

  144. Robbins KC (1992) Dysplasminogenemias. Prog Cardiovasc Dis 34: 295–308

    Google Scholar 

  145. Aoki N (1984) Genetic abnormalities of the fibrinolytic system. Semin Thromb Hemost 10: 42–50

    PubMed  CAS  Google Scholar 

  146. Kruithof EKO (1988) Plasminogen activator inhibitors–a review. Enzyme 40: 113–121

    PubMed  CAS  Google Scholar 

  147. Brantly M, Nukiwa T, Crystal RG (1988) Molecular basis of a 2-antitrypsin deficiency. Am J Med 84: 13–31

    PubMed  Google Scholar 

  148. Kato A, Hirosawa S, Toyota S et al. (1993) Localization of the human a2-plasmin inhibitor gene (PLI) to 17p13. Cytogenet Cell Genet 62: 190–191

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herrmann, F.H., Vogel, G. (1998). Molekulargenetik hereditärer Hämostasedefekte. In: Ganten, D., Ruckpaul, K. (eds) Herz-Kreislauf-Erkrankungen. Handbuch der Molekularen Medizin, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80360-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80360-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80361-1

  • Online ISBN: 978-3-642-80360-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics