Skip to main content

Kandidatengene der arteriellen Hypertonie und ihre klinische Bedeutung

  • Chapter
Herz-Kreislauf-Erkrankungen

Part of the book series: Handbuch der Molekularen Medizin ((HDBMOLEK,volume 3))

  • 181 Accesses

Zusammenfassung

Die individuelle genetische Disposition — im Kontext mit Umweltfaktoren — beeinflußt die Manifestation und den Verlauf der essentiellen arteriellen Hypertonie. Grundlage für diese Erkenntnis waren in den 50er und 60er Jahren durchgeführte Familien-, Adoptions-, Geschwister- und Zwillingsstudien, die zeigen konnten, daß genetische und äußere Einflüsse zu etwa gleichen Teilen zur Genese der Erkrankung beitragen [Ward 1990]. Die anfänglich geäußerte Vermutung, daß in der Regel nur ein einzelner Gendefekt jeweils zur Entwicklung einer Hypertonie führt [Platt 1947], mußte jedoch verlassen werden. Pickering [1968] machte die Beobachtung, daß Patienten mit arterieller Hypertonie vielmehr das obere Ende einer Verteilungskurve repräsentieren (Abb. 4.1.1). Die quantitative Erfassung des Merkmals (Phänotyps) erlaubte rasch die Erkenntnis, daß die Regulation des arteriellen Blutdrucks multifaktoriell, d. h. durch die kombinierte Wirkung einer Vielzahl von Genen und äußeren Faktoren, kontrolliert wird [Mongeau et al. 1986].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alhenc-Gelas F, Richard J, Courbon D, Warnet JM, Corvol P (1991) Distribution of plasma angiotensin I-converting enzyme levels in healthy men: relationship to environmental and hormonal parameters. J Lab Clin Med 117: 33–39

    PubMed  CAS  Google Scholar 

  • Austin MA, King M-C, Bawol RD, Hulley SB, Friedman GD (1987) Risk factors for coronary heart disease in adult female twins: genetic heritability and shared environment influences. Am J Epidemiol 125: 308–318

    PubMed  CAS  Google Scholar 

  • Avolio A (1995) Genetic and environmental factors in the function and structure of the arterial wall. Hypertension 26: 34–37

    PubMed  CAS  Google Scholar 

  • Ben-Ishay D, Saliternik R, Weiner A (1972) Separation of two strains of rats with inbred dissimilar sensitivity to DOCA-salt hypertension. Experientia 28: 1.321–1.322

    Google Scholar 

  • Berg KE, Berg K (1992) No effect of a Tag 1 polymorphism in DNA at the endothelin 1 (END1) locus on normal blood pressure level or variability. Clin Genet 41: 90–95

    PubMed  Google Scholar 

  • Berry TD, Hasstedt SJ, Hunt SC, Wu LL, Smith JB, Ash 0, Kuida H, Williams RR (1989) A gene for high urinary kallikrein may protect against hypertension in utah kindreds. Hypertension 13: 3–8

    PubMed  CAS  Google Scholar 

  • Bianchi G, Fox U, Impasciati E (1974) The development of a new strain of spontaneously hypertensive rats. Life Sci 14: 339–347

    PubMed  CAS  Google Scholar 

  • Biron P, Mongeau JG, Bertrand D (1976) Familial aggregation of blood pressure in 558 adopted children. Can Med Assoc J 115: 773–774

    PubMed  CAS  Google Scholar 

  • Blackwelder WC, Elston RC (1985) A comparison of sib-pair linkage tests for disease susceptibility loci. Genet Epidemiol 2: 85–97

    PubMed  CAS  Google Scholar 

  • Bloem LJ, Manatung AK, Tewksbury DA, Pratt JH (1995) The serum angiotensinogen concentration and variants of the angiotensinogen gene in white and black children. J Clin Invest 95: 948–953

    PubMed  CAS  Google Scholar 

  • Bonnardeaux A, Nadaud S, Charru A, Jeunemaitre X, Corvol P, Soubrier F (1995) Lack of evidence for linkage of the endothelial cell nitric oxide synthase gene to essential hypertension. Circulation 91: 96–102

    PubMed  CAS  Google Scholar 

  • Botero-Velez M, Curtis JJ, Warnock DG (1994) Brief report: Liddle’s syndrome revised. N Engl J Med 330: 178–181

    PubMed  CAS  Google Scholar 

  • Braun A, Kammerer S, Böhme E, Müller B, Roscher AA (1995) Identification of polymorphic sites of the human bradykinin B2 receptor gene. Biochem Biophys Res Cornmun 211: 234–240

    CAS  Google Scholar 

  • Brown DM, Porvoost AP, Daly MJ, Lander ES, Jacob HJ (1996) Renal disease susceptibility and hypertension are under independent genetic control in the fawn-hooded rat. Nat Genet 12: 44–51

    PubMed  CAS  Google Scholar 

  • Bruce N, Elford J, Wannamethee G, Shaper AG (1991) The contribution of environmental temperature and humidity to geographic variations in blood pressure. J Hypertens 9: 851–858

    PubMed  CAS  Google Scholar 

  • Cambien F, Costerousse O, Tiret L, Poirier O, Lecerf L, Gonzales MF, Evans A, Arveiler D, Cambou JP, Luc G, Rakotovao R, Ducimetiere P, Soubrier F, Alhenc-Gelas F (1994) Plasma level and gene polymorphism of angiotensin converting enzyme in relation to myocardial infarction. Circulation 90: 669–676

    PubMed  CAS  Google Scholar 

  • Canessa M, Adragna N, Solomon HS, Connolly TM, Toste-son DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302: 772–776

    PubMed  CAS  Google Scholar 

  • Caulfield M, Lavender P, Farall M, Munroe P, Lawson M, Turner P, Clark AJL (1994) Linkage of the angiotensinogen gene to human essential hypertension. N Engl J Med 330: 1.629–1.633

    Google Scholar 

  • Caulfield M, Lavender P, Newell-Price J, Farall M, Kamdar S, Daniel H, Lawson M, DeFreitas P, Fogarty P, Clark AJL (1995) Linkage of the angiotensinogen gene locus to human essential hypertension in african caribbeans. J Clin Invest 96: 687–692

    PubMed  CAS  Google Scholar 

  • Cicila GT, Rapp JP, Wang JM, S-Lezin E, Ng SC, Kurtz TW (1993) Linkage of 1lß-hydroxylase mutations with altered steroid biosynthesis and blood pressure in the Dahl rat. Nat Genet 3: 346–353

    PubMed  CAS  Google Scholar 

  • Cicila GT, Rapp JP, Bloch KD, Kurtz TW, Pravenec M, Kren V, Hong CC, Quertermous T, Ng SC (1994) Cosegregation of the endothelin-3 locus with blood pressure and relative heart weight in inbred Dahl rats. J Hypertens 12: 643–651

    PubMed  CAS  Google Scholar 

  • Curnow KM, Slutsker L, Vitek J, Cole T, Speiser PW, New MI (1993) Mutation in the CYP 11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6,7 and 8. Proc Natl Acad Sci USA 90: 4.552–4.556

    Google Scholar 

  • Dadone MM, Hasstedt SJ, Hunt SC, Smith JB, Ash KO, Williams RR (1984) Genetic analysis of sodium-lithium countertransport in 10 hypertension-prone kindreds. Am J Med Genet 17: 565–577

    PubMed  CAS  Google Scholar 

  • Dahl LK, Heine M, Tassinari L (1962) Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194: 480–482

    PubMed  CAS  Google Scholar 

  • Danser AHJ, Schalekamp MADH, Bax WA, Brink AM van der, Saxena PR, Riegger GAJ, Schunkert H (1995) Angiotensin converting enzyme in the human heart: effects of the deletion/insertion polymorphism. Circulation 92: 1.388–1.389

    Google Scholar 

  • Davies JL, Kawaguchi Y, Bennett ST, Copeman JB, Cordell HJ, Pritchard LE, Reed PW, Gough SC, Jenkins SC, Palmer SM et al. (1994) A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371: 130–136

    PubMed  CAS  Google Scholar 

  • Deng Y, Rapp JP (1992) Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic peptide receptor genes using Dahl salt sensitive rats. Nat Genet 1: 267–272

    PubMed  CAS  Google Scholar 

  • Deng AY, Dene H, Pravenec M, Rapp JP (1994a) Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes. J Clin Invest 93: 2.701–2.709

    Google Scholar 

  • Deng AY, Dene H, Rapp JP (1994b) Mapping of a quantitative trait locus for blood pressure on rat chromosome 2. J Clin Invest 94: 431–436

    CAS  Google Scholar 

  • DeSimone G, Tommaselli AP, Rossi R, Valentino R, Lauria R, Scopacasa F (1985) Partial deficiency of adrenal 11hydroxylase. A possible cause of primary hypertension. Hypertension 7: 204–210

    CAS  Google Scholar 

  • Deutsche Liga zur Bekämpfung des hohen Blutdruckes e.V. (1996) Empfehlungen zur Hochdruckbehandlung in der Praxis und zur Behandlung hypertensiver Notfälle, 12. Aufl. Eigenverlag, Heidelberg, S 1–16

    Google Scholar 

  • Dubay C, Vincent M, Samani NJ, Hilbert P, Kaiser MA, Be-ressi JP, Kotelevtsev Y, Beckmann JS, Soubrier F, Sassard J et al. (1993) Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nat Genet 3: 354–357

    PubMed  CAS  Google Scholar 

  • Dudley CR, Guiffra LA, Raine AE, Reeders ST (1991) Assessing the role of APNH, a gene encoding for a human amiloride-sensitive Na+/H+ antiporter, on the interindividual variation in red cell Na+/Li+ countertransporter. J Am Soc Nephrol 2: 937–943

    PubMed  CAS  Google Scholar 

  • Dudley C, Keavney B, Casadai B, Conway J, Bird R, Ratcliffe P (1996) Prediction of patient responses to antihypertensive drug therapy using genetic polymorphisms: investigation of renin angiotensin system genes. J Hypertens 14: 259–262

    PubMed  CAS  Google Scholar 

  • Dupont J, Dupont JC, Froment A, Milon H, Vincent M (1973) Selection of three strains with spontaneously different levels of blood pressure. Biomedicine 19: 36–41

    Google Scholar 

  • Ely DL, Turner ME (1990) Hypertension in the spontaneously hypertensive rat is linked to the Y chromosome. Hypertension 16: 277–281

    PubMed  CAS  Google Scholar 

  • Ely DL, Daneshvar H, Turner ME, Johnson ML, Salisbury RL (1993) The hypertensive Y chromosome elevates blood pressure in F11 normotensive rats. Hypertension 21: 1.071–1.075

    Google Scholar 

  • Evans BA, Zhang XY, Close JA, Tregear GW, Kitamura N, Nakanishi S (1988) Structure and chromosomal localization of the human renal kallikrein gene. Biochemistry 27: 3.124–3.129

    Google Scholar 

  • Fasola AF, Martz BL, Helmer OM (1968) Plasma renin activity during supine exercise in offspring of hypertensive parents. J Appl Physiol 25: 410–415

    CAS  Google Scholar 

  • Feinleib M, Garrison RJ, Fabsitz R, Christian JC, Hrubec Z, Borhani NO et al. (1977) The NHLBI twin study of cardiovascular disease risk factor: methodology and summary of results. Am J Epidemiol 106: 284–295

    PubMed  CAS  Google Scholar 

  • Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Grazadei L et al. (1987) Insulin resistance in essential hypertension. N Engl J Med 317: 350–356

    PubMed  CAS  Google Scholar 

  • Garrison RJ, Kannel WB, III JS, Castelli WP (1987) Incidence and precursors of hypertension in young adults: the Framingham offspring study. Prey Med 16: 235–251

    CAS  Google Scholar 

  • Gennser G, Rymark P, Isberg PE (1988) Low birthweight and risk of high blood pressure in adulthood. BMJ 296: 1.498–1.500

    Google Scholar 

  • Gerbase-DeLima M, DeLima JJG, Persoli LB, Silva HB, Marcondes M, Bellotti G (1989) Essential hypertension and histocompatibility antigens: a linkage study. Hypertension 14: 604–609

    PubMed  CAS  Google Scholar 

  • Ginn DI, Baptista CA, Alam KY, Deng AY, Dene H, Le H, Kurtz TW, Rapp JH (1994) Genetic analysis of alpha 2adrenergic receptors and blood pressure using Dahl salt-sensitive rats. J Hypertens 12: 357–365

    PubMed  CAS  Google Scholar 

  • Grim CE, Robinson M (1994) Blood pressure variation. In: Goldbourt U, Faire U, Berg K (eds) Genetic factors in coronary heart disease Kluwer, London New York, pp 153–177

    Google Scholar 

  • Groop LC, Kankuri M, Schalin-Jäntti C, Ekstrand A, Nikula Ihäs P, Widen E (1993) Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. N Engl J Med 328: 10–14

    PubMed  CAS  Google Scholar 

  • Gyapay G, Morissette J, Vignal A, Dib C, Fizames C, Millas-seau P, Marc S, Bernadi G, Lathrop M, Weissenbach J (1994) The 1993–94 Genethon human genetic linkage map. Nat Genet 7: 246–339

    PubMed  CAS  Google Scholar 

  • Hamet P, Kong D, Pravenec M, Kunes J, Kren V, Klir P, Sun YL, Tremblay J (1992) Restriction fragment length polymorphism of hsp70 gene, localized in the RT1 complex, is associated with hypertension in spontaneously hypertensive rat. Hypertension 19: 611–614

    PubMed  CAS  Google Scholar 

  • Harrap SB, Davidson HR, Connor JM, Soubrier F, Corvol P, Fraser R, Foy CJW, Watt GCM (1993) The angiotensin I converting enzyme gene and predisposition to high blood pressure. Hypertension 21: 455–460

    PubMed  CAS  Google Scholar 

  • Harris EL, Dene H, Rapp JP (1993) SA gene and blood pressure cosegregation using Dahl salt-sensitive rats. Am J Hypertens 6: 330–334

    PubMed  CAS  Google Scholar 

  • Hashimoto L, Habita C, Beressi JP, Delepine M, Besse C, Cambon-Thomsen A, Deschamps I, Rotter JI, Djoulah S, James MR et al. (1994) Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome llq. Nature 371: 161–164

    PubMed  CAS  Google Scholar 

  • Hasstedt SJ, Wu LL, Kuida H, Williams RR (1989) Recessive inheritance of a high number of sodium pump sites. Am J Med Gen 34: 332–337

    CAS  Google Scholar 

  • Hata A, Namikawa C, Sasaki M, Sato K, Nakamura T, Tamura K, Lalouel JM (1994) Angiotensinogen as a risk factor for essential hypertension in Japan. J Clin Invest 93: 1.285–1.287

    Google Scholar 

  • Hattersley AT, Turner RC, Permutt MA, Patel P, Tanizawa Y, Chiu KC et al. (1992) Linkage of type 2 diabetes to the glucokinase gene. Lancet 339: 1.307–1.310

    Google Scholar 

  • Havlik RJ, Garrison RI, Katz SH, Ellison RC, Feinlieb M, Myrianthopoulos NC (1979) Detection of genetic variance in blood pressure of seven-year-old twins. Am J Epidemiol 109: 512–516

    PubMed  CAS  Google Scholar 

  • Hebebrand J, Remschmidt H (1995) Das Körpergewicht unter genetischen Aspekten. Med Klin 90: 403–410

    CAS  Google Scholar 

  • Hegele RA, Brunt JH, Connelly PW (1994) A polymorphism of the angiotensin gene associated with variation in blood pressure in a genetic isolate. Circulation 90: 2.2072.212

    Google Scholar 

  • Hegele RA, Brunt JH, Connelly PW (1995) Genetic variation on chromosome 1 associated with variation in body fat distribution in men. Circulation 92: 1.089–1.093

    Google Scholar 

  • Hollenberg NK, Williams GH (1990) Abnormal renal function, sodium volume homeostasis, and renin system behavior in normal-renin essential hypertension. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnostis and management. Raven Press, New York, pp 1.349–1.370

    Google Scholar 

  • Hopkins PN, Lifton RP, Hollenberg NK, Jeunemaitre X, Hallouin MC, Williams CS, Dluhy RG, Lalouel JM, Williams RR, Williams GH (1996) Blunted renal vascular response to angiotensin II is associated with a common variant of the angiotensinogen gene and obesity. J Hypertens 14: 199–209

    PubMed  CAS  Google Scholar 

  • Hübner N, Kreutz R, Takahashi S, Ganten D, Lindpaintner K (1994) Unlike human hypertension, blood pressure in a hereditary hypertensive rat strain shows no linkage to the angiotensinogen locus. Hypertension 23: 797–801

    PubMed  Google Scholar 

  • Hübner N, Kreutz R, Takahashi S, Ganten D, Lindpaintner K (1995) Altered angiotensinogen amino acid sequence and plasma angiotensin II levels in genetically hypertensive rats. Hypertension 26: 279–284

    PubMed  Google Scholar 

  • Hunt SC, Williams RR (1994) Genetic factors in human hypertension. In: Swales JD (ed) Textbook of hypertension. Blackwell, Oxford London, pp 519–538

    Google Scholar 

  • Hunt SC, Hasstedt SJ, Kuida H, Stults BM, Hopkins PH, Williams RR (1989) Genetic heritability and common environmental components of resting and stressed blood pressures, lipids and body mass index in Utha pedigrees and twins. Am J Epidemiol 129: 625–638

    PubMed  CAS  Google Scholar 

  • Hunt SC, Stephenson SH, Hopkins PN, Williams RR (1991) Predictors of an increased risk of future hypertension in Utah pedigrees: a screening analysis. Hypertension 17: 969–976

    PubMed  CAS  Google Scholar 

  • Hunt SC, Wu LL, Slattery ML, Meikle AW, Williams RR (1993) Environmental determinants of urinary kallikrein excretion. Am J Hypertens 6: 226–233

    PubMed  CAS  Google Scholar 

  • Iwai N, Shimoike H, Ohmichi N, Kinoshita M (1995) Angiotensinogen gene and blood pressure in the japanese population. Hypertension 25: 688–693

    PubMed  CAS  Google Scholar 

  • Jacob HJ, Lindpaintner K, Lincoln SE, Kusumi K, Bunkerm RK, Mao YP, Ganten D, Dzau VJ, Lander ES (1991) Genetic mapping of a gene causing hypertension in stroke prone spontaneously rat. Cell 67: 213

    PubMed  CAS  Google Scholar 

  • Jamieson A, Fraser R (1994) Developments in the molecular biology of corticoid synthesis and action: implications for an understanding of essential hypertension. J Hyper-tens 12: 503–509

    CAS  Google Scholar 

  • Jeunemaitre X, Rigat B, Charru A, Houot AM, Soubrier F, Corvol P (1992a) Sib pair linkage analysis of renin gene haplotypes in human essential hypertension. Hum Genet 88: 301–306

    CAS  Google Scholar 

  • Jeunemaitre X, Soubrier F, Kotelevtsev Y V, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM, Corvol P (1992b) Molecular basis of human hypertension: role of angiotensinogen. Cell 71: 169–180

    CAS  Google Scholar 

  • Katsuya T, Higaki J, Miki T, Kohara K, Yagisawa H, Tanase H, Mikami H, Serikawa T, Nojima H, Ogihara T (1992) Hypertensive effect associated with phospholipase C-dl gene mutation in the spontaneously hypertensive rat. Biochem Biophys Res Commun 187: 1.359–1.366

    Google Scholar 

  • Katsaya T, Higaki J, Zhao Y, Miki T, Mikami H, Serikawa T, Ogihara T (1993) A neuropeptide Y locus on chromosome 4 cosegregates with blood pressure in the spontaneously hypertensive rat. Biochem Biophys Res Commun 192: 261–267

    Google Scholar 

  • Katsuya T, Koike G, Yee TW, Sharpe N, Jackson R, Norton R, Horiuchi M, Pratt RE, Dzau VJ, MacMahon S (1995) Association of angiotensinogen gene T235 variant with increased risk of coronary heart disease. Lancet 345: 1.600–1.603

    Google Scholar 

  • Khoury MJ, Beaty TH, Cohen BH (1993) Fundamental of ge- netic epidemiology. Oxford University Press, Oxford

    Google Scholar 

  • Klein J (1975) Histocompatibility-2 complex. In: Biology of the mouse. Springer, Berlin Heidelberg New York, pp 31–37

    Google Scholar 

  • Kreutz R, Hübner N, Ganten D, Lindpaintner K (1995) Genetic linkage of the ACE gene to plasma angiotensin converting enzyme activity but not to blood pressure. Circulation 92: 2.381–2.384

    Google Scholar 

  • Kunes J, Zicha J (1994) Association of salt sensitivity in rats with genes of the major histocompatibility complex. Hypertension 24: 645–647

    PubMed  CAS  Google Scholar 

  • Kurtz TW, Simonet L, Kabra PM, Wolfe S, Chan L, Hjelle BL (1990) Cosegregation of the renin allele of the spontaneously hypertensive rat with an increase in blood pressure. J Clin Invest 85: 1.328–1.332

    Google Scholar 

  • Liddle GW, Bledsoe T, Coppage WS (1963) A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76: 199–213

    CAS  Google Scholar 

  • Lifton RP (1996) Molecular genetics of human blood pressure variation. Science 272: 676–680

    PubMed  CAS  Google Scholar 

  • Lifton RP, Hopkins PN, Williams RR, Hollenberg NK, Williams GH, Dluhy RG (1989) Evidence for heritability of non-modulation essential hypertension. Hypertension 13: 884–889

    PubMed  CAS  Google Scholar 

  • Lifton RP, Hunt SC, Williams RR, Lalouel JM (1991) Exclusion of the Na+/H+ antiporter as a candidate gene in human essential hypertension by genetic linkage analysis. Hypertension 17: 8–14

    PubMed  CAS  Google Scholar 

  • Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM (1992) A chimaeric 11/3-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355: 262–265

    PubMed  CAS  Google Scholar 

  • Lindpaintner K, Lee MA, Larson MG, Rao VS, Pfeffer MA, Ordovas JM, Schaeffer EJ, Wilson AF, Wilson PWF, Vasan RS, Myers RH, Levy D (1996) Absense of association or genetic linkage between the angiotensin-converting enzyme gene and left ventricular mass. N Engl J Med 334: 1.023–1.028

    Google Scholar 

  • Maill WE, Lovell HG (1967) Relation between change of blood pressure and age. BMJ 11: 602–660

    Google Scholar 

  • Maill WE, Oldham PD (1958) Factors influencing arterial blood pressure in the general population. Clin Sci 17: 409–444

    Google Scholar 

  • Manatunga AK, Reister TK, Miller JZ, Pratt JH (1992) Genetic influences of the urinary excretion of aldosterone in children. Hypertension 19: 262–265

    Google Scholar 

  • Mathur R, Douglas NJ (1995) Family studies in patients with sleep apnea hypopnea syndrome. Ann Intern Med 122: 174–178

    PubMed  CAS  Google Scholar 

  • Mcllhany ML, Shaffer JW, Hines EA Jr (1975) The heritability of blood pressure: an investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Med J 136: 57–64

    Google Scholar 

  • McKusick VA (1992) Mendelian inheritance in man. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Meininger JC, Hayman LL, Coates PM, Gallagher P (1988) Genetics or environment? Type A behaviour and cardiovascular risk factors in children. Nurs Res 37: 341–346

    PubMed  CAS  Google Scholar 

  • Miller JZ, Weinberger MH, Christian JC, Daugherty SA (1987) Familial resemblance in the blood pressure response to sodium restriction. Am J Epidemiol 126: 822–830

    PubMed  CAS  Google Scholar 

  • Mongeau JG, Biron P, Sing CF (1986) The influence of genetics and household environment upon the variability of blood pressure: the Montreal adoption study. Clin Exp Hypertens 8: 653–660

    CAS  Google Scholar 

  • Morris BJ, Griffiths LR (1988) Frequency in hypertension of alleles for a RFLP associated with the renin gene. Biochem Biophys Res Commun 150: 219–224

    PubMed  CAS  Google Scholar 

  • Morris BJ, Zee RY, Schrader AP (1994) Different frequencies of the angiotensin converting enzyme genotypes in older hypertensive individuals. J Clin Invest 94: 1.085–1.989

    Google Scholar 

  • Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse ren-2 gene. Nature 344: 541–544

    PubMed  CAS  Google Scholar 

  • Nabika T, Nara Y, Ikeda K, Endo J, Yamori Y (1993) A new genetic locus cosegregating with blood pressure in F2 progeny obtained from stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats. J Hypertens 11: 13–18

    PubMed  CAS  Google Scholar 

  • Naftilan AJ, Williams RR, Burt D, Paul M, Pratt RE, Hobart P et al. (1989) A lack of genetic linkage of renin gene restriction fragment length polymorphisms with human hypertension. Hypertension 14: 614–618

    PubMed  CAS  Google Scholar 

  • Nakahashi Y, Shimamoto K, Ura N, Tanaka S, Nishitani T, Ishida H, Yokoyama T, Ando T, Imura 0 (1984) Comprehensive sudies in the renal kallikrein-kinin system in essential hypertension. Adv Exp Med Biol 198B: 351–357

    Google Scholar 

  • Nara Y, Nabika T, Ikeda K, Sawamura M, Mono M, Endo J, Yamori Y (1993) Basal high blood pressure cosegregates with loci on chromosome 1 in the F2 generation from crosses between normotensive Wistar-Kyoto rats and stroke-prone spontaneously hypertensive rats. Biochem Biophys Res Commun 194: 1.344–1.351

    Google Scholar 

  • National Institutes of Health; National Heart, Lung, and Blood Institute (1993) The fifth report of the joint national committee on detection, evaluation, and treatment of high blood pressure. Arch Intern Med 153: 154–208

    Google Scholar 

  • Niarchos AP, Resnick LM, Weinstein DL, Laragh JH (1985) Angiotensin I converting enzyme activity in hypertension. Am J Med 79: 435–444

    PubMed  CAS  Google Scholar 

  • Okamoto K, Aoki K (1963) Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27: 282–293

    PubMed  CAS  Google Scholar 

  • Patel R, Johnson J (1981) Histocompatibility antigens in Black patients with essential hypertension. Circulation 64: 1.042–1.044

    Google Scholar 

  • Pickering GW (1968) High blood pressure. Grune & Stratton, New York

    Google Scholar 

  • Platt R (1947) Heredity in hypertension. QJM 16: 111–133

    PubMed  CAS  Google Scholar 

  • Pratt JP, Jones JJ, Miller JZ, Wagner MA, Feinberg NS (1989) Racial differences in aldosterone excretion and plasma aldosterone concenrations in children. N Engl J Med 321: 1.152–1.157

    Google Scholar 

  • Pravenec M, Simonet L, Kren V, Kunes J, Levan G, Szpirer J et al. (1991) The rat renin gene: assignment to chromosome 13 and linkage to the regulation of blood pressure. Genomics 9: 466–472

    PubMed  CAS  Google Scholar 

  • Pravenec M, Gauguier D, Schott JJ et al. (1995) Mapping of quantitative trait loci for blood pressure and cardiac mass in the rat by genome scanning of recombinant inbred strains. J Clin Invest 96: 1.973–1.978

    Google Scholar 

  • Price RA, Ness R, Laskarzewski P (1990) Common major gene inheritance of extreme overweight. Hum Biol 62: 747–765

    PubMed  CAS  Google Scholar 

  • Ramasawmy R, Lu CY, Kok-Sun N, Kotea N, Baligadoo S, Krishnamoorthy R (1994) Insertion/deletion polymorphism within a polyadenylate stretch at the human atrial natriuretic peptides (hANP) gene locus. Hum Genet 93: 355–356

    PubMed  CAS  Google Scholar 

  • Rapp JP, Deng AY (1995) Detection and position cloning of blood pressure quantitative trait loci: is it possible? Hypertension 25: 1.121–1.128

    Google Scholar 

  • Rapp JP, Wang SM, Dene H (1989) A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 243: 542–544

    PubMed  CAS  Google Scholar 

  • Rapp JP, Dene H, Deng AY (1994) Seven renin alleles and their effects on blood pressure. J Hypertens 12: 349–355

    PubMed  CAS  Google Scholar 

  • Reaven GM, Hoffman BB (1987) A role for insulin in the aetiology and course of hypertension? Lancet 2: 435–437

    PubMed  CAS  Google Scholar 

  • Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P, Soubrier F (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half of the variance of serum enzyme levels. J Clin Invest 86: 1.343–1.346

    Google Scholar 

  • Rotter JI, Rimoin DL (1983). Diabetes mellitus. Churchill Livingstone, New York

    Google Scholar 

  • Rutledge DR, Sun Y, Ross EA (1995) Polymorphism within the atrial natriuretic peptide gene in essential hypertension. J Hypertens 13: 953–955

    PubMed  CAS  Google Scholar 

  • Salmond CE, Prior IAM, Wessen AF (1989) Blood pressure patterns and migration: a 14-year cohort of adult Tokelauans. Am J Epidemiol 130: 37–52

    PubMed  CAS  Google Scholar 

  • Schälin-Jäntti C, Nikula-Ijäs P, Huang X, Lehto M, Knudsen P, Syvänne M, Lehtovirta MT, Tikkanen T, Tikkanen I, Groop LC (1996) Polymorphism of the glycogen synthase gene in hypertensive and normotensive subjects. Hypertension 27: 67–71

    PubMed  Google Scholar 

  • Schmidt S, Hooft IM von, Grobbee DE, Ganten D, Ritz E (1993) Polymorphism of the angiotensin I converting enzyme gene is apparently not related to high blood pressure. J Hypertens 11: 345–348.

    PubMed  CAS  Google Scholar 

  • Schmidt S, Sharma AM, Zilch O, Beige J, Walla-Friedel M, Ganten D, Distler A, Ritz E (1995) Association of M235T variant of the angiotensinogen gene with familial hypertension of early onset. Nephrol Dial Transplant 10: 1.145–1.148

    Google Scholar 

  • Schork NJ, Krieger JE, Trolliet MR, Franchini KG, Koike G, Krieger EM, Lander ES, Dzau VJ, Jacob HJ (1995) A bio-metrical genome search in rats reveals the multigenic basis of blood pressure variation. Genome Res 5: 164–172

    PubMed  CAS  Google Scholar 

  • Schumacher MC, Hasstedt SJ, Hunt SC, Williams RR, Elbein SC (1992) Fasting insulin levels segregate as autosomal recessive trait in familial NIDDM pedigrees. Diabetes 41: 416–423

    PubMed  CAS  Google Scholar 

  • Schunkert H, Hense HW, Holmer SR, Stender K, Perz S, Keil U, Lorell BH, Riegger GAJ (1994) Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med 330: 1.634–1.638

    Google Scholar 

  • Schunkert H, Hense HW, Muscholl M, Luchner A, Riegger AGJ (1996) Association of angiotensin converting enzyme activity and arterial blood pressure in a population based sample. J Hypertens 14: 571–575

    PubMed  CAS  Google Scholar 

  • Schunkert H, Hense HW, Gimenez-Roqueplo A, Stieber J, Keil U, Riegger GAI, Jeunemaitre X (1997) The angiotensinogen T235 variant and the use of antihypertensive drugs in a population-based cohort. Hypertension 29: 628–633

    PubMed  CAS  Google Scholar 

  • Scotch NA (1963) Sociocultural factor in the epidemiology of Zulu hypertension. Am J Public Health 53: 1.205–1.213

    Google Scholar 

  • Selby JV, Friedman GD, Quesenberry CP Jr (1990) Precursors of essential hypertension: pulmonary function, heart rate, uric acid, serum cholesterol, and other serum chemistries. Am J Epidemiol 131: 1.017–1.027

    Google Scholar 

  • Selby JV, Newman B, Quiroga J, Christian JC, Austin MA, Fabsitz RR (1991) Concordance for dyslipidemic hypertension in male twins. JAMA 265: 2.079–2.084

    Google Scholar 

  • Sharma AM, Distler A, Luft FC (1994) Strategien zur Erforschung der Genetik des Bluthochdrucks. Dtsch Med Wochenschr 119: 742–746

    PubMed  CAS  Google Scholar 

  • Sharma P, Hingorani A, Jia H, Stevens P, Brown MJ (1996) A newly identified endothelin-2 gene molecular variant is associated with diastolic blood pressure in essential hypertensives. J Hypertens [Suppl 1] 14: S6

    Google Scholar 

  • Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M (1994) Liddle’s syndrome: heritable human hypertension caused by mutations in the fi-subunit of the epithelial sodium channel. Cell 79: 407–414

    PubMed  CAS  Google Scholar 

  • Shull MM, Hassenbein D, Loggie J, Daniels S, King A, Burton T, Lingrel JB (1982) Discordant segregation of Na+, K+-adenosine triphosphatase alleles and essential hypertension. J Hypertens 10: 1.005–1.010

    Google Scholar 

  • Smirk F H, Hall WH (1958) Inherited hypertension in rats. Nature 182: 727–728

    PubMed  CAS  Google Scholar 

  • Soubrier F, Jeunemaitre X, Rigat B, Houot AM, Gambien F, Corvol P (1990) Similar frequencies of renin gene restriction fragment length polymorphisms in hypertensive and normotensive subjects. Hypertension 16: 712–717

    PubMed  CAS  Google Scholar 

  • Stocks P (1930) A biometric investigation of twins and their brothers and sisters. Ann Eugen 4: 49–62

    Google Scholar 

  • Taddai S, Virdis A, Mattei P, Ghiadoni L, Sudano I, Salvetti A (1996) Defective 1-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94: 1.298–1.303

    Google Scholar 

  • Thomson G (1986) Determining the mode of inheritance of RFLP-associated diseases using the affected-sib-pairmethod. Am J Hum Genet 39: 207–221

    PubMed  CAS  Google Scholar 

  • Tiret L, Ricard S, Poirier O, Arveiler D, Cambou JP, Luc G, Evans A, Nicaud V, Gambien F (1995) Genetic variation at the angiotensinogen locus in relation to high blood pressure and myocardial infarction: the ECTIM study. J Hypertens 13: 311–317

    PubMed  CAS  Google Scholar 

  • Vaughan JP, Miall WE (1979) Cardiovascular measurement in subjects of African origin. Bull World Health Organ 57: 281–289

    PubMed  CAS  Google Scholar 

  • Walker WG, Welton PK, Saito H, Rusell RP, Hermann J (1979) Relation between blood pressure and renin, renin substrate, angiotensin II, aldosterone and urinary sodium and potassium in 574 ambulatory subjects. Hypertension 1: 287–291

    PubMed  CAS  Google Scholar 

  • Wang XL, Sim AS, Badenhop RF, McCredie RM, Wilcken DEL (1996) A smoking-dependent risk of coronary artery disease associated with a polymorphism of the endothelial nitrit oxide synthase gene. Nat Genet 2: 41–44

    CAS  Google Scholar 

  • Ward R (1990) Familial aggregation and genetic epidemiology of blood pressure. In: Swales J (ed) Hypertension: pathophysiology, diagnosis and management. Saunders, Philadelphia, pp 81–100

    Google Scholar 

  • Watt GCM, Foy CJW, Hart JT, Bingham C, Edwards C, Hart M et al. (1985) Dietary sodium and arterial blood pressure: evidence against genetic susceptibility. BMJ 291: 1.525–1.528

    Google Scholar 

  • Watt GCM, Harrap SB, Foy CJW, Holton DW, Edwards HV, Davidson HR, Connor JM, Lever AF, Fraser R (1992) Abnormalities of glucocorticoid metabolism and the renin angiotensin system: a four-corners approach to the identification of genetic determinants of blood pressure. J Hypertens 10: 473–482

    PubMed  CAS  Google Scholar 

  • Whincup PH, Cook DG, Shaper AG (1989) Early influences on blood pressure: a study of children 5–7 years. BMJ 299: 587–591

    PubMed  CAS  Google Scholar 

  • Williams RR, Hunt SC, Hopkins PN, Stults BM, Wu LL, Hasstedt SJ (1988) Familial dyslipidemic hypertension: evidence from 58 Utah families for a syndrome present in approximately 12% of patients with essential hypertension. JAMA 259: 3.579–3.586

    Google Scholar 

  • Williams RR, Hasstedt SJ, Hunt SC, Wu LL, Hopkins PN, Berry TD (1991) Genetics traits related to hypertension and electrolyte metabolism. Hypertension 17: 169–173

    Google Scholar 

  • Williams GH, Dluhy RG, Lifton RP, Moore TJ, Gleason R, Williams R (1992) Non-modulation as an intermediate phenotype in essential hypertension. Hypertension 20: 788–796

    PubMed  CAS  Google Scholar 

  • Zee RYL, Ying LH, Morris BJ, Griffiths LR (1991) Association and linkage analyses of restriction length polymorphisms for the human renin and antithrombin III genes in essential hypertension. J Hypertens 9: 825–830

    PubMed  CAS  Google Scholar 

  • Zee RYL, Griffiths LR, Morris BJ (1992a) Marked assoziation of a RFLP for low density lipoprotein receptor gene with obesity in essential hypertensive. Biochem Biophys Res Commun 189: 965–971

    CAS  Google Scholar 

  • Zee RYL, Morris BJ, Griffiths LR (1992b) Association analysis of RFLP’s for the alpha2 and betal adrenoreceptor genes in essential hypertension. Hypertens Res 15: 57–60

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schunkert, H. (1998). Kandidatengene der arteriellen Hypertonie und ihre klinische Bedeutung. In: Ganten, D., Ruckpaul, K. (eds) Herz-Kreislauf-Erkrankungen. Handbuch der Molekularen Medizin, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80360-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80360-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80361-1

  • Online ISBN: 978-3-642-80360-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics