Skip to main content

Expeditions into the Past: Paleoceanographic Studies in the South Atlantic

  • Chapter
The South Atlantic

Abstract

The South Atlantic is tightly coupled to the North Atlantic climate amplifying system. At present, enormous amounts of heat are delivered across the equator to the north, with surface and subsurface waters. The return flow occurs at depth, within the coldwater sphere. During the last glacial the Atlantic Heat Conveyor was much less efficient, that is, the North Atlantic heat piracy is a positive feedback on climate change. This positive feedback is an important ingredient in the orbitally driven climate cycles. The current (that is, late Quaternary) conditions in the South Atlantic are the result of a long evolution of climate and geographic boundary conditions, which started with the opening of the basin at the end of the Jurassic and in the early Cretaceous, by continental breakup and seafloor spreading. Todays margins contain the ancient deposits of a narrow trough with restricted access, including evaporites. Warm-ocean sediments accumulated during the Cretaceous, including organic-rich deposits indicative of poorly oxygenated deep waters. Sinking of the sea floor from cooling of the lithosphere, and ridges produced as hot spot tracks (from Tristan da Cunha on the Mid-Atlantic Ridge) determined the main features of the bathymetry. The leitmotifs of Cenozoic evolution are general cooling (from mountain building and associated regression, and from reduction of atmospheric CO2), the closure of the world-encircling tropical Tethys Ocean and opening of passages in the south, linking ocean basins through a circumpolar Cold Ring. Overall regression and associated polar deepwater production forced new patterns of biogenous deposition which resulted in a large-scale global drop of the Carbonate Compensation Depth (CCD) about 40 million years ago. At the same time, the isotopic ratio in the element strontium in seawater (as captured by calcareous fossils) started a long trend toward more radiogenic values, indicating increased supply of continental material. The major reorganization in deepsea sediments (the Auversian Facies Shift) in the late Eocene is also expressed as the onset of deposition of rather pure pelagic carbonates, with opaline and organic-rich sediments being increasingly restricted to ocean margins. Continued cooling eventually led to large-scale deepwater formation in high latitudes, which is expressed in the first great cooling step in the deep sea, at the end of the Eocene. The second great cooling step saw the buildup of ice on Antarctica, roughly 15 million years ago, presumably after considerable reduction of atmospheric CO2. The third great cooling step consists of ice buildup around the North Atlantic, a step that moved the system into modern climate dynamics. Concerning the third step, it is commonly surmised that the closing of the Panama Straits was responsible for its timing (about 3 million years ago). We propose (Panama Hypothesis) exactly the reverse: in fact, the emergence of the Isthmus greatly favored North Atlantic heat piracy, so that northern glaciations were delayed by several million years. After initial onset of northern glaciations (7 to 6 million years ago) it took another 3 million years of mountain building and CO2 reduction to attain sustained glaciations (3 million years ago). This period of delay is the well-know warm period of the early Pliocene. The story of the onset of northern glaciations is further complicated by the fact that cooling first enhances NADW production, before the onset of northern glaciations, and then obstructs it, presumably by reduction of evaporation and by sea ice formation. The identification of the switch point of NADW production, from negative to positive feedback, is vital for the understanding of the ocean’s role in climatic change in the late Neogene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrantes FF, Winn K, Sarntheim M (1994) Late Quarternary paleoproductivity variations in the NE and equatorial Atlantic: Diatom and C org evidence. In: Zahn R et al. (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. Springer Verlag, Berlin Heidelberg, pp 425–441

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108

    Google Scholar 

  • Backman J (1979) Pliocene biostratigraphy of DSDP Sites 111 and 116 from the North Atlantic Ocean and the age of Northern Hemisphere glaciation. Stockholm Contrib Geol 32:115–137

    Google Scholar 

  • Barker PF, Kennett JP (1990) Proc ODP Sci. Results 113, College Station,’, TX (Ocean Drilling Program)

    Google Scholar 

  • Barron EJ (1985) Explanation of the Tertiary global cooling trend. Palaeogeography, Palaeoclimatology, Palaeoecology 50:45–61

    Google Scholar 

  • Barron JA, Baldauf JG (1989) Tertiary Cooling Steps and Paleoproductivity as Reflected by Diatoms and Biosiliceous Sediments. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past. Dahlem Konferenzen. John Wiley & Sons, Chichester, pp 341–354

    Google Scholar 

  • Benson RH (1975) The origin of the psychrosphere as recorded in changes of deep-sea ostracode assemblages. Lethaia 8:69–83

    Google Scholar 

  • Benson RH, Chapman RE, Deck LT (1985) Evidence from the ostracoda of major events in the South Atlantic and world-wide over the past 80 million years. In: Hsü KJ, Weissert HJ (eds) South Atlantic Paleoceanography. Cambridge University Press, Cambridge (UK), pp 325–350

    Google Scholar 

  • Berger WH (1968) Planktonic foraminifera: selective solution and paleoclimatic interpretation. Deep-Sea Res 15:31–43

    Google Scholar 

  • Berger WH (1970) Biogenous deep-sea sediments: fractionation by deep-sea circulation. Bull Geol Soc Am 81:1385–1402

    Google Scholar 

  • Berger WH (1972) Deep-sea carbonates: dissolution facies and age depth constancy. Nature 236:392–395

    Google Scholar 

  • Berger WH (1989) Global maps of ocean productivity. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past. Dahlem Konferenzen. John Wiley, Chichester, pp 429–455

    Google Scholar 

  • Berger WH, Crowell JC (eds) (1982) Climate in Earth History. Studies in Geophysics. National Academy Press, Washington, D. C. 198 pp

    Google Scholar 

  • Berger WH, Herguera JC (1992) Reading the sedimentary record of the ocean’s productivity. In: P.G. Falkowski and A.D. Woodhead (eds.) Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York, pp 455–486

    Google Scholar 

  • Berger WH, Jansen E (1994) Mid-Pleistocene climate shift: The Nansen connection. In: Johanessen OM, Muench RD, Overland JE (eds)The Polar Oceans and Their Role in Shaping the Global Environment: The Nansen Centennial Volume. AGU Geophysical Monograph 84:295–311

    Google Scholar 

  • Berger WH, Jansen E (1995) Younger Dryas episode: Ice collapse and superfjord heat pump. In: Troelstra SR, van Hinte JE, Ganssen GM (eds) The Younger Dryas, North-Holland, Amsterdam, pp 61–105

    Google Scholar 

  • Berger WH, Wefer G (1991) Productivity of the glacial ocean: Discussion of the iron hypothesis. Limnol Oceanogr 36:1899–1918

    Google Scholar 

  • Berger WH, Winterer EL (1974) Plate stratigraphy and the fluctuating carbonate line. In: Hsu KJ, Jenkyns H (eds) Pelagic Sediments on Land and Under the Sea. Spec Publ Intl Assoc Sediment 1:11–48

    Google Scholar 

  • Berger WH, Killingley JS, Metzler CV, Vincent E (1985) Two-step deglaciation: 14C-dated high-reso- lution d180 records from the tropical Atlantic Ocean. Quaternary Research 23:258–271

    Google Scholar 

  • Berger WH, Burke S, Vincent E (1987) Glacial- Holocene transition: climate pulsations and sporadic shutdown of NADW production. In: Berger WH Labeyrie LD (eds) Abrupt Climatic Change. D. Reidel, Dordrecht, pp 279–297

    Google Scholar 

  • Berger WH, Herguera JC, Lange CB, Schneider R (1994) Paleoproductivity: flux proxies versus nutrient proxies and other problems concerning the Quaternary productivity record. In: Zahn R, Kaminski M, Labeyrie LD, Pederson TF (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. Springer, Berlin Heidelberg, pp 385–412

    Google Scholar 

  • Berger WH, Kroenke LW, Mayer LA (1993) Proc ODP Sci Results, 130, College Station, TX (Ocean Drilling Program), 867 pp

    Google Scholar 

  • Berger WH, Yasuda M, Bickert T, Wefer G (1995) Brunhes-Matuyama boundary: 790 k.y. date consistent with ODP Leg 130 oxygen isotope records based on fit to Milankovitch template. Geophysical Research Letters 22:1525–1528

    Google Scholar 

  • Berggren WA (1972) Late Pliocene - Pleistocene glaciation. In: Laughton AS, Berggren et al. Initial Reports Deep Sea Drilling Project 12. Washington DC (US Government Printing Office) pp 953–963

    Google Scholar 

  • Berggren WA, Hollister CD (1974) Paleogeography, paleobiogeography and the history of circulation in the Atlantic Ocean. In: Hay WW (ed) Studies in Paleo-Oceanography. Soc Econ Paleont Mineral, Spec Publ 20 pp 126–186

    Google Scholar 

  • Bleil U, Thiede J (eds) (1990) Geological History of the Polar Oceans: Arctic versus Antarctic. NAT ASI Series C, Vol. 8. Kluwer Academic Publishers, Dordrecht Boston London, pp 823

    Google Scholar 

  • Bolli HM, Ryan WBF et al. (1978) Initial Reports of the Deep Sea Drilling Project 40, Washington, DC. (U.S. Government Printing Office)

    Google Scholar 

  • Boltovskoy E (1967) Living planktonic foraminifera of the eastern part of the tropical Atlantic. Revue de Micropaleontologie 11:85–98

    Google Scholar 

  • Boyle EA, Keigwin LD (1982) Deep circulation of the North Atlantic over the last 200,000 years: Geochemical evidence. Science 218:784–787

    Google Scholar 

  • Bramlette MN (1961) Pelagic Sediments. In: Oceanography. Amer Assoc Advancement of Sci Publ No 67, pp 345–366

    Google Scholar 

  • Bremner JM (1983) Biogenic sediments on the south west African (Namibian) continental margin. In: Thiede J, Suess E (eds) Coastal Upwelling: Its Sediment Record, Part B. (NATO conference series IV) Plenum Press, New York, pp73–103

    Google Scholar 

  • Broecker WS, Denton GH (1989) The role of ocean- atmosphere reorganizations in glacial cycles. Geochimica et Cosmochimica Acta 53(10):2465–2501

    Google Scholar 

  • Brongersma-Sanders M (1947) On the desirability of a research into certain phenomena in the region of upwelling water along the coast of South West Africa. Koninklijke Nederlandsche Adademie van Wetenschappen, Proceedings 50(6): 1–8

    Google Scholar 

  • Budyko MI (1977) Climate Change. American Geophysical Union, Washington D.C.

    Google Scholar 

  • Byrne DA, Gordon AL, Haxby WF (1995) Agulhas eddies: A synoptic view using Geosat ERM data. J Phys Oceanography 25:902–917

    Google Scholar 

  • Calvert SE, Price NB (1971) Upwelling and nutrient regeneration in the Benguela Current, October 1968. Deep-Sea Res 18:505–523

    Google Scholar 

  • Calvert SE, Price NB (1983) Geochemistry of Namibian shelf sediments. In: Suess E, Thiede J (eds) Coastal Upwelling: Its Sediment Record, Part A (NATO conference series IV) Plenum Press, New York, 337–375

    Google Scholar 

  • Capo FC, DePaolo DJ (1990) Seawater strontium isotopic variations from 2.5 million years ago to the present. Science 249:51–55

    Google Scholar 

  • Chamberlin TC (1906) On a possible reversal of deep- sea circulation and its influence on geologic climates. Jour Geology 14:363–373

    Google Scholar 

  • Charles CD, Fairbanks RG (1990) Glacial to interglacial changes in the isotopic gradients of Southern Ocean surface water. In: Bleil U, Thiede J (eds.) Geological History of the Polar Oceans: Arctic versus Antarctic. Kluwer Academic, Dordrecht pp 519–538

    Google Scholar 

  • Charles CD, Froelich PN, Zibello MA, Mortlock RA, Morley JJ (1991) Biogenic opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water chemistry and circulation. Paleoceanography 6:697–728

    Google Scholar 

  • Ciesielski PF, Weaver FM (1983) Neogene and Quaternary paleoenvironmental history of Deep Sea Drilling Project Leg 71 sediments, Southwest Atlantic Ocean. In: Ludwig WJ, Krasheninnikov et al., Init Repts DSDP, 71, part 1, Washington (US Govt Printing Office), pp 461–477

    Google Scholar 

  • Ciesielski PF, Kristoffersen Y (1991) Proc ODP, Sci Results, 114, College Station TX (Ocean Drilling Program)

    Google Scholar 

  • CLIMAP Project Members 1976. The surface of the ice- age Earth. Science 191:1131–1137

    Google Scholar 

  • CLIMAP Project Members 1981. Seasonal reconstructions of the Earth’s surface at the last glacial maximum. Map and Chart Series MC-36, Geol. Soc. Amer., Boulder Colorado

    Google Scholar 

  • Coates AG, Jackson JC, Collins LS, Cronin TM, Dowsett HJ, Bybell LM, Jung P, Obando JA (1992) Closure of the Isthmus of Panama: The near-shore marine record of Costa Rica and western Panama. Geol Soc Am Bull 104:814–828

    Google Scholar 

  • Corliss WB, Martinson DG, Keffer T, (1986) Late Quaternary deep-ocean circulation. Geol Soc Am Bull 97:1106–1121

    Google Scholar 

  • Crowley TJ, North GR (1991) Paleoclimatology. Oxford University Press, New York, pp 339

    Google Scholar 

  • Curry WB, Crowley TJ(1987). The δ13C of equatorial Atlantic surface waters: Implications for ice age pCO2 levels. Paleoceanography 2:489–517

    Google Scholar 

  • Curry WB, Lohmann GP (1983) Reduced advection into Atlantic Ocean deep eastern basins during last glaciation maximum. Nature 306:577–580

    Google Scholar 

  • Dean W, Gardner J (1985) Cyclic variations in calcium carbonate and organic carbon in Miocene to Holocene sediments, Walvis Ridge, South Atlantic Ocean. In: Hsü KJ, Weissert HJ (eds) South Atlantic Paleoceanography, Cambridge University Press, Cambridge (U.K.), 61–78

    Google Scholar 

  • Dean WE, Hay WW, Sibuet JC (1984) Geologic evolution, sedimentation, and paleoenvironments of the Angola Basin and adjacent Walvis Ridge: Synthesis of results of Deep Sea Drilling Project Leg 75. In: Hay WW, Sibuet JC et al. Init Repts DSDP 75:509–542. Washington (U.S. Govt Printing Office)

    Google Scholar 

  • Dean WE, Parduhn NL (1984) Inorganic geochemistry of sediments and rocks recovered from the southern Angola Basin and adjacent Walvis Ridge, Sites 530 and 532, Deep Sea Drilling Project 75. In: Hay WW, Sibuet JC et al. Init Repts DSDP 75: 923–958. Washington (US Govt Printing Office)

    Google Scholar 

  • Delaney ML (1990). Miocene benthic foraminiferal Cd/ Ca records: South Atlantic and western equatorial Pacific. Paleoceanography 5:743–760

    Google Scholar 

  • DeMaster DJ (1981). The supply and accumulation of silica in the marine environment. Geochim Cosmochim Acta 45:1715–1732

    Google Scholar 

  • Diester-Haass L (1985) Late Quaternary upwelling history off southwest Africa (DSDP Leg 75, HPC 532). In: Hsü KJ, Weissert HJ South Atlantic Paleoceanography. Cambridge University Press, Cambridge (U.K.), pp 47–55

    Google Scholar 

  • Diester-Haass L, Meyers PA, Rothe P (1990) Miocene history of the Benguela Current and Antarctic ice volumes: Evidence from rhythmic sedimentation and current growth across the Walvis Ridge (Deep Sea Drilling Project Sites 362 and 532). Paleoceanography 5:685–707

    Google Scholar 

  • Diester-Haass L, Meyers PA, Rothe P (1992) The Benguela Current and associated upwelling on the southwest African Margin: a synthesis of the Neogene - Quaternary sedimentary record at DSDP sites 362 and 352. In: Summerhayes CP, Prell WL, Emeis KC (eds) Upwelling Systems: Evolution Since the Early Miocene. Geological Society Special Publication No. 64, pp 331–342

    Google Scholar 

  • Dietrich G, Kalle K, Krauss W, Siedler G (1975) Allgemeine Meereskunde, 3. Auflage. Borntraeger Berlin Stuttgart, 593 pp

    Google Scholar 

  • Dietz RS (1961) Continent and ocean basin evolution by spreading of the sea floor. Nature 190:854–857.

    Google Scholar 

  • Donn WL, Shaw DM (1977) Model of climate evolution based on continental drift and polar wandering. Geol Soc Am Bull 88:390–396

    Google Scholar 

  • Douglas RG, Savin SM (1975) Oxygen and carbon isotope analyses of Teriary and Cretaceous micro- fossils from Shatsky Rise and other sites in the North Pacific Ocean. In: Init Rep DSDP 32:509–520

    Google Scholar 

  • Duplessy JC, Shackleton NJ, Fairbanks RG, Labeyrie L, Oppo D, Kallel N (1988) Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3:343–360.

    Google Scholar 

  • Duque-Caro H (1990) Neogene stratigraphy, paleoceanography and paleobiogeography in northwest South America and the evolution of the Panama Seaway. Palaeogeography, Palaeoclimatology, Palaeoecology 77:203–234

    Google Scholar 

  • Elderfield H (1986) Strontium isotope stratigraphy. Palaeogeography, Palaeoclimatology, Palaeoecology 57:71–90

    Google Scholar 

  • Emiliani C (1955) Pleistocene temperatures, J Geol 63:538–578

    Google Scholar 

  • Emiliani C, Geiss J (1958) On glaciation and their causes. Geologische Rundschau 46:576–601

    Google Scholar 

  • Froelich PN et al. (1991) Biogenic opal and carbonate accumulation rates in the subantarctic South Atlantic. Proc Ocean Drill Program Sci Results 114:515–550

    Google Scholar 

  • Gardner JV, Dean WE, Wilson CR (1984) Carbonate and organic-carbon cycles and the history of upwelling at Deep Sea Drilling Project Site 532, Walvis Ridge, South Atlantic Ocean. Initial Reports Deep Sea Drilling Project 75:905–921

    Google Scholar 

  • Gordon A (1985) Indian-Atlantic transfer of thermo- cline water at the Agulhas retroflection. Science 227:1030–1033

    Google Scholar 

  • Guilderson TP, Fairbanks RG, Rubenstone JL (1994) Tropical temperature variations since 20,000 years ago: Modulating interhemispheric climatic change. Science 263:663–665

    Google Scholar 

  • Haq BU (1981) Paleogene paleoceanography: Early Cenozoic oceans revisited. Oceanologica Acta 4 Supplement pp 71–82

    Google Scholar 

  • Haq BU (1984) Paleoceanography: A synoptic overview of200 million years of ocean history. In: Haq BU, Milliman JD. Marine geology and oceanography of Arabian Sea and coastal Pakistan. Van Nostrand Reinhold Co, New York pp 201–231

    Google Scholar 

  • Haq BU, Boersma A (eds) (1978) Introduction to marine micropaleontology. Elsevier North-Holland, New York, pp 376

    Google Scholar 

  • Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167

    Google Scholar 

  • Hastenrath S (1977) Relative role of atmosphere and ocean in the global heat budget: tropical Atlantic and eastern Pacific. Quart J Roy Meteorol Soc 103:519–526

    Google Scholar 

  • Hay WW (1988) Paleoceanography: A review for the GSA Centennial Geol Soc Am Bull 100:1934–1956

    Google Scholar 

  • Hay WW (1992) The cause of the late Cenozoic northern hemisphere glaciations: a climate change enigma. Terra Nova 4:305–311

    Google Scholar 

  • Hay WW, Brock JC (1992) Temporal variation in intensity of upwelling off southwest Africa. In: Summerhayes CP, Prell WL, Emeis KC (eds) Upwelling Systems: Evolution Since the Early Miocene. Geological Society Special Publication No 63, pp 463–497

    Google Scholar 

  • Hay WW, Southam JR (1977) Modulation of marine sedimentation by the continental shelves. In: N.R. Andersen and A. Malahoff (eds.) The Fate of Fossil Fuel CO2 in the Oceans, Plenum Press, New York, pp. 569–604

    Google Scholar 

  • Hay WW, Sibuet JC et al. (1984) Initial Reports of the Deeep Sea Drilling Project, 75, Washington (U.S. Govt Printing Office)

    Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194:1121–1132

    Google Scholar 

  • Hebbeln D, Wefer G (1991) Sedimentation in the Fram Strait: effects of ice coverage and ice-rafted material. Nature 350:409–411

    Google Scholar 

  • Hemleben C, Spindler M, Anderson OR (1989) Modern Planktonic Foraminifera. Springer-Verlag, New York Berlin Heidelberg, New York, pp 363

    Google Scholar 

  • Hess HH (1962) History of ocean basins. In: Engel AEJ, James HL, Leonard BF (eds) Petrologic Studies: A Volume to Honor A.F. Buddington. Geol Soc America, pp 599–620

    Google Scholar 

  • Hodell DA, Ciesielski PF (1990) Southern Ocean response to the intensification of northern hemisphere glaciation at 2.4 Ma. In: Bleil U, Thiede J (eds) Geological History of the Polar Oceans: Arctic Versus Antarctic. Kluwer, Amsterdam, pp 707–728

    Google Scholar 

  • Hodell DA, Ciesielski PF (1991) Stable isotopic and carbonate stratigraphy of the late Pliocene and Pleistocene of Hole 704A: Eastern subantarctic South Atlantic. Proc Ocean Drill Program Sci Results 114:409–435

    Google Scholar 

  • Hodell DA, Venz K (1992) Toward a high-resolution stable isotopic record of the Southern Ocean during the Pliocene-Pleistocene (4.8 to 0.8 MA). In: Kennett JP, Warnke DA (eds) The Antarctic Paleoenvironment: A Perspective on Global Change „Part One Vol 56 (Antarctic Research Series) American Geophysical Union, Washington D.C., pp 265–310

    Google Scholar 

  • Hodell DA, Williams DF, Kennett JP (1985) Late Pliocene reorganization of deep vertical water-mass structure in the western South Atlantic: Faunal and isotopic evidence. Geol Soc America Bull 96:495–503

    Google Scholar 

  • Hsü KJ, Andrews JE (1970) Lithology. In: Maxwell AE et al. Initial Repts of DSDP 3:445–453

    Google Scholar 

  • Hsü KJ, Weissert HJ (eds) (1985) South Atlantic paleoceanography. Cambridge University Press, Cambridge, pp 350

    Google Scholar 

  • Hsü KJ, Wright R (1985) History of calcite dissolution of the South Atlantic Ocean. In: Hsü KJ and Weissert HJ (eds.) South Atlantic Paleoceanography, Cambridge University Press, Cambridge (U.K.), pp 149–187

    Google Scholar 

  • Imbrie, J et al. (1973) Paleoclimatic investigation of a late Pleistocene Caribbean deep-sea core: Comparison of isotopic and faunal methods. Quaternary Research 3:10–38

    Google Scholar 

  • Imbrie J et al. (1992) On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7:701–738

    Google Scholar 

  • Imbrie J et al. (1993) On the structure and origin of major glaciation cycles, 2. The 100,000-year cycle. Paleoceanography 8:699–735

    Google Scholar 

  • Jansen E, Sjöholm J (1991) Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea. Nature 349:600–603

    Google Scholar 

  • Jansen E, Bleil U, Henrich R, Kringstad L, Slettemark B (1988) Paleoenvironmental changes in the Norwegian Sea and the northeast Atlantic during the last 2.8 m.y.: Deep Sea Drilling Project/Ocean Drilling Program Sites 610, 642, 643 and 644. Paleoceanography 3:563–581

    Google Scholar 

  • Jansen E, Mayer LA, Backman J, Leckie RM, Takayama T (1993) Evolution of Pliocene climate cyclicity at Hole 806B (5–2 Ma): Oxygen isotope record. Proceedings Ocean Drill. Program, Scient. Res. 130:349–362

    Google Scholar 

  • Johnson DA (1983) Paleocirculation of the South Atlantic. In: Barker PF, Johnson DA, et al. Initial reports of the Deep Sea Drilling Project, Volume 72 pp 977–994. Washington D.C. (U.S. Government Printing Office)

    Google Scholar 

  • Keigwin LD (1978) Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 6:630–634

    Google Scholar 

  • Keir RS (1988) On the late Pleistocene ocean geochemistry and circulation. Paleoceanography 3:413–445

    Google Scholar 

  • Keir RS (1990) Reconstructing the ocean carbon system variation during the last 150,000 years according to the Antarctic nutrient hypothesis. Paleoceanography 5:253–276

    Google Scholar 

  • Keller G, Barron JA (1983) Paleoceanographic implications of Miocene deep-sea hiatuses. Geol. Soc. America Bulletin 94:590–613

    Google Scholar 

  • Keller G, Zenker CE, Stone SM (1989) Late Neogene history of the Pacific-Caribbean gateway. J. South American Earth Sciences 21:73–108

    Google Scholar 

  • Kemle-von Mücke S (1994) Oberflächenwasserstruktur und -Zirkulation des Südostatlantiks im Spätquartär. Berichte, Fachber Geowiss Univ Bremen 55:1–151

    Google Scholar 

  • Kennett JP (1982) Marine Geology. Prentice Hall, Englewood Cliffs, 813p

    Google Scholar 

  • Kennett JP, Shackleton NJ (1976) Oxygen isotopic evidence for the development of the psychrosphere 38 Myr. ago. Nature 260:513–515

    Google Scholar 

  • Kennett JP, Srinivasan MS (1983) Neogene Planktonic Foraminifera. A Phylogenetic Atlas. Hutchinson Ross Publ. Comp., Stroudsburg, Pennsylvania

    Google Scholar 

  • Kennett JP, Stott LD (1991) Abrupt deep-sea warming, paleoceanographic changes, and benthic extinctions at the end of the Paleocene. Nature 353: 225–229

    Google Scholar 

  • Kroopnick P(1980) The distribution of I3C in the Atlantic Ocean. Earth Planet Sci Lett 49:469–484

    Google Scholar 

  • Kumar N, Anderson RF, Mortlock RA, Froelich PN, Kubik P, Dittrich-Hannen B, Suter M (1995) Increased biological productivity and export production in the glacial Southern Ocean. Nature 378:675–680

    Google Scholar 

  • Lange CB, Berger WH (1993) Diatom productivity and preservation in the western equatorial Pacific: the Quaternary record. Proceedings of the Ocean Drilling Program, Scientific Results 130:509–523

    Google Scholar 

  • Larsen HC, Saunders AD, Clift PD, Beget J, Wei W, Spezzaferri S and ODP Leg 152 Scientific Party (1994) Seven Million Years of Glaciation in Greenland. Science 264:952–955

    Google Scholar 

  • Lutjeharms JRE, van Ballegooyen RC (1988) The Retroflexion of the Agulhas Current. J Phys Oceanogr 18:1570–1583

    Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Crowley T (1990) Ocean general circulation model sensitivity experiment with an open Central American isthmus. Paleoceanography 5:349–366

    Google Scholar 

  • Marshall LG (1988) Land mammals and the Great American Interchange. American Scientist 76:380–388

    Google Scholar 

  • Maxwell AE, von Herzen RP et al. (1970) Initial Reports Deep Sea Drilling Project Vol 3, US Government Printing Office, Washington DC

    Google Scholar 

  • Mclntyre A, Ruddiman WF, Karlin K, Mix AC (1989) Surface water response of the equatorial Atlantic Ocean to orbital forcing. Paleoceanography 4:19–55

    Google Scholar 

  • Melguen M, Le Pichon X, Sibuet J-C (1978) Paleoenvironnement de V Atlantique sud. Bull. Soc. geol. France (7) v. 20 (4) 471–489

    Google Scholar 

  • Menard HW (1969) Elevation and subsidence of oceanic crust: Earth and Planetary Sci Letters 6:275–284

    Google Scholar 

  • Meyers PA, Brassell SC, Hue AY (1984) Geochemistry of organic carbon in South Atlantic sediments from Deep Sea Drilling Project Leg 75. In: Hay WW, Sibuet JC et al Initial Reports of the Deep Sea Drilling Project 75. Washington (US Government Printing Office) pp 967–982

    Google Scholar 

  • Mikolajewicz U, Maier-Reimer E, Crowley TJ, Kim KY (1993) Effect of Drake and Panamanian Gateways on the Circulation of an Ocean Model. Paleoceanography 8:409–426

    Google Scholar 

  • Milankovitch M (1930) Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. Handbuch der Klimatologie, Bd 1, Teil A. Bornträger, Berlin, 176pp

    Google Scholar 

  • Miller JR, Russell GL (1989) Ocean heat transport during the last glacial maximum. Paleoceanography 4:141–155

    Google Scholar 

  • Miller KG, Fairbanks RG, Mountain GS (1987) Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography 2:1–19

    Google Scholar 

  • Milliman JD (1974) Marine Carbonates. Springer Verlag, Berlin. 375 pp

    Google Scholar 

  • Mix AC (1989) Influence of productivity variations on long term atmospheric CO2 Nature 337:541–544

    Google Scholar 

  • Mix AC, Ruddiman WF, Mclntyre A (1986) Late Quaternary paleoceanography of the tropical Atlantic, 2: The seasonal cycle of sea surface temperatures, 0–20,000 years b.p. Paleoceanography 1:339–353

    Google Scholar 

  • Molfmo B, Mclntyre A (1990) Precessional forcing of nutricline dynamics in the equatorial Atlantic. Science 249:766–769

    Google Scholar 

  • Moore TC (1969) Radiolaria: change in skeletal weight and resistance to solution. Geol Soc Am Bull 80:2103–2108

    Google Scholar 

  • Moore TC, Rabinowitz PD, Borella PE, Shackleton NJ, Boersma A (1985) History of the Walvis Ridge. A précis of the results of DSDP Leg 74. In: K.J. Hsü and H.J. Weissert (eds.) South Atlantic Paleoceanography, Cambridge University Press, Cambridge (U.K.), pp 57–60

    Google Scholar 

  • Mortlock RA, Charles CD, Froelich PN, Zibello MA, Saltzmann J, Hays JD, Burckle LH (1991) Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature 361:220–223

    Google Scholar 

  • Müller PJ, Suess E (1979) Productivity, sedimentation rate, and sedimentary organic matter in the oceans -1. Organic carbon preservation. Deep-Sea Res 26A:1347–1362

    Google Scholar 

  • Müller PJ, Erlenkeuser H, von Grafenstein R, (1983) Glacial-Interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores. In: Coastal Up- welling: Its Sediment Record, B. edited by J. Thiede and E. Suess (Plenum Press, New York), pp 365–398

    Google Scholar 

  • Müller PJ, Schneider R, Ruhland G (1994) Late Quaternary PCO2 variations in the Angola Current: Evidence from organic carbon δ13C and alkenone temperatures. In: Zahn R, Pedersen TF, Kaminski MA, Labeyrie L (eds) Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change. Springer-Verlag, Berlin Heidelberg, pp 343–366

    Google Scholar 

  • Munsch GB (ed) (1988) Report of the Second Conference on Scientific Ocean Drilling “Cosod II”, European Science Foundation, Strasbourg

    Google Scholar 

  • North GR, Crowley TJ (1985) Application of a seasonal climate model to Cenozoic glaciation. J Geol Soc (London) 142:475–482

    Google Scholar 

  • Oberhansli H (1991) Upwelling signals at the northeastern Walvis Ridge during the past 500,000 years. Paleoceanography 6:53–71

    Google Scholar 

  • Oberhansli H, Toumarkine M (1985) The Paleogene oxygen and carbon isotope history of Sites 522,523, and 524 from the central South Atlantic. In: Hsu KJ, Weissert HJ (eds) South Atlantic Paleoceanography, Cambridge University Press, Cambridge (U.K.), pp 125–147

    Google Scholar 

  • Oberhansli H, Muller-Merz E, Oberhansli R (1991) Eocene paleoceanographic evolution at 20–30°S in the Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 83:173–215

    Google Scholar 

  • Olausson E (1965) Evidence of climatic changes in North Atlantic deep-sea cores, with remarks on iso- topic paleotemperature analysis. Progr Oceanogr 3:221–252

    Google Scholar 

  • Opdyke ND, Glass B, Hays JD, Foster J (1966) Paleomagnetic study of Antarctic deep-sea cores. Science 154:349–357

    Google Scholar 

  • Palmer MR, Edmond JM (1989) The strontium isotope budget of the modern ocean. Earth Planet. Science Lett. 92:11–26

    Google Scholar 

  • Palmer MR, Elderfield H (1985) Sr isotope composition of sea water over the past 75 Myr. Nature 314: 526–528.

    Google Scholar 

  • Peterson RG, Stramma L (1991) Upper-level circulation in the South Atlantic Ocean. Prog Oceanogr 26:1–73

    Google Scholar 

  • Pokras EM (1987) Diatom record of Late Quaternary climatic change in the eastern equatorial Atlantic and tropical Africa. Paleoceanography 2:273–286

    Google Scholar 

  • Prell WL (1985) The stability of low-latitude sea-sur- face temperatures: An evaluation of the CLIMAP reconstruction with emphasis on the positive SST anomalies. DOE Rep. TR025, U.S. Department of Energy, Washington, D.C., 60 pp

    Google Scholar 

  • Raymo ME, Ruddiman WF, Froelich PN (1988) Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology 16:649–653

    Google Scholar 

  • Raymo ME (1991) Geochemical evidence supporting T.C.Chamberlin’s theory of glaciation. Geology 19:344–347

    Google Scholar 

  • Raymo ME, Hodell D, Jansen E (1992) Response of deep ocean circulation to initiation of northern hemisphere glaciation (3–2 Ma). Paleoceanography 7:645–672

    Google Scholar 

  • Raymo ME, Ruddiman WF, Shackleton NJ, Oppo DW (1990) Evolution of Atlantic-Pacific 813C gradients over the last 2.5 m.y. Earth and Planet Sci Lett 97:353–368

    Google Scholar 

  • Revelle RR (1944) Marine bottom samples collected in the Pacific Ocean by the CARNEGIE on its seventh cruise. Carnegie Inst Wash Publ 556:1–196

    Google Scholar 

  • Rind D, Peteet D (1985) Terrestrial conditions at the last glacial maximum and CLIMAP sea-surface temperature estimates: are they consistent? Quat Res 24:1–22

    Google Scholar 

  • Ruddiman WF, Heezen BC (1967) Differential solution of planktonic foraminifera. Deep-Sea Res 14:801–808

    Google Scholar 

  • Ruddiman WF, Kutzbach JE (1989) Forcing of late Cenozoic northern hemisphere climate by plateau uplift in southern Asia and the American West. J geophys Res 94:18409–18427

    Google Scholar 

  • Ryan WBF, Hsü KJ, Cita MB, Dumitrica P, Lort JM, Mayne W, Nesteroff WD, Pautot G, Strander H, Wezel FC (1973) Initial Reports of the Deep Sea Drilling Project, Vol. 13, Washington DC (US Government Printing Office) p 1447

    Google Scholar 

  • Sarnthein M, Thiedemann R (1989) Toward a high- resolution stable isotope stratigraphy of the last 3.4 million years. Proceedings of the Ocean Drilling Program, Scientific Results, 108:167–185

    Google Scholar 

  • Sarnthein M, Winn K, Jung SJA, Duplessy JC, Labeyrie L, Erlenkeuser H, Ganssen G (1994) Changes in east Atlantic deepwater circulation over the last 30,000 years: Eight time slice reconstructions. Paleoceanography 9:209–267

    Google Scholar 

  • Schneider RR (1991) Spätquartäre Produktivitätsänderungen im östlichen Angola-Becken: Reaktion auf Variationen im Passat-Monsun-Windsystem und in der Advektion des Benguela-Küstenstroms. Berichte, Fachber Geowiss Univ Bremen 21: 1–198

    Google Scholar 

  • Schneider RR, Müller PJ (1995) What role has upwelling played in the global carbon and climate cycles on a million-year time scale? In: Summerhayes CP et al. (eds) Upwelling in the Ocean: Modern Processes and Ancient Records. John Wiley, Chichester, pp 361–380

    Google Scholar 

  • Schneider RR, Müller PJ, Ruhland G (1995) Late Quaternary surface circulation in the east equatorial South Atlantic: Evidence from alkenone sea surface temperatures. Paleoceanography 10:197–219

    Google Scholar 

  • Schnitker D (1980) Quaternary deep-sea benthic foraminifers and bottom water masses. Ann Rev Earth Planet Sci 8:343–370

    Google Scholar 

  • Schott W (1935) Die Foraminiferen in dem äquatorialen Teil des Atlantischen Ozeans. Deutl Atl Exped Meteor 1925–1927. 3:43–134

    Google Scholar 

  • Sclater JG, Anderson RN, Bell ML (1971) Elevation of ridges and evolution of the central eastern Pacific. J. geophys. Res. 76 (32): 7888–7915

    Google Scholar 

  • Seibold E, Berger WH (1995) The Sea Floor, An Introduction to Marine Geology, 3rd Edition. Springer Verlag, Heidelberg, 356pp

    Google Scholar 

  • Shackleton NJ, Kennett JP (1975) Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279 and 281. Deep Sea Drilling Project Initial Reports 29:743–755

    Google Scholar 

  • Shackleton NJ, Opdyke ND (1973) Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: Oxygen isotope temperatures and ice volumes on a 105 year and 106 year scale. Quaternary Res 3: 39–55

    Google Scholar 

  • Shackleton NJ, Backman J, Zimmerman H, Kent DV, Hall MA, Roberts DG, Schnitker D, Baldauf JG, Desprairies A, Homrighausen R, Huddlestun P, Keene JB, Kaltenback A J, Krumsiek KAO, Morton AC, Murray JW, Westberg-Smith J (1984) Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307:602–623

    Google Scholar 

  • Siesser WG (1980) Late Miocene origin of the Benguela upswelling system off northern Namibia. Science 208:283–285 Stommel H (1980) Asymmetry of interoceanic freshwater and heat fluxes. Proc. Nat. Acad. Sci. (U.S.A.) 77:2377–2381

    Google Scholar 

  • Stommel H (1980) Asymmetry of interoceanic freshwater and heat fluxes. Proc. Nat. Acad. Sci. (U.S.A.) 77:2377–2381

    Google Scholar 

  • Stott LD, Tang CM (1996) Reassessment of foraminiferal-based tropical sea surface δ18O paleotemperatures. Paleoceanography 11:37–56

    Google Scholar 

  • Stute M, Forster M, Frischkorn H, Serejo A, Clark JF, Schlosser P, Broecker WS, Bonani G (1995) Cooling of tropical Brazil (5°C) during the last glacial maximum. Science 269:379–383

    Google Scholar 

  • Summerhayes CP, Birch GF, Rogers J, Dingle RV (1973) Phosphate in sediments off southwestern Africa. Natur 243:509–511

    Google Scholar 

  • Summerhayes CP, Prell WL, Emeis KC (eds) (1992) Upwelling Systems: Evolution Since the Early Miocene. Geol Soc Spec Publ, 64, London, pp 519

    Google Scholar 

  • Summerhayes CP, Emeis KC, Angel MV, Smith RL, Zeitzschel B (1995) Upwelling in the Ocean: Modern Processes and Ancient Records. Dahlem Workshop Reports. John Wiley & Sons, Chichester, pp 422

    Google Scholar 

  • Sundquist ET, Broecker WS (eds) (1985) The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. American Geophysical Union, Washington D.C. pp 627

    Google Scholar 

  • Sverdrup HU, Johnson MW, Fleming RH (1942) The Oceans, Their Physics, Chemistry, and General Biology. Prentice-Hall, Englewood Cliffs, New Jersey, 1087 pp

    Google Scholar 

  • Tomczak M, Godfrey JS (1994) Regional Oceanography: An Introduction. Pergamon, New York

    Google Scholar 

  • Turekian KK (ed) (1971) The late Cenozoic Glacial Ages. Yale Univ. Press, New Haven, Conn.

    Google Scholar 

  • Turnau R, Ledbetter MT (1989) Deep circulation changes in the South Atlantic Ocean: responses to initiation of northern hemisphere glaciation. Paleoceanography 4:565–583

    Google Scholar 

  • Urey HC (1952) The Planets, Their Origin and Development. Yale Univ. Press, New Haven, 245pp

    Google Scholar 

  • Vail PR, Hardenbol J (1979) Sea-level changes during the Tertiary. Oceanus 22:71–79

    Google Scholar 

  • Van Andel TH, Heath GR, Moore TC (1975) Cenozoic history and paleoceanography of the central equatorial Pacific Ocean. Geol Soc Am, Mem 143:1–134

    Google Scholar 

  • Van Andel TH, Thiede J, Sclater JG, Hay WW (1977) Depositional history of the South Atlantic ocean during the last 125 million years. J Geol 85:651–698

    Google Scholar 

  • Vincent E, Berger WH (1981) Planktonic foraminifera and their use in paleoceanography. In: The Sea, Vol. 7 (C. Emiliani, Ed.). Wiley-Interscience, New York, pp 1025–1119

    Google Scholar 

  • Vincent E, Berger WH (1985) Carbon dioxide and polar cooling in the Miocene: the Monterey hypothesis. In: The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (E. T. Sundquist and W. S. Broecker, Eds.). Amer Geophys Union. Geophys Monogr vol 32, pp 455–468

    Google Scholar 

  • Wefer G (1989) Particle flux in the ocean: Effects of episodic production. In: Berger WH, Smetacek VS, Wefer G (eds) Productivity of the Ocean: Present and Past. Dahlem Workshop Reports. J. Wiley and Sons, Chichester New York Brisbane Toronto Singapore, pp 139–154

    Google Scholar 

  • Wefer G, Berger WH (1991) Isotope paleontology: growth and composition of extant calcareous species. Marine Geology 100:207–248

    Google Scholar 

  • Westerhausen L, Poynter J, Eglinton G, Erlenkeuser H, Sarnthein M (1993) Marine and terrestrial origin of organic matter in modern sediments of the equatorial east Atlantic: The δl3C and molecular record. Deep-Sea Res. 40:1081–1121

    Google Scholar 

  • Whitman JM, Berger WH (1992) Pliocene-Pleistocene oxygen isotope record of Site 586, Ontong Java Plateau. Marine Micropal. 18:171–198

    Google Scholar 

  • Whitman JM, Berger WH (1993) Pliocene-Pleistocene carbon isotope record of Site 586, Ontong Java Plateau. Proceedings of the Ocean Drilling Program, Scientific Results 130:333–348

    Google Scholar 

  • Williams DF, Thuneil RC, Hodell DA, Vergnaud- Grazzini C (1985) Synthesis of late Cretaceous, Tertiary, and Quaternary stable isotope records of the South Atlantic based on Leg 72 DSDP core material. In: Hsü KJ, Weissert HJ (eds) South Atlantic Paleoceanography. Cambridge University Press, Cambridge UK, pp 205–241

    Google Scholar 

  • Wilson JT (1963) Evidence from islands on the spreading of the ocean floor. Nature 197:536–538

    Google Scholar 

  • Wise SW, Gombos AM, Muza JP (1985) Cenozoic evolution of polar water masses, southwest Atlantic Ocean. In: Hsü KJ, Weissert HJ (eds) South Atlantic Paleoceanography. Cambridge University Press, Cambridge UK, pp 283–324

    Google Scholar 

  • Wüst G (1935) Schichtung und Zirkulation des Atlantischen Ozeans. Das Bodenwasser und die Stratosphäre. Deutsche Atlantische Expedition Meteor 1925–1927, Wiss Erg, Bd 6, 1. Teil, 2. Liefrg, 288 pp

    Google Scholar 

  • Wüst G, Defant A (1936) Atlas zur Schichtung und Zirkulation des Atlantischen Ozeans. Deutsche Atlantische Exped. Meteor 1925–1927, Wiss Erg, Bd 6, Atlas, 103 pp

    Google Scholar 

  • Woodruff F, Savin SM (1989) Miocene deepwater oceanography. Paleoceanography 4:87–140

    Google Scholar 

  • Zachos JC, Lohmann KC, Walker JCG, Wise SW (1993) Abrupt climate change and transient climates during the Paleogene: A marine perspective. J Geol 101:191–213

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berger, W.H., Wefer, G. (1996). Expeditions into the Past: Paleoceanographic Studies in the South Atlantic. In: The South Atlantic. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80353-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80353-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80355-0

  • Online ISBN: 978-3-642-80353-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics