Advertisement

Application of Ligand-Dependent Site-Specific Recombination in ES Cells

  • Pierre-Olivier Angrand
  • Catherine P. Woodroofe
  • A. Francis Stewart
Part of the Springer Lab Manual book series (SLM)

Abstract

Mammalian genetics has benefited greatly from the development of methods for culturing and genetically modifying mouse embryonic stem (ES) cells. ES cells are totipotent cells derived from the inner cell mass of 3.5-day blastocysts. They have two main characteristics:
  • They can be modified in culture and reintroduced back into blastocysts, giving rise to manipulated chimeric animals (Thompson et al. 1989)

  • They can spontaneously differentiate to various cell types under certain growth conditions.

Keywords

Embryonic Stem Cell Selectable Marker Gene loxP Site Inducible Expression System Human Progesterone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artelt P, Grannemann R, Stocking C, Frield J, Bartsch J, Hauser H (1991) The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99: 249–254PubMedCrossRefGoogle Scholar
  2. Bronson SK, Smithies O (1994) Altering the mice by homologous recombination using embryonic stem cells. J Biol Chem 269: 27155–27158PubMedGoogle Scholar
  3. Cox MM (1983) The FLP protein of the yeast 2-microns plasmid: expression of a eukaryotic genetic recombination system in Escherichia coli. Proc Natl Acad Sci USA 80: 4223–4227PubMedCrossRefGoogle Scholar
  4. Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88: 10558–10562PubMedCrossRefGoogle Scholar
  5. Danielian PS, White R, Hoare SA, Fawell SE, Parker MG (1993) Identification of residues in the estrogen receptor that confer differential sensitivity to estrogen and hydroxytamoxifen. Mol Endocrinol 7: 232–240.PubMedCrossRefGoogle Scholar
  6. Luna S, Ortin J (1992) Pac gene as efficient dominant marker and reporter gene in mammalian cells Methods Enzymol 216:376–385CrossRefGoogle Scholar
  7. Falco SC, Li Y, Broach JR, Botstein D (1982) Genetic properties of chromosomally integrated 2 mu plasmid DNA in yeast. Cell 29: 573–584PubMedCrossRefGoogle Scholar
  8. Friedrich G, Soriano P (1993) Insertional mutagenesis by retroviruses and promoter traps in embryonic stem cells. Methods Enzymol 225 681–701PubMedCrossRefGoogle Scholar
  9. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59: 499–509PubMedCrossRefGoogle Scholar
  10. Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73: 1155–64PubMedCrossRefGoogle Scholar
  11. Jackson RJ, Hunt SL, Gibbs CL, Kaminski A (1994) Internal initiation of translation of picornavirus RNAs. Mol Biol Rep 19: 147–159PubMedCrossRefGoogle Scholar
  12. Jung S, Rajewsky K, Radbruch A (1993) Shutdown of class switch recombination by deletion of a switch region control element. Science 259: 984–987PubMedCrossRefGoogle Scholar
  13. Kellendonk C, Tronche F, Monaghan A-P, Angrand, P-O, Stewart AF, Schütz G (1996) Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res 24: 1404–1411PubMedCrossRefGoogle Scholar
  14. Kilby NJ, Snaith MR, Murray JAH (1993) Site-specific recombinases-tools for genome engineering. Trends Genet 9: 413–421PubMedCrossRefGoogle Scholar
  15. Lakso M, Sauer B, Mosinger Jr B, Lee EJ, Manning RW, Yu SH, Mulder KL, Westphal H (1992) Targeted oncogene activation by site-specific recombination in trans-genic mice. Proc Natl Acad Sci USA 89: 6232–6236PubMedCrossRefGoogle Scholar
  16. Littlewood TD, Hancock DC, Danielian PS, Parker MG, Evan GI (1995) A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res 23: 1686–1690PubMedCrossRefGoogle Scholar
  17. Logie C, Stewart AF (1995) Ligand-regulated site-specific recombination. Proc Natl Acad Sci USA 92: 5940–5944PubMedCrossRefGoogle Scholar
  18. Mattioni T, Louvion J-F, Picard D (1994) Regulation of protein activities by fusion to steroid binding domains. Methods Cell Biol 43: 335–352PubMedCrossRefGoogle Scholar
  19. McBurney MW, Staines WA, Boekelheide K, Parry D, Jardine K, Pickavance L (1994) Murine PGK-1 promoter drives widespread but not uniform expression in trans-genic mice. Dev Dyn 200: 278–293PubMedCrossRefGoogle Scholar
  20. Metzger D, Clifford J, Chiba H, Chambon P (1995) Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. Proc Natl Acad Sci USA 92: 6991–6995PubMedCrossRefGoogle Scholar
  21. Mountford P, Zevnik B, Duwel A, Nichols J, Li M, Dani C, Robertson M, Chambers I, Smith A (1994) Dicistronic targeting constructs: reporters and modifiers of mammalian gene expression. Proc Natl Acad Sci USA 91: 4303–4307PubMedCrossRefGoogle Scholar
  22. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC (1993) Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA 90: 8424–8428PubMedCrossRefGoogle Scholar
  23. Odell J, Caimi P, Sauer B, Russell S (1990) Site-directed recombination in the genome of transgenic tobacco. Mol Gen Genet 223: 369–378PubMedCrossRefGoogle Scholar
  24. O’Gorman S, Fox DT, Wahl GM (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251: 1351–1355PubMedCrossRefGoogle Scholar
  25. Orban P C, Chui D, Marth JD (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci USA 89: 6861–6865PubMedCrossRefGoogle Scholar
  26. Picard D (1993) Steroid-binding domains for regulating the fuctions of heterologous proteins in cis. Trends Cell Biol 3: 278–280PubMedCrossRefGoogle Scholar
  27. Ramirez-Solis R, Bradley A (1994) Advances in the use of embryonic stem cell technology. Curr Opin Biotech 5: 528–533PubMedCrossRefGoogle Scholar
  28. Ramirez-Solis R, Liu P, Bradley A (1995) Chromosome engineering in mice. Nature 378: 720–724PubMedCrossRefGoogle Scholar
  29. Rossant J, Nagy A (1995) Genome engineering: the new mouse genetics. Nat Med 1: 592–594PubMedCrossRefGoogle Scholar
  30. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7: 2087–2096PubMedGoogle Scholar
  31. Sauer B (1993) Manipulation of transgenes by site-specific recombination: use of Cre recombinase. Methods Enzymol 225: 890–900PubMedCrossRefGoogle Scholar
  32. Sauer B (1994) Site-specific recombination: developents and applications. Curr Opin Biotech 5: 521–527PubMedCrossRefGoogle Scholar
  33. Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage Pl. Proc Natl Acad Sci USA 85: 5166–5170PubMedCrossRefGoogle Scholar
  34. Smith AJH, De Sousa MA, Kwabi-Addo B, Heppell-Parton A, Impey H, Rabbitts P (1995) A site-directed chromosomal translocation induced in embryonic stem cells by Cre-loxP recombination. Nat Genet 9: 376–385PubMedCrossRefGoogle Scholar
  35. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150: 467–486PubMedCrossRefGoogle Scholar
  36. Thompson S, Clarke AR, Pow AM, Hooper ML, Melton DW (1989) Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56: 313–321PubMedCrossRefGoogle Scholar
  37. Van Deursen J, Fornerod M, Van Rees B, Grosveld G (1995) Cre-mediated site-specific translocation between nonhomologous mouse chromosomes. Proc Natl Acad Sci USA 92: 7376–7380PubMedCrossRefGoogle Scholar
  38. Vegeto E, Allan GF, Schrader WT, Tsai MJ, McDonnell DP, O’Malley BW (1992) The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell 69: 703–713PubMedCrossRefGoogle Scholar
  39. Wiles MV (1993) Embryonic stem cell differentiation in vitro. Methods Enzymol 225: 900–918PubMedCrossRefGoogle Scholar
  40. Zhang Y, Riesterer C, Ayrall A-M, Sablitzky F, Littlewood TD, Reth M (1996) Inducible site-specific recombination in mouse embryonic stem cells. Nucleic Acids Res 24: 543–548PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Pierre-Olivier Angrand
    • 1
  • Catherine P. Woodroofe
    • 1
  • A. Francis Stewart
    • 1
  1. 1.European Molecular Biology LaboratoryGene Expression ProgramHeidelbergGermany

Personalised recommendations