Skip to main content

Cerebral Representation of Odour Perception

  • Conference paper
Fragrances
  • 298 Accesses

Abstract

The cerebral representation of odour perception in man is poorly understood compared to other sensory modalities such as hearing, vision and touch. This may result partly from the lack of appropriate instruments for specific stimulation of chemosensors, making investigations of these systems extremely difficult. Primary olfactory structures, namely the olfactory bulb, olfactory tract and piriform cortex, which have been studied in animal experiments, are also recognizable in humans (Price 1990). However, very little is known of neocortical regions that are involved in the processing of olfactory information. Findings in patients with brain lesions indicate that for the perception of odors the temporal lobe is of critical importance (Eichenbaum et al. 1983; Eskenazi 1986).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham-Fuchs K, Schneider S, Reichenberger H (1988) MCG Inverse solution: influence of coil size, grid size, number of coils and SNR. IEEE Trans Biom Eng BE 35:573–576

    Article  CAS  Google Scholar 

  • Abraham-Fuchs K, Harer W, Schneider S, Stefan H (1990) Pattern recognition in biomagnetic signals by spatio temporal correlation and application to the localization of propagating neuronal activity. Med Biol Eng Comput 28:398–406

    Article  PubMed  CAS  Google Scholar 

  • Allison T, Goff WR (1967) Human cerebral evoked responses to odorous stimuli. Electroencephalogr Clin Neurophysiol 23:558–560

    Article  PubMed  CAS  Google Scholar 

  • Barth DS, Sutherling W, Broffman J, Beatty J (1986) Magnetic localization of dipolar current source implanted in a sphere and a human cranium. Electroencephalogr Clin Neurophysiol 63:260–273

    Article  PubMed  CAS  Google Scholar 

  • Beidler LM, Tucker D (1956) Olfactory and trigeminal nerve responses to odors. Fed Proc 15:14–21

    Google Scholar 

  • Carmichael ST, Price J L (1995) Sensory and premotor connections of the orbital and medial prefrontal cortex. J Comp Neurol 363 (4): 642–664

    Article  PubMed  CAS  Google Scholar 

  • Carmichael ST, Clugnet M-C, Price JL (1994) Central olfactory connections in the macaque monkey. J Comp Neurol 346:403–434

    Article  PubMed  CAS  Google Scholar 

  • Clugnet M-C, Price JL (1987) Olfactory input to the prefrontal cortex in the rat. Ann NY Acad Sci 510:231–235

    Article  Google Scholar 

  • Cohen D (1972) Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 175:664–666

    Article  PubMed  CAS  Google Scholar 

  • Davidson RJ (1984) Affect, cognition and hemispheric specialization. In: Izard CE, Kagan J, Zajonc R (eds) Physiological correlates of human behavior. London, Academic

    Google Scholar 

  • Dimond SJ, Farrington L, Johnson P (1976) Differing emotional responses from right and left hemispheres. Nature 261:690–692

    Article  PubMed  CAS  Google Scholar 

  • Doty RL, Brugger WPE, Jurs PC, Orndorff MA, Snyder PJ, Lowry LD (1978) Intranasal trigeminal stimulation from odorous volatiles: psychometric responses from anosmics and normal humans. Physiol Behav 20:175–185

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H, Morton TH, Potter H, Corkin S (1983) Selective olfactory deficits in case HM. Brain 106:459–472

    Article  PubMed  Google Scholar 

  • Eskenazi B (1986) Odor perception in temporal lobe epilepsy patients with and without temporal lobectomy. Neuropsychol 24:553–562

    Article  CAS  Google Scholar 

  • Finkenzeller P (1966) Gemittelte EEG-Potentiale bei olfaktorischer Reizung. Pflugers Arch 292:76–80

    Article  CAS  Google Scholar 

  • Gordon HW, Sperry RW (1969) Lateralization of olfactory perception in the surgically separated hemispheres of man. Neuropsychol 7:11–120

    Article  Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa O (1993) Magnetoencephalography — theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  • Hansen JS, Ko HW, Fisher RS, Litt B (1988) Practical limits on the biomagnetic inverse process determined from in vitro measurements in spherical conducting volumes. Phys Med Biol 33:105–111

    Article  PubMed  CAS  Google Scholar 

  • Hari R, Joutsiniemi SL, Sarvas J (1988) Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. EEG Clin Neurophysiol 71:64–72

    CAS  Google Scholar 

  • Helmholz H von (1853) Ãœber einige Gesetze der Verteilung elektrischer Ströme in körperlichen Leitern, mit Anwendung auf die thierisch-elektrischen Versuche. Ann Phys Chem 89:211–233,353–377

    Article  Google Scholar 

  • Hoenig HE, Daalmans GM, Bär L, Bommel F, Paulus A, Uhl D, Weisse HJ, Schneider S, Seifert H, Reichenberger H, Abraham-Fuchs K (1991) Multichannel DC SQUID sensor array for biomagnetic applications. IEEE Trans Magn 27:2777–2785

    Article  Google Scholar 

  • Hummel T, Kobal G (1992) Differences in human evoked potentials related to olfactory or trigeminal chemosenory activation. Electroencephogr Clin Neurophysiol 84:84–89

    Article  CAS  Google Scholar 

  • Hummel T, Pauli E, Schüler P, Kettenmann B, Stefan H, Kobal G (1995) Chemosensory eventrelated potentials in patients with temporal lobe epilepsy. Epilepsia 26(1): 79–85

    Article  Google Scholar 

  • Hummel T, Roscher S, Jaumann MP, Kobal G (1996) Intranasal chemoreception in patients with multiple chemical sensitivities: a double-blind investigation. Reg Indus Health (submitted)

    Google Scholar 

  • Janday BS, Swithenby SJ (1987) Analysis of magnetoencephalographic data using the homogeneous sphere model: empirical tests. Phys Med Biol 32(1):105–113

    Article  PubMed  CAS  Google Scholar 

  • Kettenmann B, Jousmäki V, Portin K, Salmelin R, Kobal G, Hari R (1996) Odorants activate the human superior temporal sulcus. Neurosci Lett 203:1–3

    Article  Google Scholar 

  • Kobal G (1981) Elektrophysiologische Untersuchungen des menschlichen Geruchssinns. Thieme, Stuttgart

    Google Scholar 

  • Kobal G (1985) Pain-related electrical potentials of the human nasal mucosa elicited by chemical stimulation. Pain 22:151–163

    Article  PubMed  CAS  Google Scholar 

  • Kobal G, Plattig K-H (1978) Methodische Anmerkungen zur Gewinnung olfaktorischer EEG-Antworten des wachen Menschen (objective Olfaktometrie). Z EEG-EMG 9:135–145

    CAS  Google Scholar 

  • Kobal G, Hummel T (1988) Olfaction: chemosensory evoked potentials in patients with olfactory disturbances. Rhinology 26 [Suppl]: 1–18

    Google Scholar 

  • Kobal G, Hummel T (1991) Olfactory evoked potentials in humans. In: Getchell TV, Doty RL, Bartoshuk LM, Snow JR, Jr (eds) Smell and taste in health and disease. Raven, New York, pp 255–275

    Google Scholar 

  • Kobal G, Van Toller S, Hummel T (1989) Is there directional smelling? Experientia 45:130–132

    Article  PubMed  CAS  Google Scholar 

  • Kobal G, Hummel T, Van Toller S (1992) Differences in human chemosensory evoked potentials to olfactory and somatosensory chemical stimuli presented to left and right nostrils. Chem Senses 17 (3): 233–244

    Article  CAS  Google Scholar 

  • Koizuka I, Yano H, Nagahara M, Seo R, Shimada K, Kubo T, Nogawa T (1994) Functional imaging of the human olfactory cortex by magnetic resonance imaging. ORL 56:273–275

    Article  PubMed  CAS  Google Scholar 

  • Livermore A, Hummel T, Kobal G (1992) Chemosensory evoked potentials in the investigation of interactions between the olfactory and the somatosensory (trigeminal) system. Electroenceph. Clin Neurophysiol 83:201–210

    Article  PubMed  CAS  Google Scholar 

  • Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441

    Article  Google Scholar 

  • Meijs JW, ten Voorde BJ, Peters JM (1988) On the influence of various head models on EEGs and MEGs. In: Pfurtscheller G, Lopes da Silva FH (eds) Functional brain imaging. Springer, Berlin Heidelberg New York, pp 31–45

    Google Scholar 

  • Mesulam M-M, Mufson EJ (1982) Insula of the old world monkey. I. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. J Comp. Neurol 212:1–22

    Article  PubMed  CAS  Google Scholar 

  • Murphy C (1987) Olfactory psychophysics. In: Neurobiology of taste and smell. Wiley, New York, pp 251–274

    Google Scholar 

  • Price JL (1990) Olfactory system. In: The human nervous system. Academic, p 29

    Google Scholar 

  • Powell MJD (1964) An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J 7:155–162

    Article  Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Biomagnetic instrumentation. Rev Sci Instrum 53:1815–1845

    Article  PubMed  CAS  Google Scholar 

  • Scholz B, Oppelt A (1992) Probability based dipole localization and individual localization error calculation in biomagnetism. Proc Ann IEEE Med Biol Soc 14:1766–1767

    Article  Google Scholar 

  • Silver WL, Mason JR, Marshall DA, Maruniak JA (1986) Rat trigeminal, olfactory and taste responses after capsaicin desensitization. Brain Res 333:45–54

    Article  Google Scholar 

  • Stefan H, Schneider S, Abraham K, Bauer J, Neubauer U, Rohrlein G, Huk WJ (1990) Magnetic source localization in focal epilepsy; first experiences with multichannel MEG correlated to MR brain imaging. Brain 113:1347–1359

    Article  PubMed  Google Scholar 

  • Williamson SJ, Kaufman L (1981) Biomagnetism. J Magn. Magn. Mat.22:129–201

    Article  Google Scholar 

  • Youngentoub SL, Kurtz DB, Leopold DA, Mozell MM, Hornung DE (1982) Olfactory sensitivity: is there laterality? Chem Senses 7:1–9

    Article  Google Scholar 

  • Zatorre RJ, Jones-Gotman M, Evans AC, Meyer E (1992) Functional localization and lateralization of human olfactory cortex. Nature 360:339–340

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kobal, G., Kettenmann, B. (1998). Cerebral Representation of Odour Perception. In: Frosch, P.J., Johansen, J.D., White, I.R. (eds) Fragrances. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80340-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80340-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80342-0

  • Online ISBN: 978-3-642-80340-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics