Skip to main content

Acute Tubular Lesions, Kidney, Rat

  • Chapter
Urinary System

Part of the book series: Monographs on Pathology of Laboratory Animals ((LABORATORY))

  • 509 Accesses

Abstract

Mild or focal changes are undetectable grossly. Large, pale kidneys that are heavier than normal and that bulge under the capsule are characteristic of widespread tubular damage. On cut surface, a white band in the outer stripe of the outer medulla is characteristic of those compounds that affect the pars recta (Fig. 222), whereas cortical pallor occurs if the pars convoluta is the damaged segment. Papillary or medullary congestion may also be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alden CL, Kanerva RL, Ridder G, Stone LC (1983) Renal effects of petroleum hydrocarbons. In: Mehlman MA (ed) Advances in modern environmental toxicology, vol 7. American Petroleum Institute, Washington DC, pp 107–120

    Google Scholar 

  • Alden CL, Parker RD, Eastman DF (1989) Development of an acute model for the study of chloromethanediphosphonate nephrotoxicity. Toxicol Pathol 17:27–32

    PubMed  CAS  Google Scholar 

  • Alden CL, Burns JL, Parker RD, Englehart JL, Dennis VW (1990) Characterization of the early ultrastructural and biochemical events occurring in dichloromethane diphosphonate nephrotoxicity. Toxicol Pat hoi 18:661–666

    CAS  Google Scholar 

  • Appel GB, Neu HC (1977) The nephrotoxicity of antimicrobial agents, parts 1–3. N Engl J Med 296:663–670, 722–728, 784–787

    Article  PubMed  CAS  Google Scholar 

  • Berndt WO (1983) Transport of citrinin by rat renal cortex. Arch Toxicol 54:35–40

    Article  PubMed  CAS  Google Scholar 

  • Biber TUL, Mylle M, Baines AD, Gottschalk CW, Oliver J, MacDowell MC (1968) A study by micropuncture and microdissection of acute renal damage in rats. Am J Med 44:664–705

    Article  PubMed  CAS  Google Scholar 

  • Carpenedo F, Luciani S, Scaravilli F, Palatini P, Santi R (1974) Nephrotoxic effects of atractyloside in rats. Arch Toxicol 32:169–180

    Article  PubMed  CAS  Google Scholar 

  • Carroll R, Kovacs K, Tapp E (1965) The pathogenesis of glycerol-induced renal tubular necrosis. J Pathol Bacteriol 89:573–580

    Article  PubMed  CAS  Google Scholar 

  • Cherian MG, Goyer RA, Delaquerriere-Richardson L (1976) Cadmium-metallothionein-induced nephropathy. Toxicol Appl Pharmacol 38:399–408

    Article  PubMed  CAS  Google Scholar 

  • Cheville NF (1983) Cell pathology, 2nd edn. Iowa State University, Ames, pp 76–129

    Google Scholar 

  • Choie DD, Richter GW (1972) Lead poisoning: rapid formation of intranuclear inclusions. Science 177:1194–1195

    Article  PubMed  CAS  Google Scholar 

  • Davies DJ, Kennedy A, Roberts C (1969) The excretion of renal cells following necrosis of the distal segment of the nephron by hexadimethrine bromide. Br J Exp Pathol 50:319–326

    PubMed  CAS  Google Scholar 

  • Dekant W, Vamvakas S, Anders MW (1994) Formation and fate of nephrotoxic and cytotoxic glutathione Sconjugates: cysteine conjugate β-lyase pathway. Adv Pharmacol 27:115–162

    Article  PubMed  CAS  Google Scholar 

  • Dobyan DC, Nagle RB, Bulger RE (1977) Acute tubular necrosis in the rat kidney following sustained hypotension: physiologic and morphologic observations. Lab Invest 37:411–422

    Article  PubMed  CAS  Google Scholar 

  • Dobyan DC, Levi J, Jacobs C, Kosek J, Weiner MW (1980) Mechanisms of cis-platinum nephrotoxicity. II. Morphologic observations. J Pharmacol Exp Ther 213:551–556

    PubMed  CAS  Google Scholar 

  • Donohoe JF, Venkatachalam MA, Bernard DB, Levinsky NG (1978) Tubular leakage and obstruction after renal ischemia: structural-functional correlations. Kidney Int 13:208–222

    Article  PubMed  CAS  Google Scholar 

  • Evan AP, Dail WG Jr (1974) The effects of sodium chromate on the proximal tubules of the rat kidney: Fine structural damage and lysozymuria. Lab Invest 30:704–715

    PubMed  CAS  Google Scholar 

  • Farber JL (1982) Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab Invest 47:114–123

    PubMed  CAS  Google Scholar 

  • Finckh ES (1957) Experimental acute tubular nephrosis following subcutaneous injection of glycerol. J Pathol Bacteriol 73:69–85

    Article  CAS  Google Scholar 

  • Fowler BA (1972) The morphologic effects of dieldrin and methyl mercuric chloride on pars recta segments of the rat kidney proximal tubules. Am J Pathol 69:163–178

    PubMed  CAS  Google Scholar 

  • Fowler BA (1982) Ultrastructural and biochemicallocalization of organelle damage from nephrotoxic agents. In: Porter GA (ed) Nephrotoxic mechanisms of drugs and environmental toxins. Plenum, New York, pp 315–330

    Google Scholar 

  • Fowler BA, Hook GE, Lucier GW (1977) Tetrachlorodibenzo-p-dioxin induction of renal microsomal enzyme systems: ultrastructural effects on pars recta (S3) proximal tubule cells on the rat kidney. J Pharmacol Exp Ther 203:712–721

    PubMed  CAS  Google Scholar 

  • Ganote CE, Petersen DR, Carone FA (1974a) The nature of D-serine induced nephrotoxicity. Am J Pathol 77:269–282

    PubMed  CAS  Google Scholar 

  • Ganote CE, Reimer KA, Jennings RB (1974b) Acute mercuric chloride nephrotoxicity. Lab Invest 31:633–647

    PubMed  CAS  Google Scholar 

  • Goldstein RS (1993) Biochemieal heterogeneity and site specific tubular injury. In: Hook JB, Goldstein RS (eds) Toxicology of the kidney series. Raven, New York, pp 201–245

    Google Scholar 

  • Goldstein RS, Mayor GH (1983) Mini review: the nephrotoxicity of cisplatin. Life Sci 32:685–690

    Article  PubMed  CAS  Google Scholar 

  • Gould DH, Fettman MJ, Daxenbichler ME, Bartuska BM (1985) Functional and structural alterations of the rat kidney induced by the naturally occurring organonitrile 2S1-cyano-2-hydroxy-3,4-epithiobutane. Toxicol Appl Pharmacol 78:190–201

    Article  PubMed  CAS  Google Scholar 

  • Goyer RA (1982) The nephrotoxic effects of lead. In: Bach PH, Bonner FW, Bridge JW, Lock EA (eds) Nephrotoxicity: assessment and pathogenesis. Wiley, New York, pp 338–348

    Google Scholar 

  • Gray JE (1977) Chronic progressive nephrosis in the albino rat. CRC Crit Rev Toxicol 5:115–144

    Article  PubMed  Google Scholar 

  • Green CR, Ham KN, Tange JD (1969) Kidney lesions induced in rats by p-aminophenol. Br Med J 61:162–164

    Article  Google Scholar 

  • Haagsma BH, Pound A W (1979) Mercuric chlorideinduced renal tubular necrosis in the rat. Br J Exp Pathol 60:341–352

    PubMed  CAS  Google Scholar 

  • Haagsma BH, Pound A W (1980) Mercuric chlorideinduced tubulo-necrosis in the rat kidney: the recovery phase. Br J Exp Pathol 61:229–241

    PubMed  CAS  Google Scholar 

  • Haley DP (1982) Morphologic changes in uranyl nitrateinduced acute renal failure in saline- and water-drinking rats. Lab Invest 46:196–208

    PubMed  CAS  Google Scholar 

  • Hard GC, Mackay RL, Kochhar OS (1984) Electron microscopic determination of the sequence of acute tubular and vascular injury induced in the rat kidney by a carcinogenic dose of dimethylnitrosamine. Lab Invest 50:659–672

    PubMed  CAS  Google Scholar 

  • Heywood R (1981) Target organ toxicity. Toxicol Lett 8:349–358

    Article  PubMed  CAS  Google Scholar 

  • Hinchman CA, Ballatori N (1990) Glutathione-degrading capacities of liver and kidney in different species. Biochem Pharmacol 40:1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Hottendorf GH (1982) Clinical versus experimental comparisons of amino glycoside nephrotoxicity. In: Fillastre JP (ed) Nephrotoxicity, ototoxicity of drugs. Proceedings of the 2nd International Symposium on Nephrotoxicity Antibiotics. University of Rouen, Rouen, pp 257–268

    Google Scholar 

  • Houghton DC, Harnett M, Campbell-Boswell M, Porter G, Bennett W (1976) A light and electron microscopic analysis of gentamicin nephrotoxicity in rats. Am J Pathol 82:589–612

    PubMed  CAS  Google Scholar 

  • Ishmael J, Pratt I, Lock EA (1982) Necrosis of the pars recta (S3 segment) of the rat kidney produced by hexachloro-1,3-butadiene. J Pathol 138:99–113

    Article  PubMed  CAS  Google Scholar 

  • Ishmael J, Pratt I, Lock EA (1984) Hexachloro-1,3-butadiene-induced renal tubular necrosis in the mouse. J Pathol 142: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Jones TC, Hunt RD (1983) Veterinary pathology, 5th edn. Lea and Febiger, Philadelphia, pp 1446–1502

    Google Scholar 

  • Kaltenbach JP, Ganote CE, Carone FA (1979) Renal tubular necrosis induced by compounds structurally related to D-serine. Exp Mol Pathol 30:209–214

    Article  PubMed  CAS  Google Scholar 

  • Klos C, Koob M, Kramer C, Dekant W (1992) pAminophenol nephrotoxicity: biosynthesis of toxic glutathione conjugates. Toxieol Appl Pharmacol 115:98–106

    Article  CAS  Google Scholar 

  • Kluwe WM (1982) Mechanisms of acute nephrotoxicity: halogenated aliphatic hydrocarbons. In: Porter GA (ed) Nephrotoxic mechanisms of drugs and environmental toxins. Plenum, New York, pp 331–344

    Google Scholar 

  • Kosek JC, Mazze RI, Cousins MJ (1974) Nephrotoxicity of gentamicin. Lab Invest 30:48–57

    PubMed  CAS  Google Scholar 

  • Lockard VG, Phillips RD, Wallace-Hayes A, Berndt WO, O’Neal RM (1980) Citrinin nephrotoxicity in rats: a light and electron microscopic study. Exp Mol Pathol 32:226–240

    Article  PubMed  CAS  Google Scholar 

  • Madrazo A, Suzuki Y, Churg J (1969) Radiation nephritis:acute changes following high doses of radiation. Am J Pathol 54:507–527

    PubMed  CAS  Google Scholar 

  • McDowell EM, Nagle RB, Zalme RC, McNeil JS, Flamenbaum W, Trump BF (1976) Studies on the pathophysiology of acute renal failure. I. Correlation of ultrastructure and function in the proximal tubule of the rat following administration of mercuric chloride. Virchows Arch B Cell Pathol 22:173–196

    PubMed  CAS  Google Scholar 

  • McMurtry RJ, Mitchell JR (1977) Renal and hepatic necrosis after metabolic activation of 2-substituted furans and thiophenes, including furosemide and cephaloridine. Toxicol Appl Pharmacol 42:285–300

    Article  PubMed  CAS  Google Scholar 

  • McMurtry RJ, Snodgrass WR, Mitchell JR (1978) Renal necrosis, glutathione depletion, and covalent binding after acetaminophen. Toxicol Appl Pharmacol 46:87–100

    Article  PubMed  CAS  Google Scholar 

  • Merski JA (1981) Acute structural changes in renal tubular epithelium following administration of nitrilotriacetate. Food Cosmet Toxicol 19:463–470

    Article  PubMed  CAS  Google Scholar 

  • Murray SM (1979) The morphology of serotonin-induced renal lesions in the rat. J Pathol 128:203–211

    Article  PubMed  CAS  Google Scholar 

  • Nash JA, King LJ, Lock EA, Green T (1984) The metabolism and disposition of hexachloro-l,3-butadiene in the rat and its relevance to nephrotoxicity. Toxieol Appl Pharmacol 73:124–137

    Article  CAS  Google Scholar 

  • Newton JF, Pasino DA, Hook JB (1985) Acetaminophen nephrotoxicity: quantitation of renal metabolic activation in vivo. Toxicol Appl Pharmacol 78:39–46

    Article  PubMed  CAS  Google Scholar 

  • Nouwen EJ, Verstrepen WA, Buyssens N, Zhu MQ, De Broe ME (1994) Hyperplasia, hypertrophy and phenotypic alterations in the distal nephron after acute proximal tubular injury in the rat. Lab Invest 70:479–493

    PubMed  CAS  Google Scholar 

  • Oken DE, Landwehr DM, Kirschbaum BB (1982) The hemodynamic basis for experimental acute renal failure. In: Bach PH, Bonner FW, Bridges JW, Lock EA (eds) Nephrotoxicity: assessment and pathogenesis. Wiley, New York, pp 169–181

    Google Scholar 

  • Olbricht CHJ (1980) Experimental models of acute renal failure. Contrib Nephrol 19:110–123

    PubMed  CAS  Google Scholar 

  • Owen RA, Heywood R (1980) Renal toxicity of aspirin to rats pre-treated with ethinyl oestradiol. Toxicol Lett 5:169–174

    Article  Google Scholar 

  • Owen RA, Heywood R (1983) Age-related susceptibility to aspirin-induced nephrotoxicity in female rats. Toxicol Lett 18:167–170

    Article  PubMed  CAS  Google Scholar 

  • Patel R, McKenzie JK, McQueen EG (1964) Tamm-Horsfall urinary mucoprotein and tubular obstruction by casts in acute renal failure. Lancet 1:457–461

    Article  PubMed  CAS  Google Scholar 

  • Payne BJ, Rhodes DC (1978) The acute nephrotoxicity of gold sodium thiomalate. Vet Pathol 15 [Suppl 5]:5–8

    PubMed  CAS  Google Scholar 

  • Peterson DR, Carone FA (1979) Renal regeneration following D-serine induced acute tubular necrosis. Anat Rec 193:383–388

    Article  PubMed  CAS  Google Scholar 

  • Potter CL, Gandolfi AJ, Nagle R, Clayton JW (1981) Effects of inhaled chlorotrifluoroethylene and hexafluoropropene on the rat kidney. Toxicol Appl Pharmacol 59:431–440

    Article  PubMed  CAS  Google Scholar 

  • Reinhard MK, Hottendorf GH, Powell ED (1991) Differences in the sensitivity of Fischer and Sprague-Dawley rats to aminoglycoside nephrotoxicity. Toxicol Pathol 19:66–71

    PubMed  CAS  Google Scholar 

  • Robbins SL, Cotran RS, Kumar V (1984) Pathologic basis of disease. Saunders, Philadelphia, pp 1–39

    Google Scholar 

  • Rush GF, Smith JH, Newton JF, Hook JB (1984) Chemically induced nephrotoxicity: role of metabolic activation. CRC Crit Rev Toxicol 13:99–160

    Article  CAS  Google Scholar 

  • Schubert GE (1976) Folic acid-induced acute renal failure in the rat: morphological studies. Kidney Int 10:S46-S50

    Article  Google Scholar 

  • Shimizu A, Yamanaka N (1993) Apoptosis and cell desquamation in repair process of ischemic tubular necrosis. Virchows Arch B Cell Pathol 64:171–180

    Article  CAS  Google Scholar 

  • Soderlund E, Dybing E, Nelson SD (1980) Nephrotoxicity and hepatotoxicity of Tris (2,3-dibromopropyl) phosphate in the rat. Toxicol Appl Pharmacol 56:171–181

    Article  PubMed  CAS  Google Scholar 

  • Stein J (1982) Overview of pathophysiology of acute renal failure. In: Porter GA (ed) Nephrotoxic mechanisms of drugs and environmental toxins. Plenum, New York, pp 3–9

    Google Scholar 

  • Striker GE, Smuckler EA, Kohnen PW, Nagle RB (1968) Structural and functional changes in rat kidney during CCl4 intoxication. Am J Pathol 53:769–789

    PubMed  CAS  Google Scholar 

  • Tarloff JB, Goldstein RS, Morgan DG, Hook JB (1989) Acetaminophen and p-aminophenol nephrotoxicity in aging male Sprague-Dawley and Fischer 344 rats. Fundam Appl Toxicol 12:78–91

    Article  PubMed  CAS  Google Scholar 

  • Terracini B, Parker VH (1965) A pathological study on the toxicity of S-dichloro-vinyl-L-cysteine. Food Cosmet ToxicoI 3:67–74

    Article  CAS  Google Scholar 

  • Thelmo WL, Levine S (1978) Renal lesions induced by tilorone and an analog. Am J Pathol 91:355–360

    PubMed  CAS  Google Scholar 

  • Thomas BL, Faith GC (1979) Renal tubular necrosis following cephalothin. Nephron 23:205–209

    Article  PubMed  CAS  Google Scholar 

  • Trump BF (1995) Cell death is alive and well. Toxicol Pathol 23:617–621

    Article  PubMed  CAS  Google Scholar 

  • Trump BF, Berezesky IK, Osornio-Vargas AR (1981) Cell death and the disease process. The role of calcium. In: Bowen I, Lockshin RA (eds) Cell death in biology and pathology. Chapman and Hall, New York, pp 209–242

    Google Scholar 

  • Tune BM (1975) Relationship between the transport and toxicity of cephalosporins in the kidney. J Infect Dis 132:189–194

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG (1978) Ischemic damage and repair in the rat proximal tubule: differences among the S1, S2 and S3 segments. Kidney Int 14:31–49

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam MA, Kreisberg JI, Stein JH, Lifschitz MD (1983) Editorial: salvage of ischemic cells by impermeant solute and adenosine triphosphate. Lab Invest 49:1–3

    PubMed  CAS  Google Scholar 

  • Verani RR, Brewer ED, Ince A, Gibson J, Bulger RE (1982) Proximal tubular necrosis associated with maleic acid administration to the rat. Lab Invest 46:79–88

    PubMed  CAS  Google Scholar 

  • Wachsmuth ED, Thomann P (1982) Testing for renal tolerability: cefsulodin in rats and rabbits. In: Bach PH, Bonner FW, Bridges JW, Lock EA (eds) Nephrotoxicity: assessment and pathogenesis. Wiley, New York, pp 498–503

    Google Scholar 

  • Wedeen RP, Batuman V, Cheeks C, Marquet E, Sobel H (1983) Transport of gentamicin in rat proximal tubule. Lab Invest 48:212–223

    PubMed  CAS  Google Scholar 

  • Weinberg JM, Johnson KJ, de la Iglesia FA, Allen ED (1989) Acute alterations of tissue Ca++ and lethal tubular cell injury during HgCl2 nephrotoxicity in the rat. Toxicol Pathol 17:483–493

    PubMed  CAS  Google Scholar 

  • Whiting PH, Thomson AW, Blair JT, Simpson JG (1982) Experimental cyc1osporin A nephrotoxicity. Br J Exp Pathol 63:88–94

    PubMed  CAS  Google Scholar 

  • Wilks MF, Gregg NJ, Bach PH (1994) Metal accumulation and nephron heterogeneity in mercuric chloride-induced acute renal failure. Toxicol Pathol 22:282–290

    Article  PubMed  CAS  Google Scholar 

  • Zbinden G (1969) Experimental renal toxicity. In: Rouiller C, Muller AF (eds) The kidney: morphology, biochemistry, physiology. Academic, New York, pp 401–461

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Owen, R.A. (1986). Acute Tubular Lesions, Kidney, Rat. In: Jones, T.C., Hard, G.C., Mohr, U. (eds) Urinary System. Monographs on Pathology of Laboratory Animals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80335-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80335-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80337-6

  • Online ISBN: 978-3-642-80335-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics