Skip to main content

Structure—Activity Relationships for Contact Hypersensitivity

  • Chapter
Allergic Contact Dermatitis

Abstract

Allergic contact dermatitis is caused by chemicals. These chemicals stimulate the immune system to produce an inflammatory response in the skin, and it is this reaction which both typifies the disease and which has been used as an indicator system in traditional predictive models such as the guinea pig maximisation test (GPMT) [1]. However, since it is the chemical which is the driving force, it is reasonable to examine to what extent it is possible to relate chemical structure with the propensity to behave as a skin sensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kligman AM (1966) The identification of contact allergens by human assay. III. The maximization test: a procedure for screening and rating contact sensitizers. J Invest Dermatol 47:393–409

    PubMed  CAS  Google Scholar 

  2. Godfrey HP, Baer H, Watkins RC (1971) Delayed hypersensitivity to catechols. V. Absorption and distribution of substances related to poison ivy extracts and their relation to the induction of sensitization and tolerance. J Immunol 106:91–102

    PubMed  CAS  Google Scholar 

  3. Dupuis G, Benezra C (1982) Contact dermatitis to simple chemicals: a molecular approach. Dekker, New York

    Google Scholar 

  4. Basketter DA, Roberts DW (1990) A quantitative structure activity/dose relationship for contact allergic potential of alkyl group transfer agents. Toxicol In Vitro 4:686–687

    Article  PubMed  Google Scholar 

  5. Roberts DW, Williams DL (1982) The derivation of quantitative correlations between skin sensitization and physicochemical parameters for alkylating agents, and their application to experimental data for sultones. J Theoret Biol 99:807–825

    Article  CAS  Google Scholar 

  6. Goodwin B, Roberts DW (1986) Structure activity relationships in allergic contact dermatitis. Food Chem Toxicol 24:795–798

    Article  PubMed  CAS  Google Scholar 

  7. Barratt MD, Basketter DA, and Roberts DW (1994) Skin sensitization structure activity relationships for phenyl benzoates. Toxicol In Vitro 8:823–826

    Article  PubMed  CAS  Google Scholar 

  8. Basketter DA, Roberts DW, Cronin M, Scholes EW (1992) The value of the local lymph node assay in quantitative structure activity investigations. Contact Dermatitis 27:137–142

    Article  PubMed  CAS  Google Scholar 

  9. Flynn GL (1990) Physicochemical determinants of skin absorption. In: Gerrity TR, Henry CI (eds) Principles of route-to-route extrapolation for risk assessment. Elsevier, New York, pp 93–127

    Google Scholar 

  10. Konemann H (1981) Quantitative structure-activity relationships in fish toxicity studies: Part 1. Relationships for 50 industrial pollutants. Toxicology 19:209–221

    Article  PubMed  CAS  Google Scholar 

  11. Basketter DA, Gerberick GF, Kimber I, and Loveless SE (1996) The local lymph node assay - a viable alternative to currently accepted skin sensitization tests. Food Chem Toxicol (in press)

    Google Scholar 

  12. Wahlberg IE, Boman A (1985) Guinea pig maximization test. Curr Probl Dermatol 14:59–106

    PubMed  CAS  Google Scholar 

  13. Robinson MK, Nusair TL, Fletcher ER, Ritz HL (1990) A review of the Buehler guinea pig skin sensitisation test and its use in a risk assessment process for human skin sensitization. Toxicology 61:91–107

    Article  PubMed  CAS  Google Scholar 

  14. Botham PA, Basketter DA, Maurer T, Mueller D, Potokar M, Bontinck W (1991) Skin sensitisation - a critical review of predictive test methods in animals and man. Food Chem Toxicol 29:275–286

    Article  PubMed  CAS  Google Scholar 

  15. Andersen KE, Lund AV, Frankild S (1996) The guinea pig maximization test with a multiple dose design. Acta Derm Venereol 76:463–469

    Google Scholar 

  16. Basketter DA, Scholes EW, Kimber I (1994) Performance of the local lymph node assay with chemicals found identified as contact allergens in the human maximisation test. Food Chem Toxicol 32:543–547

    Article  PubMed  CAS  Google Scholar 

  17. Kimber I, Basketter DA (1992) The murine local lymph node assay: a commentary on collaborative studies and new directions. Food Chem Toxicol 30:165–169

    Article  PubMed  CAS  Google Scholar 

  18. Kimber I, Basketter DA (1996) Contact sensitization; a new approach to risk assessment. Hum Ecotoxicol Risk Assessment (submitted)

    Google Scholar 

  19. Leo AJ, Hansch C (1979) Substituent constants for correlation analysis in chemistry and biology. Wiley, New York

    Google Scholar 

  20. Goodwin BFI, Roberts DW, Williams DL, lohnson AW (1983) Skin sensitisation potential of saturated and unsaturated sultones. In: Gibson GG, Hubbard R, and Parke DV (eds) Immunotoxicology. Academic, London

    Google Scholar 

  21. Roberts DW, Williams DL (1983) Sultones as by-products in anionic surfactants. Tenside Detergents 20:109–111

    CAS  Google Scholar 

  22. Bjorkner B (1984) The sensitising capacity of multi-functional acrylates in the guinea pig. Contact Dermatitis 11:236–246

    Article  PubMed  CAS  Google Scholar 

  23. Roberts DW (1987) Structure activity relationship for skin sensitization potential of diacrylates and dimethacrylates. Contact Dermatitis 17:281–289

    Article  PubMed  CAS  Google Scholar 

  24. Baer H, Watkins RC, Kurtz AP, Byck IS, Dawson CR (1967) Delayed hypersensitivity to catechols. 3. The relationship of side-chain length to sensitising potency of catechols chemically related to the active principles of poison ivy. I Immunol 99:307–375

    Google Scholar 

  25. Baer H, Dawson CR, Kurtz AP (1968) Delayed contact hypersensitivity to catechols. IV Stereochemical conformation of the antigenic determinant.] Immunol 101:1243–1247

    CAS  Google Scholar 

  26. Roberts DW, Benezra C (1993) Quantitative structure-activity relationships for skin sensitisation potential of urushiol analogues. Contact Dermatitis 29:78–83

    Article  PubMed  CAS  Google Scholar 

  27. Roberts DW, Basketter DA (1990) A quantitative structure activity/dose response relationship for contact allergic potential of alkyl group transfer agents. Contact Dermatitis 23:331–335

    Article  PubMed  CAS  Google Scholar 

  28. Franot C, Benezra C, Lepoittevin J-P (1993) Synthesis and interaction studies of 13C labelled lactone derivatives with a model protein using 13C NMR. Bioorg Med Chem 1:389–397

    Article  PubMed  CAS  Google Scholar 

  29. Franot C, Roberts DW, Smith RG, Basketter DA, Benezra C, Lepoittevin J-P (1994) Structure activity relationships for contact allergenic potential of y,y-dimethyl- y-butyrolactone derivatives. 1. Synthesis and electrophilic reactivity studies of a-(<i)-substituted-alkyl)-y,y-dimethyl-y-butyrolactones and correlation of skin sensitization potential and cross-sensitization patterns with structure. Chem Res Toxicol 7:297–306

    Article  PubMed  CAS  Google Scholar 

  30. Franot C, Roberts DW, Basketter DA, Benezra C, Lepoittevin J-P (1994) Structure activity relationships for contact allergenic potential of y,y-dimethyl-y-butyrolactone derivatives. 2. Quantitative structure-skin sensitization relationship for a-(ft)-substituted-alkyl)- y,y-dimethyl-y-butyrolactones. Chem Res Toxicol 7:307–312

    Article  PubMed  CAS  Google Scholar 

  31. Loveless SE, Ladies GS, Gerberick GF, Ryan CA, Basketter DA, Scholes EW, House RV, Hilton J, Dearman RJ, Kimber I (1996) Further evaluation of the local lymph node assay in the final phase of an international collaborative trial. Toxicology 108:141–152

    Article  PubMed  CAS  Google Scholar 

  32. Goodwin BFJ, Johnson AW (1985) Single injection adjuvant test. Curr Probl Dermatol 14:201–207

    PubMed  CAS  Google Scholar 

  33. Roberts DW, Marshall SJ (1995) Applications of hydrophobicity parameters to prediction of the acute aquatic toxicity of commercial surfactant mixtures. SAR QSAR Environ Res 4:167–176

    Article  CAS  Google Scholar 

  34. Landsteiner K, Jacobs JL (1936) Studies on the sensitization of animals with simple chemicals III. J Exp Med 64:625–639

    Article  PubMed  CAS  Google Scholar 

  35. Roberts DW (1995) Linear free energy relationships for reactions of electrophilic halo- and pseudohalobenzenes and their application in prediction of skin sensitisation potential for SNAr electrophiles. Chem Res Toxicol 8:545–551

    Article  PubMed  CAS  Google Scholar 

  36. Perrin DD, Dempsey B, Serjeant EP (1981) pKa prediction for organic acids and bases. Chapman and Hall, London

    Google Scholar 

  37. Cronin MTD, Basketter DA (1994) Multivariate QSAR analysis of a skin sensitization database, SAR and QSAR. Environ Res 2:159–179

    Google Scholar 

  38. Magee PS, Hostynek JJ, Maibach HI (1994) A classification model for allergic contact dermatitis. Quantitative Structure-Activity Relationships 13:22–33

    CAS  Google Scholar 

  39. Sanderson DM, Earnshaw CG (1991) Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum Exp Toxicol 10:261–273

    Article  PubMed  CAS  Google Scholar 

  40. EEC (1983) EEC Commission Directive of 29 July 1983 adapting to technical progress for the fifth time. Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. (Annex V). Official Journal of the European Communities L257:1

    Google Scholar 

  41. Barratt MD, Basketter DA, Chamberlain M, Admans GD, Langowski J J (1994) An expert system rulebase for identifying contact allergens. Toxicol In Vitro 8:1053–1060

    Article  PubMed  CAS  Google Scholar 

  42. Barratt MD, Langowski J J (1997) Validation and subsequent development of the DEREK skin sensitization rulebase by analysis of the BgVV list of contact allergens, (manuscript in preparation)

    Google Scholar 

  43. Karlberg A-T (1991) Air oxidation increases the allergic potential of Tall Oil Rosin. Colophony contact allergens also identified in Tall Oil Rosin. Am J Contact Dermatitis 2:43–49

    Google Scholar 

  44. Basketter DA (1992) Skin sensitization to cinnamic alcohol: the role of skin metabolism. Acta Dermatol Venereol 72:264–265

    CAS  Google Scholar 

  45. Potts RO, Guy R (1992) Predicting skin permeability. Pharmaceut Res 9:663–669

    Article  CAS  Google Scholar 

  46. Barratt MD (1995) Quantitative structure activity relationships for skin permeability. Toxicol In Vitro 9:27–37

    Article  PubMed  CAS  Google Scholar 

  47. Suzuki T (1991) Development of an automated system for both partition coefficient and aqueous solubility. J Computer-Aided Mol Design 5:149–166

    Article  CAS  Google Scholar 

  48. Hinz RS, Lorence CR, Hodson CD, Hansch C, Hall LL, Guy RH (1991) Percutaneous penetration of para-substituted phenols in vitro. Fundam Appl Toxicol 17:575–583

    Article  PubMed  CAS  Google Scholar 

  49. Ashby J, Hilton J, Dearman RJ, Callander RD, Kimber I (1993) Mechanistic relationship among mutagenicity, skin sensitization and skin carcinogenicity. Environ Health Perspect 101:62–67

    Article  PubMed  CAS  Google Scholar 

  50. Ashby J, Hilton J, Dearman RJ, Kimber I (1995) Streptozotocin: inherent but not expressed skin sensitizing activity. Contact Dermatitis 33:165–167

    Article  PubMed  CAS  Google Scholar 

  51. EU (1993) Council Directive 92/32/EEC. 7th Amendment to Directive 67/548/EEC. Official Journal of the European Communities 35, LI54

    Google Scholar 

  52. Barratt MD, Basketter DA (1994) Structure-activity relationships for skin sensitization: an expert system. In: Rougier A, Goldberg AM, Maibach HI (eds) In vitro toxicology. Liebert, New York, pp 293–301

    Google Scholar 

  53. Basketter DA, Scholes EW, Chamberlain M, Barratt MD (1995) An alternative strategy to the use of guinea pigs for the identification of skin sensitization hazard. Food Chem Toxicol 33:1051–1056

    Article  PubMed  CAS  Google Scholar 

  54. Kimber I, Basketter DA, Briatico-Vangosa G, Cookman G, Evans P, Loveless S, Pauluhn I (1997) ECETOC Technical Report. Skin and Respiratory Sensitisers, Reference Chemicals Data Bank 1997

    Google Scholar 

  55. Angelini G, Foti C, Rigano L, Vena GA (1995) 3-Dimethylaminopropylamine: a key substance in contact allergy to cocamidopropylbetaine? Contact Dermatitis 32:96–99

    Google Scholar 

  56. Kimber I, Dearman RJ, Scholes EW, Basketter DA (1994) The local lymph node assay: developments and applications. Toxicology 93:13–31

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barratt, M.D., Basketter, D.A., Roberts, D.W. (1998). Structure—Activity Relationships for Contact Hypersensitivity. In: Lepoittevin, JP., Basketter, D.A., Goossens, A., Karlberg, AT. (eds) Allergic Contact Dermatitis. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80331-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80331-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80333-8

  • Online ISBN: 978-3-642-80331-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics