Skip to main content

Comparative Strategies of Subependymal Neurogenesis in the Adult Forebrain

  • Conference paper
Isolation, Characterization and Utilization of CNS Stem Cells

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

Summary

Neuronal precursor cells persist in the forebrain of a wide variety of adult vertebrates, and have been found in cultures derived from fish, birds, rodents and humans. These cells reside within the peri-ventricular ependymal/subependymal zone (SZ), rather than the brain parenchyma. In vivo, these precursors may generate neurons that are recruited to restricted regions, such as the avian neostriatum and mammalian olfactory bulb. In the neurogenic songbird vocal control region, the higher vocal center (HVC), the survival of new neuronal daughter cells is dictated by the environment into which they migrate; both humoral and contact-mediated signals modulate neuronal survival, and these signals are themselves modulated by serum-borne gonadal steroids. In tissue cultures of the adult mammalian SZ, neuronal precursor cells have similarly been found to be widely distributed, and more so than suggested by the limited distribution of actual neurogenesis in vivo. In the adult rat brain, neurons arise from SZ explants derived from much of the lateral ventricular system, including a wide area not known to generate neurons in vivo. In primates, although the postnatal forebrain SZ largely ceases neurogenesis in vivo, it too retains the capacity for neuronal production in vitro, as demonstrated in explants of adult human temporal lobe SZ. The in vitro survival of newly generated neurons is regulated in part by two members of the neurotrophin family, BDNF and NT-4. BDNF in particular may modulate both neuronal specification and survival, in a dose- dependent fashion. Together, these findings suggest the persistence into adulthood of a relatively widespread pool of SZ progenitor cells that remain neurogenic in selected regions but more generally become vestigial, perhaps as a result of the loss of permissive signals for daughter cell migration and/or survival in the local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altman J, Das G (1996) Autoradiographic and histological studies of postnatal neurogenesis. J Comp Neurol 126:337–390.

    Article  Google Scholar 

  • Alvarez-Buylla A, Nottebohm F (1988) Migration of young neurons in adult avian brain. Nature 335:353–4.

    Article  PubMed  CAS  Google Scholar 

  • Alvarez-Buylla A, Theelan M, Nottebohm F (1990) Proliferation hot spots in adult avian ventricular zone reveal radial cell division. Neuron 5:101–109.

    Article  PubMed  CAS  Google Scholar 

  • Anderson M, Waxman S (1985) Neurogenesis in tissue cultures of adult teleost spinal cord. Dev Brain Res 20: 203–212.

    Article  Google Scholar 

  • Armstrong R, Dorn H, Kufta C, Friedman E, Dubois-Dalcq M (1992) Pre-oligodendrocytes from adult human CNS. J Neurosci 12:1538–47.

    PubMed  CAS  Google Scholar 

  • Barakat I, Courageot J, Devilliers G, Sensenbrenner M (1984) Effects of chick brain extract on the proliferation of chick neuroblasts cultured in media supplemented with low and high serum concentrations. Neurochem Res 9:263–272.

    Article  PubMed  CAS  Google Scholar 

  • Barami K, Lemmon V, Goldman S (1994) N-cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult avian forebrain. Neuron 13:567–582.

    Article  PubMed  CAS  Google Scholar 

  • Barami K, Iversen K, Furneaux H, Goldman S (1995a) Early expression of the HuD protein by newly generated neurons of the adult avian forebrain. J Neurobiol 28:82–101.

    Article  PubMed  CAS  Google Scholar 

  • Barami K, Kirschenbaum B, Nedergaard M, Goldman S (1995b) Oligodendrocytic production by explants of the adult mammalian subventricular zone. Soc Neurosci Abstr 317.14.

    Google Scholar 

  • Barsal R, Warrington A, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies 01, 04, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24:548–557

    Article  Google Scholar 

  • Bayer S, Yackel J, Puri P (1982) Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science 1982; 216:890–92.

    Article  Google Scholar 

  • Bernhardt R, Matus A (1985) Differences in the developmental patterns of three microtubule associated proteins in the rat cerebellum. J Neurosci 5:977–991.

    PubMed  CAS  Google Scholar 

  • Bignami A, Dahl D, Seiler M (1980) Neurofilaments in the chick embryo during early development. Dev Neurosci 3:151–161.

    Article  PubMed  CAS  Google Scholar 

  • Birse S, Leonard R, Coggeshall R (1980) Neuronal increase in various regions of the nervous system of the guppy, Lebistes. J Comp Neurol 194:291–301.

    Article  PubMed  CAS  Google Scholar 

  • Brown S, Johnson F, Bottjer S (1993) Neurogenesis in adult canary telencephalon is idependent of gonadal hormone levels. J Neurosci 13:2024–2032.

    PubMed  CAS  Google Scholar 

  • Clarke S, Shetty A, Bradley J, Turner D (1994) Reactive astrocytes express the embryonic intermediate neurofilament nestin. NeuroReport 5:1885–1888.

    CAS  Google Scholar 

  • Corotto F, Henegar J, Maruniak J (1993) Neurogenesis persists in the subependymal layer of the adult mouse brain. Neurosci Lett 149:111–114.

    Article  PubMed  CAS  Google Scholar 

  • Davis A, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 373:263–266

    Article  Google Scholar 

  • Fatatis A, Russell J (1992) Spontaneous changes in intracellular calcium concentration in type 1 astrocytes from rat cerebral cortex in primary culture. Glia 5:95–104.

    Article  PubMed  CAS  Google Scholar 

  • Federoff S, Krukoff T, Fisher K (1982) The development of chick spinal cord in tissue culture: Neuronal precursor cells in culture. In Vitro 18:183–194.

    Article  Google Scholar 

  • Fredericksen K, McKay R (1988) Proliferation and differentiation of rat neuroepithelial precursor cells in vivo. J Neurosci 8:1144–1151.

    Google Scholar 

  • Gahr M (1990) Delineation of a brain nucleus: Comparisons of cytochemical, hodological, and cyto- architectural views of the song control nucleus HVC of the adult canary. J Comp Neurol 294:30–36.

    Article  PubMed  CAS  Google Scholar 

  • Gensburger C, Labourdette G, Sensenbrenner M (1981) Brain bFGF stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett 217:1–5.

    Article  Google Scholar 

  • Ghosh A, Greenberg M (1995) Distinct roles for bFGF and NT3 in the regulation of cortical neurogenesis. Neuron 15:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Glass D, Yancopoulos G (1993) The neurotrophins and their receptors. Trends Cell Biol 3:262–268.

    Article  PubMed  CAS  Google Scholar 

  • Goldman S (1990) Neuronal development and migration in explant cultures of the adult canary forebrain. J Neurosci 10:2931–2939.

    PubMed  CAS  Google Scholar 

  • Goldman S, Nottebohm F (1983) Neuronal production, migration and differentiation in a vocal control nucleus of the adult female canary brain. Proc Natl Acad Sci USA 80:2390–2394.

    Article  PubMed  CAS  Google Scholar 

  • Goldman S, Kirschenbaum B (1995) NT-4, like BDNF, supports the survival of new neurons arising from the adult rat subventricular zone. Soc Neurosci Abstr 317.7.

    Google Scholar 

  • Goldman S, Kirschenbaum B, Harrison C, Thaler H (1996c) Neuronal precusor cells of the adult rat ventricular zone persist into senescence, with no decline in spatial extent or BDNF responsiveness. J Neurobiol, in press.

    Google Scholar 

  • Goldman S, Nedergaard M (1992) Newly generated neurons of the adult songbird brain form functionally active networks in culture. Dev Brain Res 68:217–223.

    Article  CAS  Google Scholar 

  • Goldman S, Zaremba A, Niedzwiecki D (1992) In vitro neurogenesis from neuronal precursor cells derived from adult avian brain. J Neurosc 12:2532–2541.

    CAS  Google Scholar 

  • Goldman S, Chin S, Lemmon V (1993) Migration of newly generated neurons upon ependymally- derived radial guide cells in explant cultures of the adult avian forebrain. Glia 8:150–160.

    Article  PubMed  CAS  Google Scholar 

  • Goldman S, Williams S, Barami K, Lemmon V, Nedergaard M (1996b) Transient coupling of NgCAM expression to NgCAM-dependent calcium signaling during migration of new neurons in the adult songbird brain. Mol Cell Neurosci 7:29–45.

    Article  PubMed  CAS  Google Scholar 

  • Goldman S, Zukhar A, Barami K, Mikawa T, Niedzwiecki D (1996a) Ependymal/subependymal zone cells of the postnatal and adult songbird brain generate both neurons and non-neuronal siblings in vitro and in vivo. J Neurobiol 30:505–520.

    Article  PubMed  CAS  Google Scholar 

  • Gray G, Sanes J (1992) Lineage of radial glia in the chicken optic tectum. Development 114:271–283.

    PubMed  CAS  Google Scholar 

  • Hidalgo A, Iversen K, Barami K, Goldman S (1995) Neurogenesis in the adult female canary brain is ovarian suppressed but independent of estrogen. J Neurobiol 27:470–487.

    Article  PubMed  CAS  Google Scholar 

  • Hofer M, Pagliusi S, Hohn A, Leibrock J, Barde Y (1990) Regional distribution of brain derived neurotrophic factor mRNA in the adult mouse brain. EMBO J 9:2459–2464.

    PubMed  CAS  Google Scholar 

  • Hogue M (1953) A study of adult human brain cells in tissue culture. Am J Anat 93:397–427.

    Article  PubMed  CAS  Google Scholar 

  • Howe J, Ritchie M (1990) Sodium currents in Schwann cells from myelinated and non-myelinated nerves of neonatal and adult rats. J Physiol (Lond) 925:169–210.

    Google Scholar 

  • Kaplan M (1983) Proliferation of subependymal cells in the adult primate CNS: Differential uptake of thymidine by DNA-labeled precursors. J Hirnforsch 23:23–33.

    Google Scholar 

  • Kaplan M, Hinds J (1977) Neurogenesis in the adult rat: Electron microscopic analysis of radioauto-graphs. Science 197:1092–4.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan M, McNelly N, Hinds J (1985) Population dynamics of adult-formed granule neurons of the rat olfactory bulb. J Comp Neurol 239:117–125.

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Warren K, Kalia M (1979) Tissue culture of adult human neurons. Neurosci. Lett. 11:137–141.

    Article  PubMed  CAS  Google Scholar 

  • Kirschenbaum B, Goldman S (1995) BDNF promotes the survival of neurons arising from the adult rat forebrain subependymal zone. Proc Natl Acad Sci USA 92:210–214.

    Article  PubMed  CAS  Google Scholar 

  • Kirschenbaum B, Nedergaard M, Preuss A, Barami K, Fraser R, Goldman S (1994) In vitro neuronal production by precursor cells derived from the adult human brain. Cereb Cortex 4:576–589.

    Article  PubMed  CAS  Google Scholar 

  • Korr H (1980) Proliferation of different cell types in the brain. Adv. Anat. Embryol Cell Biol. 61:1–72.

    Article  PubMed  CAS  Google Scholar 

  • Kriegstein A, Dichter M (1984) Neuron generation in dissociated cell cultures from fetal rat cerebral cortex. Brain Res 295:184–189.

    Article  PubMed  CAS  Google Scholar 

  • Leonard R, Coggeshall R, Willis W (1978) A documentation of an age-related increase in neuronal and axonal numbers in the stingray. J Comp Neurol 179:13–22.

    Article  PubMed  CAS  Google Scholar 

  • Lindsay R, Wiegand S, Altar A, DiStefano P (1994) Neurotrophic factors: from molecule to man. Trends Neurosci 17:182–90.

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1993) Proliferating subventricular zone cells in the adult mammalian fore- brain can differentiate into neurons and glia. Proc Natl Acad Sci USA 90:2074–2077.

    Article  PubMed  CAS  Google Scholar 

  • Lois C, Alvarez-Buylla A (1994) Long distance neuronal migration in the adult mammalian brain. Science 1145–1148.

    Google Scholar 

  • Lopez-Garcia C, Molowny A, Garcia-Verdugo I (1988) Delayed postnatal neurogenesis in the cerebral cortex of lizards. Dev Brain Res 43:167–174.

    Article  Google Scholar 

  • Luskin M (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173–189.

    Article  PubMed  CAS  Google Scholar 

  • Luskin M, Pearlman A, Sanes J (1988) Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1:635–647

    Article  PubMed  CAS  Google Scholar 

  • Marusich M, Weston J (1992) Identification of early neurogenic cells in the neural crest lineage. Dev. Biol 149:295–306.

    Article  PubMed  CAS  Google Scholar 

  • Marusich M, Furneaux H, Henion P, Weston J (1994) Hu neuronal proteins are expressed in proliferating neurogenic cells. J Neurobiol 25:143–155.

    Article  PubMed  CAS  Google Scholar 

  • McDermott K, Lantos P (1990) Cell proliferation in the subependymal layer of the postnatal marmoset, Callithrix jacchus. Dev Brain Res 57:269–277.

    Article  CAS  Google Scholar 

  • Mikawa T, Fischman D, Dougherty J, Brown A (1991) In vivo analysis of a new lacZ retrovirus vector suitable for cell lineage marking in avian and other species. Exp Cell Res 195.

    Google Scholar 

  • Morshead C, van der Kooy D (1992) Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J Neurosci 12:249–256.

    PubMed  CAS  Google Scholar 

  • Morshead C, Reynolds B, Craig C, McBurney M, Staines W, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells of the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082.

    Article  PubMed  CAS  Google Scholar 

  • Nordlander R, Singer M (1978) The role of the ependyma in regeneration of the spinal cord in the uro- dele amphibian tail. J Comp Neurol 180:349–374.

    Article  PubMed  CAS  Google Scholar 

  • Rakic P (1985) Limits of neurogenesis in primates. Science 227:154–156.

    Article  Google Scholar 

  • Rasika S, Nottebohm F, Alvarez-Buylla A (1994) Testosterone increases the recruitment and/or survival of new high vocal center neurons in adult female canaries. Proc Natl Acad Sci USA 91:7854–7858.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds B, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710.

    Article  PubMed  CAS  Google Scholar 

  • Richards L, Kilpatrick T, Bartlett P (1992) De nova generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89:8591–8595.

    Article  PubMed  CAS  Google Scholar 

  • Robinow S, White K (1988) The locus elav of Drosophila is expressed in neurons at all developmental stages. Dev Biol 126:294–303.

    Article  PubMed  CAS  Google Scholar 

  • Robinow S, Campos A, Yao K, White K (1988) The elav gene product of Drosophila, required in neurons, has three RNP consensus motifs. Science 242:1570–1572.

    Article  PubMed  CAS  Google Scholar 

  • Ronnett G, Hester L, Nye J, Connors K, Snyder S (1990) Human cortical neuronal cell line: establishment from a patient with unilateral megalencephaly. Science 248:603–605.

    Article  PubMed  CAS  Google Scholar 

  • Schlinger B, Arnold A (1991) Brain is the major site of estrogen synthesis in a male songbird. Proc Natl Acad Sci USA 88:4191–4194.

    Article  PubMed  CAS  Google Scholar 

  • Scolding N, Rayner P, Sussman J, Shaw C, Compston D (1995) A proliferative adult human oligodendrocyte progenitor. NeuroReport 6:441–445.

    Article  PubMed  CAS  Google Scholar 

  • Smart I (1961) The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine injection. J Comp Neurol 116:325–347.

    Article  Google Scholar 

  • Sohrabji F, Miranda R, Toran-Allerand CD (1994) Estrogen differentially regulates estrogen and nerve growth factor mRNAs in adult sensory neurons. J Neurosci 14:459–471.

    PubMed  CAS  Google Scholar 

  • Sturrock R (1982) Cell division in the normal central nervous system. Adv Cell Neurobiol 3:1–33.

    Google Scholar 

  • Szabo A, Dalmau J, Manley G, Rosenfeld M, Wong E, Henson J, Posner J, Furneaux H (1991) HuD, a paraneoplastic encephalomyelitis antigen, contains RNA-binding domains and is homologous to elav and sex-lethal. Cell 67:325–333.

    Article  PubMed  CAS  Google Scholar 

  • Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–473.

    Article  PubMed  CAS  Google Scholar 

  • Turner D, Cepko C (1981) A common progenitor cell for neurons and glia persists in rat retina late in development. Nature 328:131–133.

    Article  Google Scholar 

  • Vicario-Abejon C, Johe K, Hazel T, Collazo D, McKay R (1995) Functions of fibroblast growth factor and neurotrophins in the differentiation of hippocampal neurons. Neuron 15:105–114.

    Article  PubMed  CAS  Google Scholar 

  • Waxman S, Anderson M (1985) Generation of electromotor neurons in Stenarchus albifrons: Differences between normally growing and regenerating spinal cord. Dev Biol 112:338–344.

    Article  PubMed  CAS  Google Scholar 

  • Williams B, Read J, Price J (1991) The generation of neurons and oligodendrocytes from a common precursor cell. Neuron 7:685–693.

    Article  PubMed  CAS  Google Scholar 

  • Williams S, Barami K, Lemmon V, Nedergaard N, Goldman S (1996) Estrogen regulates the coupling of NgCAM expression to calcium signaling pathways during neuronal migration in the adult songbird brain. J Neurosci, in press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goldman, S.A. (1997). Comparative Strategies of Subependymal Neurogenesis in the Adult Forebrain. In: Gage, F.H., Christen, Y. (eds) Isolation, Characterization and Utilization of CNS Stem Cells. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80308-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80308-6_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80310-9

  • Online ISBN: 978-3-642-80308-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics