Skip to main content

NRSF: A Coordinate Repressor of Neuron-Specific Genes Expressed in CNS Neural Progenitor Cells

  • Conference paper
Isolation, Characterization and Utilization of CNS Stem Cells

Part of the book series: Research and Perspectives in Neurosciences ((NEUROSCIENCE))

  • 90 Accesses

Summary

We have isolated cDNA clones encoding a novel zinc finger protein that silences neuron-specific gene expression, called the neuron-restrictive silencer factor (NRSF). NRSF binds a DNA sequence element called the neuron-restrictive silencer element (NRSE) that functions to repress neuronal genes in non-neuronal cells. Consensus NRSEs have been identified in at least 17 neuron-specific genes. Cloned NRSF can bind to multiple NRSEs and represses transcription in an NRSE-dependent manner. Expression of NRSF mRNA is detected in most non-neuronal tissues at several developmental stages. In the nervous system, NRSF mRNA is expressed in undifferentiated CNS neural progenitors but not in mature neurons. NRSF represents the first example of a vertebrate silencer protein that coordinately regulates a battery of cell type-specific genes. During development, NRSF may function as a master negative regulator of neuronal determination or differentiation in CNS stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referenes

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.

    PubMed  CAS  Google Scholar 

  • Anderson DJ, Axel R (1985) Molecular probes for the development and plasticity of neural crest derivatives. Cell 42:649–662.

    Article  PubMed  CAS  Google Scholar 

  • Birren SJ, Anderson DJ (1990) A v-myc-immortalized sympathoadrenal progenitor cell line in which neuronal differentiation is initiated by FGF but not NGF. Neuron 4:189–201.

    Article  PubMed  CAS  Google Scholar 

  • Brand AH, Breeden L, Abraham J, Sternglanz R, Nasmyth K (1985) Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41: 41–48.

    Article  PubMed  CAS  Google Scholar 

  • Camper SA, Tilghman SM (1989). Postnatal repression of the a-fetoprotein gene is enhancer- dependent. Genes Dev 3:537–546.

    Article  PubMed  CAS  Google Scholar 

  • Chong JA, Tapia-Ramirez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, Altshuller, YM, Frohman MA, Kraner SD, Mandel G (1995) REST: A mammalian silencer protein that restricts sodium channel expression to neurons. Cell 80:949–957.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran LM, Karvelas M, Nossal GJV, Ye ZS, Jacks T, Baltimore D (1993). Oct-2, although not required for early B-cell development, is critical for later B-cell maturation and for postnatal survival. Genes Devel 7:570–582.

    Article  PubMed  CAS  Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73:2424–2428.

    Article  PubMed  CAS  Google Scholar 

  • He X, Rosenfeld MG (1991) Mechanisms of complex transcriptional regulation: implications for brain development. Neuron 7:183–196.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Kelly OG, Melton DA (1994) Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77:283–295.

    Article  PubMed  CAS  Google Scholar 

  • Hemmati-Brivanlou A, Melton DA (1994) Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77:273–281.

    Article  PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization, in yeast. Nature 342:749–757.

    Article  PubMed  CAS  Google Scholar 

  • Johnson PF, McKnight SL (1989). Eukaryotic transcriptional regulatory proteins. Annu Rev Biochem 58:799–839.

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Fischer WH, Schubert D (1990). Structure, expression and function of a schwannoma- derived growth factor. Nature 348:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Kraner SD, Chong JA, Tsay HJ, Mandel G (1992). Silencing the type II sodium channel gene: a model for neural-specific gene regulation. Neuron 9:37–44.

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Huber J, Pena LA, Perez-Polo JR, Werrbach-Perez K, de Vellis J (1990) Characterization of functional nerve growth factor receptor in a CNS glial cell line: Monoclonal antibody 217c recognizes the nerve growth factor-receptor on C6 glioma. J Neurosci Res 27:408–417.

    Article  PubMed  CAS  Google Scholar 

  • Lamarco K, Thompson CC, Byers BP, Walton EM, McKnight SL (1991). Identification of ETS-related and Notch-related subunits in GA binding protein. Science 253:789–792.

    Article  PubMed  CAS  Google Scholar 

  • Leber SM, Breedlove SM, Sanes JR (1990). Lineage, arrangement, and death of clonally related motor-neurons in chick spinal cord. J Neurosci 10:2451–2462.

    PubMed  CAS  Google Scholar 

  • Li L, Suzuki T, Mori N, Greengard P (1993). Identification of a functional silencer element involved in neuron-specific expression of the synapsin I gene. Proc Natl Acad Sci USA 90:1460–1464.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Crenshaw EB, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990a). Dwarf locus mutant lacking 3 pituitary cell-types result from mutations in the POU-domain gene Pit-1. Nature 347:528–533.

    Article  PubMed  CAS  Google Scholar 

  • Li S, Crenshaw EBI, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990b). Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347:528–533.

    Article  PubMed  CAS  Google Scholar 

  • Lo LC, Birren SJ, Anderson DJ (1990) V-myc immortalization of early rat neural crest cells yields a clonal cell line which generates both glial and adrenergic progenitor cells. Devel Biol 145:139–153.

    Google Scholar 

  • Maniatis T, Goodbourn S, Fischer JA (1987). Regulation of inducible and tissue-specific gene expression. Science 236:1237–1245.

    Article  PubMed  CAS  Google Scholar 

  • Maue RA, Kraner SD, Goodman RH, Mandel G (1990). Neuron-specific expression of the rat brain type II sodium channel gene is directed by upstream regulatory elements. Neuron 4:223–231.

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK (1991) The generation of neuronal diversity in the central nervous system. Ann Rev Neurosci 14:269–300.

    Article  PubMed  CAS  Google Scholar 

  • McKay RDG (1989) The origins of cellular diversity in the mammalian central nervous system. Cell 58:815–821.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P, Tjian R (1989). Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Stein R, Sigmund O, Anderson DJ (1990) A cell type-preferred silencer element that controls the neural-specific expression of the SCG10 gene. Neuron 4:583–594.

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Schoenherr C, Vandenbergh DJ, Anderson DJ (1992). A common silencer element in the SCG10 and type II Na+ channel genes binds a factor present in nonneuronal cells but not in neuronal cells. Neuron 9:1–10.

    Article  Google Scholar 

  • Paro R (1990). Imprinting a determined state into the chromatin of Drosophila. Trends Genet 6:416–421.

    Article  PubMed  CAS  Google Scholar 

  • Pathak BG, Neumann JC, Croyle ML, Lingrel JB (1994) The presence of both negative and positive elements in the 5’-flanking sequence of the rat Na, K-ATPasea3 subunit gene are required for brain expression in transgenic mice. Nucl Acids Res 22:4748–4755.

    Article  PubMed  CAS  Google Scholar 

  • Pevny L, Simon MC, Robertson E, Klein WH, Tsai SF, Dagati V, Orkin SH, Costantini F (1991). Erythroid-differentiation in chimeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257–260.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer SE, Betschart B, Cook J, Mancini PE, Morris RJ (1978). Glial cell lines. In: Federoff, S., Hertz, L. (eds) Glial cell lines. Academic Press. New York, 287–346

    Google Scholar 

  • Ruppert JM, Kinzler KW, Wong AJ, Bigner SH, Kao FT, Law ML, Seuanez HN, O’Brian SJ, Vogelstein B (1988). The GLI-Kruppel family of human genes. Mol Cell Biol 8:3104–3113.

    PubMed  CAS  Google Scholar 

  • Sanes JR (1989). Analysing cell lineage with a recombinant retrovirus. Trends Neurosci 12:21–28.

    Article  PubMed  CAS  Google Scholar 

  • Savagner P, Miyashita T, Yamada Y (1990). Two silencers regulate the tissue-specific expression of the collagen II gene. J Biol Chem 265:6669–6674.

    PubMed  CAS  Google Scholar 

  • Sawada S, Scarborough JD, Killeen N, Littman DR (1994). A lineage-specific transcriptional silencer regulates CD4 gene expression during T lymphocyte development. Cell 77:917–929.

    Article  PubMed  CAS  Google Scholar 

  • Schuh R, Aicher W, Gaul U, Cote S, Preiss A, Maier D, Siefert E, Nauber U, Schroder C, Jackie H (1986). A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell 47:1025–1032.

    Article  PubMed  CAS  Google Scholar 

  • Shen R, Goswami SK, Mascareno E, Kumar A, Siddiqui MAQ (1991). Tissue-specific transcription of the cardiac myosin light-chain 2 gene is regulated by an upstream repressor element. Mol Cell Biol 11:1676–1685.

    PubMed  CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990). The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Shubart UK, Banerjee MD, Eng J (1989). Homology between the cDNAs encoding phosphoprotein pl9 and SCG10 reveals a novel mammalian gene family preferentially expressed in developing brain. DNA 8:389–398.

    Article  Google Scholar 

  • Singh H, LeBowitz JH, Baldwin Jr AS, Sharp PA (1988). Molecular chloning of an enhancer binding protein: isolation by screening of an expression library with a recognition site DNA. Cell 52:415–423.

    Article  PubMed  CAS  Google Scholar 

  • Stein R, Mori N, Matthews K, Lo LC, Anderson DJ (1988). The NGF-inducible SCG10 mRNA encodes a novel membrane-bound protein present in growth cones and abundant in developing neurons. Neuron 1:463–476.

    Article  PubMed  CAS  Google Scholar 

  • Timmusk T, Palm K, Metsis M, Reintam T, Paalme V, Saarma M, Persson H (1993). Multiple promoters direct tissue-specific expression of the rat BDNF gene. Neuron 10:475–489.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbergh DJ, Wuenschell CW, Mori N, Anderson DJ (1989). Chromatin structure as a molecular marker of cell lineage and developmental potential in neural crest-derived chromaffin cells. Neuron 3:507–518.

    Article  PubMed  CAS  Google Scholar 

  • Vinson CR, LaMarco KL, Johnson PF, Landschulz WH, McKnight SL (1988). In situ detection of sequence-specific DNA binding activity specified by a recombinant bacteriophage. Genes Devel 2:801–806.

    Article  PubMed  CAS  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S, Zhuang Y, Lassar A (1991). The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766.

    Article  PubMed  CAS  Google Scholar 

  • Winoto A, Baltimore D (1989) ap lineage-specific expression of the a T cell receptor gene by nearby silencers. Cell 59:649–665.

    Google Scholar 

  • Wuenschell CW, Mori N, Anderson DJ (1990). Analysis of SCG10 gene expression in transgenic mice reveals that neural specificity is achieved through selective derepression. Neuron 4:595–602.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schoenherr, C.J., Anderson, D.J. (1997). NRSF: A Coordinate Repressor of Neuron-Specific Genes Expressed in CNS Neural Progenitor Cells. In: Gage, F.H., Christen, Y. (eds) Isolation, Characterization and Utilization of CNS Stem Cells. Research and Perspectives in Neurosciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80308-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80308-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80310-9

  • Online ISBN: 978-3-642-80308-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics