Skip to main content

Modelling the Formation of N2O and NO2 in the Thermal De-NOx Process

  • Conference paper
Gas Phase Chemical Reaction Systems

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 61))

Abstract

We have formulated a chemical kinetic model for the Thermal De-NOx process that satisfactorily predicts the NO removed and the N2O and NO2 produced by the process over a range of temperatures and initial oxygen concentrations. The new feature of the mechanism is that NO2 appears as an essential intermediate in the reaction scheme. It is formed as a consequence of NNH reacting with molecular oxygen,

$$ \rm NNH+O_2\leftrightarrow N_2+HO_2 $$
$$ \rm HO_2+NO\leftrightarrow NO_2+OH, $$

and is converted back to NO by

$$ \rm NH_2+NO_2\leftrightarrow H_2NO+NO, $$

followed by H2NO ↔ HNO ↔ NO. Nitrous oxide is produced by two different reactions,

$$ \rm NH_2+NO_2\leftrightarrow N_2O+H_2O $$
$$ {\rm and}\ \ \ \ \ \ \ \ \rm NH+NO\leftrightarrow N_2O+H. $$

The first is the primary source at high oxygen concentrations and the second is dominant for low O2 levels. The branching fraction of the NH2 + NO reaction (i.e. the fraction that produces NNH + OH) used in the model is α = 7.08 × 10−4 T0.9, which above room temperature is somewhat higher than direct experimental determinations. The lifetime of NNH employed is τNNH = 10−7 sec, which is less than the upper limit set by experiment but still larger than the best theoretical prediction. All these points are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. K. Lyon, U. S. Patent 3, 900, 554 (1975).

    Google Scholar 

  2. R. K. Lyon, Int. J. Chem. Kinet. 8, 315 (1976).

    Article  Google Scholar 

  3. R. K. Lyon and D. Benn, Seventeenth Symposium (International) on Combustion, pp 601, The Combustion Institute, Pittsburgh, PA (1979).

    Google Scholar 

  4. R. K. Lyon and J. E. Hardy, Ind. Eng. Chem. Fundam. 25, 19 (1986).

    Article  Google Scholar 

  5. J. A. Miller, M. C. Branch, and R. J. Kee, “A Chemical Kinetic Model for the Selective Reduction of Nitric Oxide by Ammonia”, Sandia National Laboratories Report SAND 80-8635 (1980).

    Google Scholar 

  6. J. A. Miller, M. C. Branch, and R. J. Kee, Comb. Flame 43, 81 (1981).

    Article  Google Scholar 

  7. J. A. Miller and C. T. Bowman, Prog. Energy Comb. Sci. 15, 287 (1989).

    Article  Google Scholar 

  8. P. Glarborg, K. Dam-Johansen, J. A. Miller, R. J. Kee, and M. E. Coltrin, Int. J. Chem. Kin. 26, 421 (1994).

    Article  Google Scholar 

  9. C. J. Casewit and W. A. Goddard, J. Am. Chem. Soc. 104, 3280 (1982).

    Article  Google Scholar 

  10. J. A. Harrison, R. G. A. R. MacIagan, and A. R. Whyte, J. Phys. Chem. 91, 6683 (1987).

    Article  Google Scholar 

  11. H. Abou-Rachid, C. Pouchan, and M. Chaillet, Chem. Phys. 90, 243 (1984).

    Article  Google Scholar 

  12. C. F. Melius and J. S. Binkley, Twentieth Symposium (International) on Combustion, p. 575, The Combustion Institute, Pittsburgh, PA (1985)

    Google Scholar 

  13. S. P. Walch, J. Chem. Phys. 99, 5295 (1993).

    Article  ADS  Google Scholar 

  14. M. Wolf, D. L. Yang, and J. L. Durant, J. Photochem. Photobiol. A. Chem. 80, 85 (1994).

    Article  Google Scholar 

  15. L. A. Curtiss, D. L. Drapcho, and J. A. Pople, Chem. Phys. Lett. 103, 437 (1984).

    Article  ADS  Google Scholar 

  16. S. P. Walch, R. J. Duchovic, and C. M. Rohlfing, J. Chem. Phys. 90, 3230 (1989).

    Article  ADS  Google Scholar 

  17. S. P. Walch, J. Chem. Phys. 93, 2384 (1990).

    Article  ADS  Google Scholar 

  18. R. Lesclaux, P. V. Khé, P. DeZauzier, and J. C. Soulignac, Chem. Phys. Lett. 35, 493 (1975).

    Article  ADS  Google Scholar 

  19. L. F. Phillips, Chem. Phys. Lett. 135, 269 (1987).

    Article  ADS  Google Scholar 

  20. L. J. Stief, W. D. Brobst, D. F. Nava, R. P. Borkowski, and J. V. Michael, J. Chem. Soc. Faraday Trans. II 78, 1391 (1982).

    Article  Google Scholar 

  21. B. Atakan, A. Jacobs, M. Wahl, R. Weller, and J. Wolfrum, Chem. Phys. Lett. 155, 609 (1989).

    Article  ADS  Google Scholar 

  22. B. Atakan, J. Wolfrum, and R. Weller, Ber. Bunsenges. Phys. Chem. 94, 1372 (1990).

    Google Scholar 

  23. P. Pagsberg, B. Sztuba, E. Ratajczak, and A. Sillesen, Acta Chemica Scandinavica 45, 329 (1991).

    Article  Google Scholar 

  24. D. A. Dolson, J. Phys. Chem. 90, 6714 (1986).

    Article  Google Scholar 

  25. V. P. Bulatov, A. A. Ioffee, V. A. Lozovsky, and O. M. Sarkisov, Chem. Phys. Lett. 161, 141 (1989).

    Article  ADS  Google Scholar 

  26. J. L. Hall, D. Zeitz, J. W. Stephens, J. V. V. Kasper, G. P. Glass, R. F. Curl, and F. K. Tittel, J. Phys. Chem. 90, 2501 (1986).

    Article  Google Scholar 

  27. J. W. Stephens, C. L. Morter, S. K. Farhat, G. P. Glass, and R. F. Curl, J. Phys. Chem. 97, 8944 (1993).

    Article  Google Scholar 

  28. E. W. Diau, T. Yu, M. A. G. Wagner, and M. C. Lin, J. Phys. Chem. 98, 4034 (1994).

    Article  Google Scholar 

  29. S. F. Seigren, P. W. McLoughlin, and G. I. Gellene, J. Chem. Phys. 90, 1624 (1989).

    Article  ADS  Google Scholar 

  30. H. Koizumi, G. C. Schatz, and S. P. Walch, J. Chem. Phys. 95, 4130 (1991).

    Article  ADS  Google Scholar 

  31. P. Andresen, A. Jacobs, C. Kleinermanns, and J. Wolfrum, Nineteenth Symposium (International) on Combustion, p. 11, The Combustion Institute, Pittsburgh, PA (1983).

    Google Scholar 

  32. J. A. Silver and C. E. Kolb, J. Phys. Chem. 86, 3249 (1982).

    Article  Google Scholar 

  33. J. A. Silver and C. E. Kolb, J. Phys. Chem. 91, 3713 (1987).

    Article  Google Scholar 

  34. K. G. Unfried, G. P. Glass, and R. F. Curl, Chem. Phys. Lett. 173, 337 (1990).

    Article  ADS  Google Scholar 

  35. P. Glarborg, K. Dam-Johansen, and J. A. Miller, “The Reaction of Ammonia with Nitrogen Dioxide in a Flow Reactor: Implications for the NH2 + NO2 Reaction” Int. J. Chem. Kinet. (in press).

    Google Scholar 

  36. F. Kasuya, P. Glarborg, J. E. Johnsson, and K. Dam-Johansen, Chem. Eng. Sci 30, 1455–1466 (1995).

    Google Scholar 

  37. W. Hack, H. Schacke, H. Schroeter, and H. Gg. Wagner, Seventeenth Symposium (International) on Combustion, p. 505, The Combustion Institute, Pittsburgh, PA (1979).

    Google Scholar 

  38. A. Lutz, R. J. Kee, and J. A. Miller, “SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis”, Sandia National Laboratories Report SAND87-8248 (1987).

    Google Scholar 

  39. R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics”, Sandia National Laboratories Report SAND89-8009 (1989).

    Google Scholar 

  40. R. J. Kee, F. M. Rupley, and J. A. Miller, “The Chemkin Thermodynamic Database”, Sandia National Laboratories Report SAND 87-8215B (1990).

    Google Scholar 

  41. G. Hennig, M. Klatt, B. Spindler, and H. Gg. Wagner, Ber. Bunsenges Phys. Chem. 99, 651 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Miller, J.A., Glarborg, P. (1996). Modelling the Formation of N2O and NO2 in the Thermal De-NOx Process. In: Wolfrum, J., Volpp, HR., Rannacher, R., Warnatz, J. (eds) Gas Phase Chemical Reaction Systems. Springer Series in Chemical Physics, vol 61. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80299-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80299-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80301-7

  • Online ISBN: 978-3-642-80299-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics