Advertisement

Modelling the Formation of N2O and NO2 in the Thermal De-NOx Process

  • J. A. Miller
  • P. Glarborg
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 61)

Abstract

We have formulated a chemical kinetic model for the Thermal De-NOx process that satisfactorily predicts the NO removed and the N2O and NO2 produced by the process over a range of temperatures and initial oxygen concentrations. The new feature of the mechanism is that NO2 appears as an essential intermediate in the reaction scheme. It is formed as a consequence of NNH reacting with molecular oxygen,
$$ \rm NNH+O_2\leftrightarrow N_2+HO_2 $$
$$ \rm HO_2+NO\leftrightarrow NO_2+OH, $$
and is converted back to NO by
$$ \rm NH_2+NO_2\leftrightarrow H_2NO+NO, $$
followed by H2NO ↔ HNO ↔ NO. Nitrous oxide is produced by two different reactions,
$$ \rm NH_2+NO_2\leftrightarrow N_2O+H_2O $$
$$ {\rm and}\ \ \ \ \ \ \ \ \rm NH+NO\leftrightarrow N_2O+H. $$
The first is the primary source at high oxygen concentrations and the second is dominant for low O2 levels. The branching fraction of the NH2 + NO reaction (i.e. the fraction that produces NNH + OH) used in the model is α = 7.08 × 10−4 T0.9, which above room temperature is somewhat higher than direct experimental determinations. The lifetime of NNH employed is τNNH = 10−7 sec, which is less than the upper limit set by experiment but still larger than the best theoretical prediction. All these points are discussed in detail.

Keywords

Nitric Oxide Potential Energy Surface Rate Coefficient Nitrogen Dioxide Cyanuric Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. K. Lyon, U. S. Patent 3, 900, 554 (1975).Google Scholar
  2. [2]
    R. K. Lyon, Int. J. Chem. Kinet. 8, 315 (1976).CrossRefGoogle Scholar
  3. [3]
    R. K. Lyon and D. Benn, Seventeenth Symposium (International) on Combustion, pp 601, The Combustion Institute, Pittsburgh, PA (1979).Google Scholar
  4. [4]
    R. K. Lyon and J. E. Hardy, Ind. Eng. Chem. Fundam. 25, 19 (1986).CrossRefGoogle Scholar
  5. [5]
    J. A. Miller, M. C. Branch, and R. J. Kee, “A Chemical Kinetic Model for the Selective Reduction of Nitric Oxide by Ammonia”, Sandia National Laboratories Report SAND 80-8635 (1980).Google Scholar
  6. [6]
    J. A. Miller, M. C. Branch, and R. J. Kee, Comb. Flame 43, 81 (1981).CrossRefGoogle Scholar
  7. [7]
    J. A. Miller and C. T. Bowman, Prog. Energy Comb. Sci. 15, 287 (1989).CrossRefGoogle Scholar
  8. [8]
    P. Glarborg, K. Dam-Johansen, J. A. Miller, R. J. Kee, and M. E. Coltrin, Int. J. Chem. Kin. 26, 421 (1994).CrossRefGoogle Scholar
  9. [9]
    C. J. Casewit and W. A. Goddard, J. Am. Chem. Soc. 104, 3280 (1982).CrossRefGoogle Scholar
  10. [10]
    J. A. Harrison, R. G. A. R. MacIagan, and A. R. Whyte, J. Phys. Chem. 91, 6683 (1987).CrossRefGoogle Scholar
  11. [11]
    H. Abou-Rachid, C. Pouchan, and M. Chaillet, Chem. Phys. 90, 243 (1984).CrossRefGoogle Scholar
  12. [12]
    C. F. Melius and J. S. Binkley, Twentieth Symposium (International) on Combustion, p. 575, The Combustion Institute, Pittsburgh, PA (1985)Google Scholar
  13. [13]
    S. P. Walch, J. Chem. Phys. 99, 5295 (1993).ADSCrossRefGoogle Scholar
  14. [14]
    M. Wolf, D. L. Yang, and J. L. Durant, J. Photochem. Photobiol. A. Chem. 80, 85 (1994).CrossRefGoogle Scholar
  15. [15]
    L. A. Curtiss, D. L. Drapcho, and J. A. Pople, Chem. Phys. Lett. 103, 437 (1984).ADSCrossRefGoogle Scholar
  16. [16]
    S. P. Walch, R. J. Duchovic, and C. M. Rohlfing, J. Chem. Phys. 90, 3230 (1989).ADSCrossRefGoogle Scholar
  17. [17]
    S. P. Walch, J. Chem. Phys. 93, 2384 (1990).ADSCrossRefGoogle Scholar
  18. [18]
    R. Lesclaux, P. V. Khé, P. DeZauzier, and J. C. Soulignac, Chem. Phys. Lett. 35, 493 (1975).ADSCrossRefGoogle Scholar
  19. [19]
    L. F. Phillips, Chem. Phys. Lett. 135, 269 (1987).ADSCrossRefGoogle Scholar
  20. [20]
    L. J. Stief, W. D. Brobst, D. F. Nava, R. P. Borkowski, and J. V. Michael, J. Chem. Soc. Faraday Trans. II 78, 1391 (1982).CrossRefGoogle Scholar
  21. [21]
    B. Atakan, A. Jacobs, M. Wahl, R. Weller, and J. Wolfrum, Chem. Phys. Lett. 155, 609 (1989).ADSCrossRefGoogle Scholar
  22. [22]
    B. Atakan, J. Wolfrum, and R. Weller, Ber. Bunsenges. Phys. Chem. 94, 1372 (1990).Google Scholar
  23. [23]
    P. Pagsberg, B. Sztuba, E. Ratajczak, and A. Sillesen, Acta Chemica Scandinavica 45, 329 (1991).CrossRefGoogle Scholar
  24. [24]
    D. A. Dolson, J. Phys. Chem. 90, 6714 (1986).CrossRefGoogle Scholar
  25. [25]
    V. P. Bulatov, A. A. Ioffee, V. A. Lozovsky, and O. M. Sarkisov, Chem. Phys. Lett. 161, 141 (1989).ADSCrossRefGoogle Scholar
  26. [26]
    J. L. Hall, D. Zeitz, J. W. Stephens, J. V. V. Kasper, G. P. Glass, R. F. Curl, and F. K. Tittel, J. Phys. Chem. 90, 2501 (1986).CrossRefGoogle Scholar
  27. [27]
    J. W. Stephens, C. L. Morter, S. K. Farhat, G. P. Glass, and R. F. Curl, J. Phys. Chem. 97, 8944 (1993).CrossRefGoogle Scholar
  28. [28]
    E. W. Diau, T. Yu, M. A. G. Wagner, and M. C. Lin, J. Phys. Chem. 98, 4034 (1994).CrossRefGoogle Scholar
  29. [29]
    S. F. Seigren, P. W. McLoughlin, and G. I. Gellene, J. Chem. Phys. 90, 1624 (1989).ADSCrossRefGoogle Scholar
  30. [30]
    H. Koizumi, G. C. Schatz, and S. P. Walch, J. Chem. Phys. 95, 4130 (1991).ADSCrossRefGoogle Scholar
  31. [31]
    P. Andresen, A. Jacobs, C. Kleinermanns, and J. Wolfrum, Nineteenth Symposium (International) on Combustion, p. 11, The Combustion Institute, Pittsburgh, PA (1983).Google Scholar
  32. [32]
    J. A. Silver and C. E. Kolb, J. Phys. Chem. 86, 3249 (1982).CrossRefGoogle Scholar
  33. [33]
    J. A. Silver and C. E. Kolb, J. Phys. Chem. 91, 3713 (1987).CrossRefGoogle Scholar
  34. [34]
    K. G. Unfried, G. P. Glass, and R. F. Curl, Chem. Phys. Lett. 173, 337 (1990).ADSCrossRefGoogle Scholar
  35. [35]
    P. Glarborg, K. Dam-Johansen, and J. A. Miller, “The Reaction of Ammonia with Nitrogen Dioxide in a Flow Reactor: Implications for the NH2 + NO2 Reaction” Int. J. Chem. Kinet. (in press).Google Scholar
  36. [36]
    F. Kasuya, P. Glarborg, J. E. Johnsson, and K. Dam-Johansen, Chem. Eng. Sci 30, 1455–1466 (1995).Google Scholar
  37. [37]
    W. Hack, H. Schacke, H. Schroeter, and H. Gg. Wagner, Seventeenth Symposium (International) on Combustion, p. 505, The Combustion Institute, Pittsburgh, PA (1979).Google Scholar
  38. [38]
    A. Lutz, R. J. Kee, and J. A. Miller, “SENKIN: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis”, Sandia National Laboratories Report SAND87-8248 (1987).Google Scholar
  39. [39]
    R. J. Kee, F. M. Rupley, and J. A. Miller, “CHEMKIN-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-Phase Chemical Kinetics”, Sandia National Laboratories Report SAND89-8009 (1989).Google Scholar
  40. [40]
    R. J. Kee, F. M. Rupley, and J. A. Miller, “The Chemkin Thermodynamic Database”, Sandia National Laboratories Report SAND 87-8215B (1990).Google Scholar
  41. [41]
    G. Hennig, M. Klatt, B. Spindler, and H. Gg. Wagner, Ber. Bunsenges Phys. Chem. 99, 651 (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. A. Miller
    • 1
  • P. Glarborg
    • 2
  1. 1.Combustion Research FacilitySandia National LaboratoriesLivermoreUSA
  2. 2.Department of Chemical EngineeringTechnical University of DenmarkLyngbyDenmark

Personalised recommendations