Heterogeneous Chemistry in the Atmosphere

  • D. M. Golden
  • C. A. Rogaski
  • L. R. Williams
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 61)

Abstract

Chemical kineticists have long been involved in the study of the chemistry of the atmosphere. This involvement is both natural and important and has led to quantitative mechanistic understanding of many atmospheric phenomena. Historically the atmosphere had been regarded as essentially a gas phase reactor, with surface phenomena a laboratory hindrance to obtaining measurements that were applicable to the real situation. Relatively recent understanding has changed this view. In this paper, emphasis will be given to results from our laboratory using Knudsen cell techniques to study interactions of gaseous species with atmospherically relevant liquid sulfuric acid-water solutions and soot particles representative of those found (or postulated) in some specific atmospheric venues.

We have studied the interactions of HNO3, HCl and HBr with liquid sulfuric acid surfaces using both time dependent uptake and equilibrium vapor pressure methods in a Knudsen cell reactor equipped with mass spectrometric detection. Measured solubilities will be presented as Henry’s law coefficients along with thermochemical parameters.

Soot particles emitted by the current and projected fleet of subsonic aircraft may impact both the chemistry and radiative properties of the upper troposphere and lower stratosphere by providing nucleation centers for water-based aerosols. We have studied the uptake of water on soot samples before and after exposure to exhaust gas species such as sulfur dioxide and nitrogen dioxide as well as to ozone. In experiments performed to date, we see no change in the interaction of soot with water after such exposure. However, when the soot is exposed to HNO3 or H2SO4, water uptake is greatly enhanced. Additionally, we find some interesting chemical transformations when HNO3 interacts with soot.

Keywords

Combustion Entropy Hydrolysis Dioxide Ozone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Department of Energy Global Change Distinguished Postdoctoral Fellow.Google Scholar
  2. [2]
    R. P. Wayne, Chemistry of Atmospheres (2nd Edn), Clarendo Press, Oxford 1991.Google Scholar
  3. [3]
    S. A. Chapman, Mem. Roy. Meteorol. Soc., 3, 103 (1930).Google Scholar
  4. [4]
    D. R. Bates and M. Nicolet, J. Geophys. Res., 55, 301 (1950).ADSCrossRefGoogle Scholar
  5. [5]
    W. B. DeMore, S. P. Sauder, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina, JPL Publication 94–26, 1994. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA.Google Scholar
  6. [6]
    S. Solomon, Rev. Geophys., 26, 131 (1988).ADSCrossRefGoogle Scholar
  7. [7]
    WMO, 1995: Scientific Assessment of Ozone Depletion: 1994; Global Ozone Research and Monitoring Project-Report No. 37 (World Meteorological Organization, Washington, DC, 1995).Google Scholar
  8. [8]
    M. A. Tolbert, M. J. Rossi, R. Malhotra, and D. M. Golden, Science, 238, 1258 (1987).ADSCrossRefGoogle Scholar
  9. [9]
    M. A. Tolbert, M. J. Rossi, and D. M. Golden, Science, 240, 1018 (1988).ADSCrossRefGoogle Scholar
  10. [10]
    M. J. Molina, T. Tso, L. T. Molina, and F. C. Y. Wang, Science, 238, 1253 (1987).ADSCrossRefGoogle Scholar
  11. [11]
    D. R. Hanson and A. R. Ravishankara, J. Phys. Chem., 96, 2682 (1992).CrossRefGoogle Scholar
  12. [12]
    M. T. Leu, Geophys. Res. Lett., 15, 12 (1988).ADSGoogle Scholar
  13. [13]
    M. Mozurkewich and J. G. Calvert, J. Geophys. Res., 93, 15889 (1988).ADSCrossRefGoogle Scholar
  14. [14]
    J. M. Van Doren, L. R. Watson, P. Davidovits, D. R. Worsnop, M. S. Zahnisher, and C. E. Kolb, J. Phys. Chem., 95, 1684 (1991).CrossRefGoogle Scholar
  15. [15]
    D. R. Hanson and A. R. Ravishankara, J. Geophys. Res., 96, 17307 (1991).ADSCrossRefGoogle Scholar
  16. [16]
    L. R. Williams, J. A. Manion, D. M. Golden, and M. A. Tolbert, J. Appl. Meterology, 33, 785 (1994).ADSCrossRefGoogle Scholar
  17. [17]
    T. Peter and P. Crutzen, in Low Temperature Chemistry of the Atmosphere, NATA ASI Series, Springer-Verlag, 1994, pg. 499 (G. K. Moortgat, A. J. Barnes, G. LeBras, and J. R. Sodean, Eds.).Google Scholar
  18. [18]
    B. Luo, K. S. Carslaw, T. Peta, and S. L. Clegg, Geophys. Res. Lett., 22, 247 (1995).ADSCrossRefGoogle Scholar
  19. [19]
    C. E. Kolb, D. R. Worsnop, M. S. Zahniser, P. Davidovitz, L. F. Keyser, M-T. Leu, M. J. Molina, D. R. Hanson, A. R. Ravishankara, L. R. Williams, and M. A. Tolbert, in Current Problems in Atmospheric Chemistry, JAI Press, Greenwich, Ct, 1995 (J. R. Barker, Ed.), in press.Google Scholar
  20. [20]
    D. M. Golden and L. R. Williams, in Low Temperature Chemistry of the Atmosphere, NATA ASI Series, Springer-Verlag, 1994, p. 235 (G. K. Moortgat, A. J. Barnes, G. LeBras, and J. R. Sodeau, Eds.).Google Scholar
  21. [21]
    D. M. Golden, G. N. Spokes, and S. W. Benson, 12, 534 (1973).Google Scholar
  22. [22]
    M. A. Quinlan, C. M. Reihs, D. M. Golden, and M. A. Tolbert, J. Phys. Chem., 94, 3255 (1990).CrossRefGoogle Scholar
  23. [23]
    D. M. Golden, J. A. Manion, C. M. Reihs, and M. A. Tolbert, in The Chemistry of the Atmosphere; Its Impact on Global Change, Blackwell, Oxford, 1994, p. 39 (J. G. Calvert, Ed.).Google Scholar
  24. [24]
    L. R. Williams and D. M. Golden, Geophys. Res. Lett., 20, 2227 (1993).ADSCrossRefGoogle Scholar
  25. [25]
    K. Tabor, L. Gutzwiller, and M. J. Rossi, J. Phys. Chem., 98, 6172 (1994).CrossRefGoogle Scholar
  26. [26]
    M. A. Tolbert, M. J. Rossi, and D. M. Golden, Geophys. Res. Lett., 15, 847 (1988).ADSCrossRefGoogle Scholar
  27. [27]
    C. Rogaski, D. M. Golden, and L. R. Williams (in preparation).Google Scholar
  28. [28]
    L. R. Watson, J. M. VanDoren, P. Davidovitz, D. R. Worsnop, M. S. Zahniser, and C. E. Kolb, J. Geophys. Res., 95, 5631 (1990).ADSCrossRefGoogle Scholar
  29. [29]
    R. Zhang, P. J. Woolridge, and M. J. Molina, J. Phys. Chem., 97, 8541 (1993).CrossRefGoogle Scholar
  30. [30]
    D. R. Hanson and A. R. Ravishankara, J. Phys. Chem., 97, 12309 (1993).CrossRefGoogle Scholar
  31. [31]
    E. Wilhelm, R. Battino and R. J. Wilcock, Chem. Rev., 77, 219 (1977).CrossRefGoogle Scholar
  32. [32]
    R. P. Bell, The Proton in Chemistry, Cornell Univ. Press, Ithaca, NY (1973).Google Scholar
  33. [33]
    F. Arnold, Th. Buhrke, and S. Qiu, Nature, 348, 49 (1990).ADSCrossRefGoogle Scholar
  34. [34]
    J. M. Rodriguez, M. K. Ko, and N. D. Sze, Nature, 352, 134 (1991).ADSCrossRefGoogle Scholar
  35. [35]
    C. M. Reihs, D. M. Golden, and M. A. Tolbert, J. Geophys. Res., 95, 16, 545 (1990).CrossRefGoogle Scholar
  36. [36]
    L. R. Williams and F. S. Long, J. Phys. Chem., 99, 3748 (1995).CrossRefGoogle Scholar
  37. [37]
    L. R. Williams, D. M. Golden, and D. L. Huestis, J. Geophys. Res., 100, 7329 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • D. M. Golden
    • 1
  • C. A. Rogaski
    • 1
  • L. R. Williams
    • 1
  1. 1.Molecular Physics LaboratorySRI InternationalMenlo ParkUSA

Personalised recommendations