Pathways of Vibrational Relaxation of Diatoms in Collisions with Atoms: Manifestation of the Ehrenfest Adiabatic Principle

  • E. E. Nikitin
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 61)


Different pathways of vibrational relaxation of diatoms in thermal collisions with atoms are discussed in the framework of the Ehrenfest adiabatic principle and generalized Landau-Teller model. Since the efficiency of different energy-transfer channels depend very strongly on the value of the Ehrenfest exponent, it is possible to assign, for given collision partners and the heat-bath temperature, the vibrational energy transfer events to VT, VRT or VR processes.


Potential Energy Surface Diatomic Molecule Vibrational Relaxation Deactivation Rate Constant Vibrational Energy Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Bodenstein, Z. phys. Chem. 85, 329 (1913).Google Scholar
  2. [2]
    N. N. Semenov, Tsepnye Reaktsii (Goskhimtekhizdat, Leningrad, 1934); English translation: Chemical Kinetics and Chain Reactions (Clarendon Press, Oxford, 1935).Google Scholar
  3. [3]
    L.D. Landau, and E. Teller, Phys. Z. Sow. 10, 34 (1936)MATHGoogle Scholar
  4. [4]
    V. N. Kondratiev, Kinetika Khimicheskich Gazovykch Reaktsii (Nauka, Moscow, 1958); English translation: Chemical Kinetics of Gas Reactions (Clarendon, Oxford, 1964).Google Scholar
  5. [5]
    P. Ehrenfest, Versl. Akad. Kon. Amsterdam, 25, 412 (1916).Google Scholar
  6. [6]
    E. E. Nikitin, and L. Pitaevskii, Phys. Rev. A 49, 695 (1994).ADSCrossRefGoogle Scholar
  7. [7]
    E. E. Nikitin, C. Noda, and R. N. Zare, J. Chem. Phys. 98, 47 (1993).ADSCrossRefGoogle Scholar
  8. [8]
    Y. Karni, and E. E. Nikitin, J. Chem. Phys. 100, 194 (1994).Google Scholar
  9. [9]
    L. D. Landau, and E. M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977).Google Scholar
  10. [10]
    Y. Karni, and E. E. Nikitin, Chem. Phys. 191, 235 (1995).ADSCrossRefGoogle Scholar
  11. [11]
    B. M. Smirnov, Asimptoticheskie Metody v Teorii Atomnykh Stolknovenii (Atomizdat, Moscow, 1973).Google Scholar
  12. [12]
    E. E. Nikitin, and S.Ya. Umanskii, Theory of Slow Atomic Collisions (Springer, Berlin, 1984).Google Scholar
  13. [13]
    R. N. Schwartz, Z. J. Slawsky, and K. F. Herzfeld, J. Chem. Phys. 20, 1591 (1952).ADSCrossRefGoogle Scholar
  14. [14]
    F. Gianturco, The Transfer of Molecular Energies by Collision, Lecture Notes in Chemistry, 11 (Springer, Berlin, 1979).Google Scholar
  15. [15]
    E. E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon Press, Oxford, 1974).Google Scholar
  16. [16]
    J. D. Lambert, Vibrational and Rotational Relaxation in Gases (Clarendon Press, Oxford, 1977).Google Scholar
  17. [17]
    J. T. Jardley, Introduction to Molecular Energy Transfer (Academic Press, New York, 1980).Google Scholar
  18. [18]
    A. Banks, D. C. Clary, and H.-J. Werner, J. Phys. Chem. 84, 3788 (1986).CrossRefGoogle Scholar
  19. [19]
    E. E. Nikitin, A. I. Osipov, and S. Ya. Umanskii, in Khimiya Plazmy, 15 (Atomizdat, Moscow, 1989), p. 3.Google Scholar
  20. [20]
    D. R. White, J. Chem. Phys. 48, 525 (1968).ADSCrossRefGoogle Scholar
  21. [21]
    R. Frey, J. Lukasik, and J. Ducuing, Chem. Phys. Lett. 14, 514 (1972).ADSCrossRefGoogle Scholar
  22. [22]
    M. M. Maricq, E. A. Gregory, C. T. Wickham-Jones, D. J. Cartwright, and C. J. S. M. Simpson, Chem. Phys. 75, 347 (1983).CrossRefGoogle Scholar
  23. [23]
    C. B. Moore, J. Chem. Phys. 43, 1395 (1965).Google Scholar
  24. [24]
    G. A. Kapralova, E. E. Nikitin, and A. M. Chaikin, Chem. Phys. Lett. 2, 581 (1968).ADSCrossRefGoogle Scholar
  25. [25]
    A. Miklavc, and S. F. Fisher, J. Chem. Phys. 69, 281 (1978).ADSCrossRefGoogle Scholar
  26. [26]
    A. Miklavc, and I. W. M. Smith, J. Chem. Soc. Faraday Trans. 284, 227 (1988).Google Scholar
  27. [27]
    T. D. Sewell, S. Nordholm, and A. Miklavc, J. Chem. Phys. 99, 2767 (1993).CrossRefGoogle Scholar
  28. [28]
    G. D. Billing, J. Chem. Phys. 57, 5241 (1972).ADSCrossRefGoogle Scholar
  29. [29]
    I. V. Lebed’, and S. Ya. Umanskii, Teor. Eksp. Khim. 14, 102 (1978).Google Scholar
  30. [30]
    M. Ya. Ovchinnikova, and D. V. Shalashilin, Khim. Phys. 3, 340 (1984).Google Scholar
  31. [31]
    M. Ya. Ovchinnikova, Chem. Phys. 93, 101 (1985).ADSCrossRefGoogle Scholar
  32. [32]
    E. E. Nikitin, and M. Ya. Ovchinnikova, Khim. Fiz. 5, 291 (1986).Google Scholar
  33. [33]
    E. E. Nikitin, and D. V. Shalashilin, Khim. Fiz. 11, 1471 (1992).Google Scholar
  34. [34]
    R. V. Steele, and C. B. Moore, J. Chem. Phys. 60, 2794, (1974).ADSCrossRefGoogle Scholar
  35. [35]
    D. J. Seery, J. Chem. Phys. 58, 1796 (1973).ADSCrossRefGoogle Scholar
  36. [36]
    E. E. Nikitin, S. Ya. Umanskii, and D.V. Shalashilin, Khim. Fiz. 8, 1011 (1989).Google Scholar
  37. [37]
    I. Koifman, E. I. Dashevskaya, E. E. Nikitin, and J. Troe, J. Phys. Chem. (to be published).Google Scholar
  38. [38]
    E. I. Dashevskaya, E. E. Nikitin, and I. Oref, J. Phys. Chem. 98, 9397 (1993).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • E. E. Nikitin
    • 1
  1. 1.Department of ChemistryTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations