Advertisement

The Hydrogen-Iodine Reactions: 100 Years Later

  • J. B. Anderson
Conference paper
Part of the Springer Series in Chemical Physics book series (CHEMICAL, volume 61)

Abstract

Max Bodenstein opened the field of gas phase chemical kinetics in 1894 with his report of experimental studies of the hydrogen-iodine reaction H2 + I2 → HI + HI and its reverse HI + HI → H2 + I2. Bodenstein measured the rates of the forward and reverse reactions, their equilibria, and their temperature dependence. He found second order kinetic expressions and an Arrhenius temperature dependence for the rate constants. He suggested several mechanisms for these reactions.

Modern theoretical and experimental studies have revealed additional details of the reaction kinetics. The results of these studies suggest that the low temperature thermal reaction proceeds by both the direct bimolecular reaction of hydrogen molecules with vibrationally excited iodine molecules H2 + I2 (hi v) → HI + HI and the termolecular reaction of hydrogen molecules with iodine atoms H2 + I + I → HI + HI. The direct bimolecular reaction mechanism and the termolecular reaction mechanism were among those suggested by Bodenstein one hundred years ago.

Keywords

Potential Energy Surface Vibrational Excitation Iodine Atom Collinear Region Arrhenius Temperature Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Bodenstein, Z. phys. Chem. 13, 56 (1894).Google Scholar
  2. [2]
    Ref. 1, p. 122.Google Scholar
  3. [3]
    W. C. McC. Lewis, J. Chem. Soc. 113, 471 (1918).Google Scholar
  4. [4]
    C. N. Hinshelwood, The Kinetics of Chemical Change in Gaseous Systems (Oxford University Press, Oxford, England 1926) p. 52.Google Scholar
  5. [5]
    P. Langevin and J.-J. Rery, Radium (Paris) 10, 142 (1913).CrossRefGoogle Scholar
  6. [6]
    G. B. Kistiakowsky, J. Am. Chem. Soc. 50, 2315 (1928).CrossRefGoogle Scholar
  7. [7]
    J. C. L. Blagg and G. M. Murphy, J. Chem. Phys. 4, 631 (1936).ADSCrossRefGoogle Scholar
  8. [8]
    K. H. Geib and A. Lendle, Z. phys. Chem. (Abt. B) 32, 463 (1936).Google Scholar
  9. [9]
    A. Wheeler, B. Topley, and H. Eyring, J. Chem. Phys. 4, 178 (1936).ADSCrossRefGoogle Scholar
  10. [10]
    S. W. Benson and R. Srinivasan, J. Chem. Phys. 23, 200 (1955).ADSCrossRefGoogle Scholar
  11. [11]
    J. H. Sullivan, J. Chem. Phys. 30, 1291 (1959).ADSGoogle Scholar
  12. [12]
    J. H. Sullivan, J. Chem. Phys. 30, 1577 (1959); ibid. 36, 1925 (1962); ibid. 39, 300 (1963).ADSCrossRefGoogle Scholar
  13. [13]
    N. N. Semenov, Some Problems in Chemical Kinetics and Reactivity, Vol. 2 (Princeton University Press, Princeton, New Jersey 1959) pp 73 and 74.Google Scholar
  14. [14]
    J. H. Sullivan, J. Chem. Phys. 46, 73 (1967).ADSCrossRefGoogle Scholar
  15. [15]
    R. L. Jaffe, J. M. Henry, and J. B. Anderson, J. Am. Chem. Soc. 98, 1140 (1976); J. M. Henry, J. B. Anderson, and R. L. Jaffe, Chem. Phys. Lett. 20, 138 (1973); J. B. Anderson, J. M. Henry, and R. L. Jaffe, J. Chem. Phys. 60, 3725 (1974).CrossRefGoogle Scholar
  16. [16]
    J. B. Anderson, J. Chem. Phys. 61, 3390 (1974).ADSCrossRefGoogle Scholar
  17. [17]
    R. Hoffmann, J. Chem. Phys. 49, 3739 (1968).ADSCrossRefGoogle Scholar
  18. [18]
    L. Cusachs, M. Krieger, and C. W. McCurdy, J. Chem. Phys. 49, 3740 (1968).ADSCrossRefGoogle Scholar
  19. [19]
    L. M. Raff, L. Stivers, R. N. Porter, D. L. Thompson, and L. B. Sims, J. Chem. Phys. 52, 3449 (1970).ADSCrossRefGoogle Scholar
  20. [20]
    F. L. Minn and A. B. Hanratty, J. Chem. Phys. 53, 2543 (1970); Theor. Chim. Acta 19, 390 (1970).ADSCrossRefGoogle Scholar
  21. [21]
    J. B. Anderson, J. Chem. Phys. 100, 4253 (1994).ADSCrossRefGoogle Scholar
  22. [22]
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 299 (1985).ADSCrossRefGoogle Scholar
  23. [23]
    L. M. Raff, D. L. Thompson, L. B. Sims, and R. N. Porter, J. Chem. Phys. 56, 5998 (1972).ADSCrossRefGoogle Scholar
  24. [24]
    J. C. Keck, Disc. Faraday Soc. 33, 173 (1962).CrossRefGoogle Scholar
  25. [25]
    S. B. Jaffe and J. B. Anderson, J. Chem. Phys. 49, 2859 (1968); ibid. 51, 1059 (1969).ADSCrossRefGoogle Scholar
  26. [26]
    H. Horiguchi and S. Tsuchiya, Int. J. Chem. Kin. 13, 1085 (1981).CrossRefGoogle Scholar
  27. [27]
    M. L. Nowlin and M. C. Heaven, J. Chem. Phys. 99, 5654 (1993).ADSCrossRefGoogle Scholar
  28. [28]
    D. G. Truhlar, discussion (1995).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • J. B. Anderson
    • 1
  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity Park, PennsylvaniaUSA

Personalised recommendations