Novel Unimolecular Micelles of Hydrophobically Modified Polyelectrolytes: Synthesis, Characterization, and Functions

  • Y. Morishima
  • M. Kamachi
Conference paper

Abstract

Random copolymers of sodium 2-acrylamido-2-methylpropanesulfonate (AMPS) and methacrylamides N-substituted with bulky hydrophobic groups with cyclic structures such as cyclododecyl (Cd), adamantyl (Ad), and 1-naphthyl (1-Np) groups undergo intrapolymer self-organization in aqueous solution and form unimolecular micelles (unimers) independent of the polymer concentrations. These unimers are highly compact as indicated by light scattering and NMR relaxation times. Hydrophobic chromophores can be tightly encapsulated in the hydrophobic cluster in the unimer by covalently incorporating into the hydrophobically modified polysulfonates. The chromophores compartmentalized in the unimers are completely isolated from one another in highly constraining nonpolar microenvironments and are protected from the aqueous phase, leading to a large modification of the photophysical and photochemical behavior.

Keywords

Surfactant Amide Macromolecule Porphyrin Pyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schulz DN, Bock J, Valint Jr, PL (1994) In: Dubin P, Bock J, Davies RM, Schulz DN, Thies C (eds) Macromolecular Complexes in Chemistry and Biology. Springer-Verlag, Berlin Heidelberg, pp 3–13Google Scholar
  2. 2.
    Varadaraj R, Branham KD, McCormick CL, Bock J (1994) In: Dubin P, Bock J, Davies RM, Schulz DN, Thies C (eds) Macromolecular Complexes in Chemistry and Biology. Springer-Verlag, Berlin Heidelberg, pp 15–31Google Scholar
  3. 3.
    Chang Y, McCormick CL (1993) Macromolecules 26: 6121CrossRefGoogle Scholar
  4. 4.
    Morishima Y, Nomura S, Ikeda T, Seki M, Kamachi M (1995) Macromolecules 28: 2874CrossRefGoogle Scholar
  5. 5.
    Morishima Y, Tominaga Y, Kamachi M, Okada T, Hirata Y, Mataga N (1991) J Phys Chem 95: 6027CrossRefGoogle Scholar
  6. 6.
    Morishima Y, Tominaga Y, Nomura S, Kamachi M (1992) Macromolecules 25: 861CrossRefGoogle Scholar
  7. 7.
    Kalyanasundaram K, Thomas JK (1977) J Am Chem Soc 99: 2039CrossRefGoogle Scholar
  8. 8.
    Hashimoto S, Thomas JK (1985) J Am Chem Soc 107: 4655CrossRefGoogle Scholar
  9. 9.
    Berlman IB (1973) Energy Transfer Parameters of Aromatic Compounds; Academic Press, New YorkGoogle Scholar
  10. 10.
    Erdmann K, Gutsze A (1987) Colloid Polym Sci 265: 667CrossRefGoogle Scholar
  11. 11.
    Raby P, Budd PM, Heatley F, Price C (1991) J Polym Sci, Polym Phys Ed 29: 451CrossRefGoogle Scholar
  12. 12.
    Brereton MG, Ward IM, Boden N, Wright P (1991) Macromolecules 24: 2068CrossRefGoogle Scholar
  13. 13.
    Morishima Y, Furui T, Nozakura S, Okada T, Mataga N (1989) J Phys Chem 93: 1643CrossRefGoogle Scholar
  14. 14.
    Morishima Y (1992) Adv Polym Sci 104: 51Google Scholar
  15. 15.
    Morishima Y (1994) Trends Polym Sci 2: 31Google Scholar
  16. 16.
    Morishima Y, Tominaga Y, Nomura S, Kamachi M, Okada T (1992) J Phys Chem 96: 1990Google Scholar
  17. 17.
    Morishima Y, Tsuji M, Kamachi M, Hatada K (1992) Macromolecules 25: 4406CrossRefGoogle Scholar
  18. 18.
    Morishima Y, Tsuji M, Seki M, Kamachi M (1993) Macromolecules 26: 3299CrossRefGoogle Scholar
  19. 19.
    Aota H, Morishima Y, Kamachi M (1993) Photochem Photobiol 57: 989CrossRefGoogle Scholar
  20. 20.
    Morishima Y, Saegusa K, Kamachi M (1995) Macromolecules 28: 1203CrossRefGoogle Scholar
  21. 21.
    Morishima Y, Saegusa K, Kamachi M (1995) J Phys Chem 99: 4512CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Y. Morishima
    • 1
  • M. Kamachi
    • 1
  1. 1.Department of Macromolecular Science, Faculty of ScienceOsaka UniversityToyonaka, OsakaJapan

Personalised recommendations