Skip to main content

Metal-on-Metal Heteroepitaxy and the Influence of a Surfactant: Cu/O/Ru(0001)

  • Chapter
Surface Science
  • 491 Accesses

Abstract

Cu-on-Ru(OOOl) has been a suitable model system for metal-on-metal heteroepitaxy for many years because of the immiscibility of the two components. In contrast to most ex-situ studies the present work emphasizes dynamical work function change (ΔØ) measurements using a special KELVIN-capacitor probe as being a sensitive method to monitor the film morphology in-situ , that is during film growth. In particular, it is demonstrated that preadsorbed oxygen on the Ru(0001) substrate permanently “floats out” to the Cu surface and acts as a surfactant for layer-by- layer growth at a temperature of 400 K, at which in the absence of oxygen non-ergodic growth leads to the formation of pyramidal clusters and, hence, a very rough film. The mechanistic influence of the surfactant oxygen is discussed in detail and may certainly be carried over to other metal-on-metal systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ehrlich and F.G. Hudda, J. Chem. Phys. 44, 1039(1966)

    Article  CAS  Google Scholar 

  2. R.L. Schwoebel and E.J. Shipsey, J. Appl. Phys. 37, 3682(1966)

    Article  CAS  Google Scholar 

  3. E. Bauer, Appl. Surf. Sci., 11/12, 479(1982)

    Article  Google Scholar 

  4. R. Kern, G. Lelay and J.J. Metois:Basic Mechanisms in the Early Stages of Epitaxy, Chapter 3, in Current Topics in Material Science, Vol. 3 (North-Holland, Amsterdam, 1979)

    Google Scholar 

  5. W.F. Egelhoff, Jr. and D.A. Steigerwald, J. Vac. Sci. Technol. A7, 2167(1989)

    Google Scholar 

  6. M. Copel, M.C. Reuter, E. Kaxiras and R.M. Tromp, Phys. Rev. Lett. 63, 632(1989)

    Article  CAS  Google Scholar 

  7. J. Vrijmoeth, H.A. van der Vegt, J.A. Meyer, E. Vlieg and R.J. Behm, Phys. Rev. Lett. 72, 3842(1994)

    Article  Google Scholar 

  8. S. Esch, M. Hohage, T. Michely and G. Comsa, Phys. Rev. Lett. 72, 518(1994)

    Article  CAS  Google Scholar 

  9. H. Wolter, M. Schmidt and K. Wandelt, Surf. Sci. 298, 173(1993)

    Article  CAS  Google Scholar 

  10. M. Schmidt, H. Wolter and K. Wandelt, Surf. Sci. 307–309, 507(1994)

    Article  Google Scholar 

  11. M. Schmidt, H. Wolter, M. Nohlen and K. Wandelt, J. Vac. Sci., Technol. A12, 1818(1994)

    Google Scholar 

  12. M. Henzler, Prog. Surf. Sci. 42, 297(1993)

    Article  CAS  Google Scholar 

  13. J.M. Van Hove, C.S. Lent, P.R. Pukite and P.I. Cohen, J. Vac. Sci. Technol. B1, 741(1983)

    Google Scholar 

  14. J.E. Parmeter, R. Kunkel, B. Poelsema, L.K. Verheij and G. Comsa, Vacuum 41, 467(1990)

    Article  CAS  Google Scholar 

  15. H.A. van der Vegt, J.M.C. Thornton, H.M. van Pinxteren, M. Lohmeier and E. Vlieg, Phys. Rev. Lett. 68, 3335(1992)

    Article  Google Scholar 

  16. J. Hölzl, G. Porsch and P. Schrammen, Surf. Sci. 97, 529(1980)

    Article  Google Scholar 

  17. K. Besocke and S. Berger, Rev. Sci. Instrum. 47, 840(1976)

    Article  CAS  Google Scholar 

  18. R. Smoluchowski, Phys. Rev. 60, 661(1941)

    Article  CAS  Google Scholar 

  19. B. Krahl-Urban, E.A. Niekisch and H. Wagner, Surf. Sci. 64, 52(1977)

    Article  CAS  Google Scholar 

  20. K. Wandelt, in Chemistry and Physics of Solid Surfaces VIII, Vol. 22 of Springer Series in Surface Science, Eds. R. Vanselow and R. Howe (Springer, Heidelberg, 1990) p. 314

    Chapter  Google Scholar 

  21. K. Wandelt, in Thin Metal Films and Gas Chemisorption, Ed. P. Wissmann, Vol. 32 of Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1987) p. 280

    Google Scholar 

  22. K. Kalki, M. Schick, G. Ceballos and K. Wandelt, Thin Solid Films 228, 36(1993)

    Google Scholar 

  23. K. Christmann, G. Ertl and H. Shimizu, J. Catal. 61, 397(1980)

    Article  CAS  Google Scholar 

  24. J.C. Vickermann, K. Christmann, G. Ertl. P. Heimann, F.J. Himpsel and D.E. Eastman, Surf. Sci. 134, 367(1983)

    Article  Google Scholar 

  25. C. Park, E. Bauer and H. Poppa. Surf. Sci. 187, 86(1987)

    Article  CAS  Google Scholar 

  26. J.E. Houston, C.H.F. Peden, D.S. Blair and D.W. Goodman, Surf. Sci. 167, 427(1986)

    Article  CAS  Google Scholar 

  27. K.S. Kim, J.H. Sinfelt, S. Eder, K. Markert and K. Wandelt, J. Phys. Chem. 91, 2337(1987)

    Article  CAS  Google Scholar 

  28. H. Tochihara, G. Rocker, M. Martin and T. Yates, Surf. Sci. 203, 44(1988)

    Article  CAS  Google Scholar 

  29. G. Pötschke, J. Schröder, C. Günther, R.Q. Hwang and R.J. Behm, Surf. Sci. 251/252, 592(1991)

    Article  Google Scholar 

  30. G. Pötschke and R.J. Behm, Phys. Rev. B44, 1442(1991)

    Google Scholar 

  31. M. Schmidt, Diplom-thesis, University Bonn, 1992

    Google Scholar 

  32. K. Kalki, PhD-thesis, University Bonn, 1992

    Google Scholar 

  33. J. Schäfer, P. Reinhardt, H. Hoffschulz and K. Wandelt, Surf. Sci. 313, 83(1994)

    Article  Google Scholar 

  34. C. Günther and R.J. Behm, private communication

    Google Scholar 

  35. The deposition time per period of the oscillations is, indeed, 11% longer than the deposition time to reach the first knee in a ΔØ-curve at 640 K on bare Ru [9]. This is in perfect agreement with the reduced atomic density of the first pseudomorphic layer compared to a perfect Cu(lll) plane.

    Google Scholar 

  36. There is, of course, no equilibrium between the surface and the 3D vapor phase. The fact that the film grows is a consequence of non-equilibrium, namely of a supersaturation of the Cu vapor phase at the given substrate temperature. However, if reevaporation of Cu atoms into the gas phase is negligible one can still speak of equilibrium or non-equilibrium conditions within the 2D adsorbed layer only

    Google Scholar 

  37. C.S. Fadley, S. Kono, J.T. Lloyd and K.A. Thompson, Proc. 4th ICSS & 3rd ECOSS (Cannes, 1980) Suppl. Le Vide, Les Couches Minces, No. 201, Vol. 1, p. 665

    Google Scholar 

  38. M.A. Van Hove in:Nature of the Surface Chemical Bond“, Eds. T. Rhodin, G. Ertl (North-Holland, Amsterdam, 1979)

    Google Scholar 

  39. G. Ehrlich, Surf. Sci. 331–333, 865(1995)

    Article  CAS  Google Scholar 

  40. Landolt-Bornstein, Zahlenwerte und Funktionen, 6. ed., Vol. 4, Part 2b, p. 685

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolter, H., Schmidt, M., Nohlen, M., Wandelt, K. (1996). Metal-on-Metal Heteroepitaxy and the Influence of a Surfactant: Cu/O/Ru(0001). In: MacDonald, R.J., Taglauer, E.C., Wandelt, K.R. (eds) Surface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80281-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80281-2_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80283-6

  • Online ISBN: 978-3-642-80281-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics