Skip to main content

Homoepitaxial Growth of Metals and the Role of Surfactants

  • Chapter
Surface Science

Abstract

Various possibilities which affect the mode of homoepitaxial growth of metals are outlined. Special attention is given to the potential energy surface of diffusing atoms and how it determines the growth kinetics, the island density, and the critical island size. In particular we discuss mechanisms how surfactants may work, with special attention to Sb on Ag(111). Using density functional theory calculations it is shown that antimony is a strongly surface segregating species, and that its stable geometry is at the substitutional surface site. In this geometry it acts repulsively on deposited Ag adatoms, giving rise to an increase of the Ag island density and to irregular island shapes. As a consequence, the growth changes from the multi-layer (at room temperature) to the layer-by-layer mode. The theoretical results are compared with recent experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Ehrlieh and F. G. Hudda, J. Chem. Phys. 44, 1039 (1966).

    Article  Google Scholar 

  2. S. C. Wang and G. Ehrlieh, Phys. Rev. Lett. 71, 4174 (1993).

    Article  CAS  Google Scholar 

  3. T. T. Tsong, Atom-Probe Field Ion Microscopy. Cambridge University Press, Cambridge 1990.

    Book  Google Scholar 

  4. G. L. Kellog, Phys. Rev. Lett. 72, 1662 (1994).

    Article  Google Scholar 

  5. K. Meinel, M. Klaua, and H. Bethge, phys. stat. sol. 110, 189 (1988);

    Article  CAS  Google Scholar 

  6. J. Cryst. Growth 89, 447 (1988);

    Google Scholar 

  7. H. Bethge, in: Kinetics of Ordering and Growth at Surfaces, Ed. M. G. Lagally. Plenum Press, New York 1990, 125.

    Google Scholar 

  8. Y. W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).

    Article  Google Scholar 

  9. M. Horn-von Hoegen, to be published in Appl. Phys. A.

    Google Scholar 

  10. S. Esch, M. Hohage, T. Michely, and G. Comsa, Phys. Rev. Lett. 72, 518 (1994).

    Article  CAS  Google Scholar 

  11. The step formation energy of metals is typically a fraction of the surface energy. For close-packed steps on Al (111) the calculations predict 0.24eV per step-edge atom (see Ref. 10). For 4c? transition metals see Ref. 11.

    Google Scholar 

  12. R. Stumpf and M. Scheffler, Phys. Rev. Lett. 72, 254 (1994);

    Article  CAS  Google Scholar 

  13. submitted to Phys. Rev. B.

    Google Scholar 

  14. M. Scheffler, J. Neugebauer, and R. Stumpf, J. Phys.: Condens. Matter 5, A91 (1993).

    Article  Google Scholar 

  15. S. Stoyanov and D. Kashchiev, in Current Topics in Materials Science, Ed. E. Kaldis. North-Holland, Amsterdam 1981, Vol. 7, 69.

    Google Scholar 

  16. J. Vrijmoeth, H. A. van der Vegt, J. A. Meyer, E. Vlieg, and R. J. Behm, to be published.

    Google Scholar 

  17. For Al (111) there is indeed an energy gradient superimposed to the atomic-structure corrugation, which gives rise to an attraction of about 0.15 eV between a position of the adatom just at the step and one far away (see Ref. 10). This attraction results not from the electrostatic fields of the adatom and step dipoles which is, in fact, slightly repulsive, but is mediated by adatom- and step-induced surface states.

    Google Scholar 

  18. Typically, coordination number models scale the energy of each atom with the square root of its local coordination. Often also a small linear term is added. The square root behavior takes the bond saturation into account which makes this approach very similar to the embedded-atom and effective-medium methods [see for example I. J. Robertson et al., Europhs. Lett. 15, 301 (1991), Phys. Rev. Lett. 70, 1944 (1993), and M. Methfessel et al., Appl. Phys. A 55, 442 (1992)]. All these methods are often labeled as “glue-type models”.

    Google Scholar 

  19. Glue-type models (see Ref. 15) give an energy barrier for self-diffusion of Al on Al (111) which is by more than a factor of ten higher than what is found in the DFT-LDA calculations. This might be an extrem case of the inaccuarcy of glue-type models, because for Al (111) the DFT-LDA barrier is particularly small (0.04 eV) due to the partly covalent nature of Al.

    Google Scholar 

  20. M. Bott, M. Hohage, T. Michely, and G. Comsa, Phys. Rev. Lett. 70, 1489 (1993).

    Article  CAS  Google Scholar 

  21. J. Tersoff, A. W. Denier van der Gon, and R. M. Tromp, Phys. Rev. Lett. 72, 266 (1994).

    Article  CAS  Google Scholar 

  22. S. Stoyanov and I. Markov, Surf. Sci. 116, 313 (1982).

    Article  Google Scholar 

  23. J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys. 47, 399 (1984).

    Article  Google Scholar 

  24. G. S. Bales and D. C. Chrzan, Phys. Rev. B, in press (1994).

    Google Scholar 

  25. J. Villain, A. Pimpinelli, and D. E. Wolf, Comments Cond. Mat. Phys. 16, 1 (1992);

    CAS  Google Scholar 

  26. J. Villain, A. Pimpinelli, L. Tang, and D. E. Wolf, J. Physique I 2, 2107 (1992).

    Article  Google Scholar 

  27. J. G. Amar, F. Family, and P.-M. Lam, in Mechanisms of Thin Film Evolution, Eds. S. M. Yalisove, C. V. Thompson, and D. J. Eaglesham, Materials Research Society, to be published.

    Google Scholar 

  28. M. C. Bartelt and J. W. Evans, Phys. Rev. B 46, 12675 (1992).

    Article  Google Scholar 

  29. E. S. Hood, B. H. Toby, and W. H. Weinberg, Phys. Rev. Lett. 55, 2437 (1985).

    Article  CAS  Google Scholar 

  30. R. Kunkel, B. Poelsema, L. K. Verheij, and G. Comsa, Phys. Rev. Lett. 65, 733 (1990);

    Article  CAS  Google Scholar 

  31. M. Bott, T. Michely, and G. Comsa, Surf. Sci. 272, 161 (1992).

    Article  CAS  Google Scholar 

  32. Island with dendritic shape have been observerd for Au and Ag(111) (see Ref. 5), for Au on Ru(1000) by R. Q. Hwang, J. Schroder, R. Günther, and R. J. Behm, Phys. Rev. Lett. 67, 3279 (1991), and for Pt (111) (see Ref. 26).

    Google Scholar 

  33. G. Rosenfeld, R. Servaty, C. Teichert, B. Poelsema, and G. Comsa, Phys. Rev. Lett. 71, 895 (1993).

    Article  CAS  Google Scholar 

  34. W. F. Egelhoff, Jr. and D. A. Steigerwald, J. Vac. Sci. Technol. A7, 2167 (1989).

    Google Scholar 

  35. H. L. Gaigher, N. G. van der Berg, and J. B. Malherbe, Thin Solid Films 137, 337 (1986).

    Article  CAS  Google Scholar 

  36. Z. Zhang and M. G. Lagaily, Phys. Rev. Lett. 72, 693 (1994).

    Article  CAS  Google Scholar 

  37. H. Wolter, M. Schmidt, and K. Wandelt, Surf. Sci. 298, 173 (1993).

    Article  CAS  Google Scholar 

  38. H. Wolter, M. Schmidt, M. Nohlen and K. Wandelt, this volume, p. 232

    Google Scholar 

  39. H. A. van der Vegt, H. M. van Pinxteren, M. Lohmeier, E. Vlieg, and J. M. C. Thornton, Phys. Rev. Lett. 68, 3335 (1992).

    Article  Google Scholar 

  40. S. Oppo, V. Fiorentini, and M. Scheffler, Phys. Rev. Lett. 71, 2437 (1993).

    Article  CAS  Google Scholar 

  41. S. Oppo, V. Fiorentini, and M. Scheffler, MRS Proc. 314, 111 (1994).

    Google Scholar 

  42. Y. Suzuki, H. Kikuchi, and N. Koshizuka, Jap. J. Appl. Phys. 27, L1175 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheffler, M., Fiorentini, V., Oppo, S. (1996). Homoepitaxial Growth of Metals and the Role of Surfactants. In: MacDonald, R.J., Taglauer, E.C., Wandelt, K.R. (eds) Surface Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80281-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80281-2_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80283-6

  • Online ISBN: 978-3-642-80281-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics