Skip to main content

Part of the book series: Springer Series in Synergetics ((SSSYN,volume 69))

  • 183 Accesses

Abstract

Reconstruction of a dynamical system from data is in one sense easy: if we have enough parameters then we can exactly reproduce the original observations, and what could be better? The answer is, of course, that a lot of things could be better. We are usually interested in cases which are not quite the same as the observations, and if we try too hard to fit the data then we are probably fitting noise and making it likely that our predictions will be bad - maybe very bad. Even without noise, if our model is based on inaccurate assumptions, the results can be poor. In this chapter we discuss what it means to build a model, and describe some experience with a particular approach, i.e., the application of minimum description length to radial basis neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abarbanel, H.D.I, and Kennel, M.B. (1992): Local false nearest neighbors and dynamical dimensions from observed chaotic data. Technical report, Department of Physics, University of California, San Diego.

    Google Scholar 

  • Albano, A.M., Muench, J., Schwartz, C., Mees, A.I., and Rapp, P.E. (1988): Singular value decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A 38, 3017–3026.

    Article  ADS  MathSciNet  Google Scholar 

  • Broomhead, D.S., Jones, R., and King, G.P. (1986): Topological dimension and local coordinates from time series data. Technical report, Department of Mathematics, Imperial College, London.

    Google Scholar 

  • Broomhead, D.S. and Lowe, D. (1988): Multivariable functional interpolation and adaptive networks. Complex Systems 2, 321–355.

    MATH  MathSciNet  Google Scholar 

  • Casdagli, M. (1989): Nonlinear prediction of chaotic time series. Physica 35D, 335–356.

    ADS  MathSciNet  Google Scholar 

  • Chaitin, G.J. (1987): Algorithmic Information Theory. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Chen, S., Cowan, C.F.N., and Grant, P.M. (1991): Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks 2, 302–309.

    Article  Google Scholar 

  • Cheng, B. and Tong, H. (1991): On consistent non-parametric order determination and chaos. Technical Report 6th draft, Institute of Mathematics and Statistics, University of Kent.

    Google Scholar 

  • Draper, N. and Smith, H. (1981): Applied Regression Analysis. Wiley, New York.

    MATH  Google Scholar 

  • Glover, J. and Mees, A.I. (1992): Reconstructing the dynamics of Chua’s circuit. Journal of Circuits, Systems and Computers 3, 201–214.

    Article  MathSciNet  Google Scholar 

  • Goldie, CM. and Pinch, R.G.E. (1991): Communication Theory, Vol. 20. Cambridge University Press, Cambridge.

    Google Scholar 

  • Griewank, A. and Corliss, G.F. (1991): Automatic differentiation of algorithms: Theory, implementation and application. SIAM Proceedings in Applied Mathematics 53.

    Google Scholar 

  • Jacobs, O.L.R. (1974): Introduction to Control Theory. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Judd, K. and Mees, A.I. (1994): A model selection algorithm for nonlinear time series. Physica D (in press).

    Google Scholar 

  • Judd, K., Mees, A.I., Molteno, T., and Tufillaro, N. (1995): Modeling chaotic motions of a string from experimental data. In preparation.

    Google Scholar 

  • Judd, K. and Stick, S. (1995): Dynamical models for infant breathing patterns. In preparation.

    Google Scholar 

  • Kendall, M.G., and Stuart, A. (1961): The Advanced Theory of Statistics, Vol. 2. Hafner, New York.

    Google Scholar 

  • LeBaron, B. (1991): Persistence of the Dow Jones index on rising volume. Technical report, Santa Fe Institute.

    Google Scholar 

  • Luenberger, D.G. (1984): Linear and Nonlinear Programming. Addison-Wesley (London).

    MATH  Google Scholar 

  • Mees, A.I. (1990): Modelling complex systems. In A.I. Mees T. Vincent and L.S. Jennings, eds., Dynamics of Complex Interconnected Biological Systems, Vol. 6 (pp 104–124). Birkhauser, Boston.

    Google Scholar 

  • Mees, A.I. (1991): Dynamical systems and tesselations: Detecting determinism in data. International Journal of Bifurcation and Chaos 1, 777–794.

    Article  MATH  MathSciNet  Google Scholar 

  • Mees, A.I. (1993): Parsimonious dynamical reconstruction. International Journal of Bifurcation and Chaos 3, 669–675.

    Article  MATH  MathSciNet  Google Scholar 

  • Mees, A.I. (1994a): Nonlinear dynamical systems from data. In F.P. Kelly, ed., Probability, Statistics and Optimisation (pp 225–237). Wiley, Chichester, England.

    Google Scholar 

  • Mees, A.I. (1994b): Reconstructing chaotic systems in the presence of noise. In M. Yamaguti, ed., Towards the Harnessing of Chaos (pp 305–321). Elsevier, Tokyo.

    Google Scholar 

  • Mees, A.I., Aihara, K., Adachi, M., Judd, K., Ikeguchi, T., and Matsumoto, G. (1992): Deterministic prediction and chaos in squid axon response. Physics Letters A 169, 41–45.

    Article  ADS  Google Scholar 

  • Mees, A.I., Jackson, M.F., and Chua, L.O. (1992): Device modeling by radial basis functions. IEEE Trans CAS/FTA 39, 19–27.

    Google Scholar 

  • Mees, A.I. and Smith, R.K. (1995): Estimation and reconstruction in noisy chaotic systems. In preparation, 1995.

    Google Scholar 

  • Noakes L. (1991): The Takens embedding theorem. International Journal of Bifurcation and Chaos 1, 867–872.

    Article  MATH  MathSciNet  Google Scholar 

  • Packard, N.H., Crutchfield, J.P., Farmer, J.D., and Shaw, R.S. (1980): Geometry from a time series. Phys. Rev. Lett 45, 712–716.

    Article  ADS  Google Scholar 

  • Powell, M.J.D. (1985): Radial basis functions for multivariable interpolation: a review. Technical Report 1985/NA12, Department of Applied Mathematics and Theoretical Physics, Cambridge University.

    Google Scholar 

  • Rissanen, J. (1989): Stochastic Complexity in Statistical Inquiry, Vol. 15. World Scientific, Singapore.

    Google Scholar 

  • Sauer, T., Yorke, J.A., and Casdagli, M. (1992): Embedology. J. Stat. Phys. 65, 579–616.

    Article  ADS  MathSciNet  Google Scholar 

  • Schwarz, G. (1978): Estimating the dimension of a model. Annals of Statistics 6, 461–464.

    Article  MATH  MathSciNet  Google Scholar 

  • Smith, L.A. (1992): Identification and prediction of low-dimensional dynamics. Physica 58D, 50–76.

    ADS  Google Scholar 

  • Takens, F. (1981): Detecting strange attractors in turbulence. In D.A. Rand and L.S. Young, eds., Dynamical Systems and Turbulence, Vol. 898 (pp 365–381). Springer, Berlin.

    Google Scholar 

  • Tong, H. (1990): Non-linear Time Series: a Dynamical Systems Approach. Oxford University Press, Oxford.

    MATH  Google Scholar 

  • Watson D.F. (1981): Computing the n-dimensional Delaunay tesselation with application to Voronoi polytopes. The Computer Journal 24, 167–172.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mees, A.I., Judd, K. (1996). Parsimony in Dynamical Modeling. In: Kravtsov, Y.A., Kadtke, J.B. (eds) Predictability of Complex Dynamical Systems. Springer Series in Synergetics, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80254-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80254-6_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80256-0

  • Online ISBN: 978-3-642-80254-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics