Messy Futures and Global Brains

  • Gottfried Mayer-Kress
Part of the Springer Series in Synergetics book series (SSSYN, volume 69)

Abstract

The recent history after World War II was characterized by a relatively simple partition of the world in to basically two domains of superpower interests. Security issues could be discussed and analyzed in a global framework of two strategic players. There were clear goals and roles for the players. Today with the role of strategic nuclear weapons greatly reduced, we have regional crises which have some similarities with pre-World-War I situations with one major difference: Today’s world is much more connected, especially with regard to information: On a large scale we are able to get direct first hand information from crisis areas and — for example, through computer networks — can directly participate in the discussion. That makes the future from a traditional control point of view messy and on a global scale more complex and less predictable. For that reason we think that the conditions for the emergence of a Global Brain will become a practical reality for global modeling and simulation in the very near future. We also discuss some of the potential future applications.

Keywords

Vortex Manifold Europe Marketing Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barczys, C. (1993): Spatio-Temporal Dynamics of Human EEG During Somatosensory Perception. Ph.D. Dissertation, University of California at Berkeley.Google Scholar
  2. Bass, T. (1985): The Eudemonic Pie. Science of mind publishers, Los Angeles.Google Scholar
  3. Berge, P., Pomeau, Y., Vidal, C. (1984): L’Ordre dans le Chaos. Hermann, Paris. (English translation: Wiley, 1986.)MATHGoogle Scholar
  4. Braitenberg V., Schuez, A. (1991): Anatomy of the cortex : statistics and geometry. Springer-Verlag. Berlin, New York.Google Scholar
  5. Braun, C., Mayer-Kress, G., Miltner, W. (1996): Wavelet based measures of short-term coherence in 40 Hz oscillations of human EEG during associative conditioning. To be published.Google Scholar
  6. Campbell, D., Mayer-Kress, G. (1991): Chaos and Politics: Simulations of Nonlinear Dynamical Models of International Arms Races. Proceedings of the United Nations University Symposium The Impact of Chaos on Science and Society. Tokyo, Japan.Google Scholar
  7. Farmer J.D., Sidorovich, J. (1988): Exploiting chaos to predict the future. In Evolution, Learning, and Cognition, ed. Y.C. Lee. World Scientific Press, 277.Google Scholar
  8. Forrest, S., Mayer-Kress G. (1991): Using Genetic Algorithms in Nonlinear Dynamical Systems and International Security Models. In: The Genetic Algorithms Handbook, L. Davis, (Ed.). Van Nostrand Reinhold, New York.Google Scholar
  9. Gell-Mann, M. (1991): Private conversation, Santa Fe Institute.Google Scholar
  10. Grebogi, C., Ott, E., Yorke, J. (1983): Crises, Sudden Changes in Chaotic Attractors and Transient Chaos. Physica D 7, 181.CrossRefADSMathSciNetGoogle Scholar
  11. Grossmann, S., Mayer-Kress, G. (1989): The Role of Chaotic Dynamics in Arms Race Models. Nature 337, 701–704.CrossRefADSGoogle Scholar
  12. Haken, H. (1977): Synergetics: An Introduction. Springer, Berlin.MATHGoogle Scholar
  13. Haken, H. (1983): Advanced Synergetics. Springer, Berlin.MATHGoogle Scholar
  14. Hübler, A. (1989): Adaptive Control of Chaotic Systems. Helv. Phys. Acta 62, 343.Google Scholar
  15. Hübler, A., Pines, D. (1993): Prediction and Adaptation in an Evolving Chaotic Environment, eds. G. Cowan, D. Pines, and G. Meltzer. Addison-Wesley, Reading, MA.Google Scholar
  16. Hübler, A. (1992): Modeling and Control of Complex Systems: Paradigms and Applications. In Modeling Complex Phenomena, ed. by L. Lam. Springer, New York.Google Scholar
  17. Jackson, E.A., Hübler, A. (1990): Periodic Entrainment of Chaotic Logistic Map Dynamic. Physica D 44, 407.CrossRefMATHADSMathSciNetGoogle Scholar
  18. Kinsey, M.M. (1991): Evidence of vocal sequencing by killer whales, Orcinus Orca, MS thesis, Univ. San Diego.Google Scholar
  19. Koebbe, M., Mayer-Kress, G. (1991): Use of Recurrence Plots in the Analysis of Time-Series Data in Nonlinear Modelling and Forecasting. SFI Studies in the Sciences of Complexity. Proc. Vol. XII, eds. M. Casdagli, S. Eubank. Addison-Wesley, Reading, MA.Google Scholar
  20. Langton, C.G., Taylor, C., Farmer, J.D., Rasmussen, S., eds. (1992): Artificial Life II. Addison Wesley, Reading, MA.Google Scholar
  21. Lorenz, E. (1963): Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130–141.CrossRefADSGoogle Scholar
  22. Marti, J. (1991): Chaos might be the new world order. em Utne Reader n48(30).Google Scholar
  23. MIDS: Matrix Information and Directory Services, mids@tic.com, Austin, TX. [The figure is available as 33_in_year_2001.gif from: gopher://ietf.cnri.reston.va.us/11-/isoc.and.ietf/charts/metrics-gifs]Google Scholar
  24. Mayer-Kress, G., Haken, H. (1984): Attractors of Convex Maps with Positive Schwarzian Derivative in Presence of Noise, Physica D 10, 329–339.CrossRefMATHADSMathSciNetGoogle Scholar
  25. Mayer-Kress, G. (1989): A Nonlinear Dynamical Systems Approach to International Security. In: The Ubiquity of Chaos (S. Krasner, ed.). Proceedings AAAS conference. San Francisco.Google Scholar
  26. Mayer-Kress, G. (1991a): Nonlinear Dynamics and Chaos in Arms Race Models. Proc. Third Woodward Conference: Modelling Complex Systems (L. Lam, ed.). San Jose.Google Scholar
  27. Mayer-Kress, G. (1991b): EarthStation. In: Out of Control, Ars Electronica (K. Gerbel, ed.), Landesverlag Linz, Linz.Google Scholar
  28. Mayer-Kress, G., Barczys, C. (1995): The Global Brain as an Emergent Structure from the Worldwide Computing Network, and its Implications for Modelling. The Information Society, 11(1).Google Scholar
  29. Mayer-Kress, G. (1992): Chaos and Crises in International Systems. Technical Report CCSR-92-15. Proc. of SHAPE Technology Symposium on Crisis Management Mons, Belgium.Google Scholar
  30. Mayer-Kress, G. (1993): Global Information Systems and Nonlinear Methods in Crisis Management. In: 1992 Lectures in Complex Systems(L. Nadel and D.L. Stein, eds.). Santa Fe Institute Studies in the Sciences of Complexity, Lecture Volume V. Addison-Wesley, Reading, MA, 531–552.Google Scholar
  31. Mayer-Kress, G., Diehl, P., Arrow, H. (1995): The United Nations and Conflict Management in a Complex World. http://www.ccsr.uiuc.edu/People/gmk-/Papers/UNCMCW/, (in progress).Google Scholar
  32. Mayer-Kress, G., Bender, B., Bazik, J. (1994a): Hyper-Media on the Internet as a Tool for Approaching Global Problems: A Tele-Conferencing Experiment. Code No 94-0023 Unpublished Scholarly Papers, Information and Communication, CIESIN Human Dimensions Kiosk, http://WWW.ciesin.org/kiosk/home.html. [Presentation given via the Internet and telephone at the Hunger Research Briefing and Exchange, Brown University, April, 1994]Google Scholar
  33. Mayer-Kress, G., Bender, W., Bazik, J. (1994b): A Tele-Conferencing Experiment with WWW/Mosaic. Technical Report CCSR-94-25. [Proc. 2nd International World Wide Web Conference. Chicago (see http://www.ncsa.uiuc.edu/SDG-/IT94/IT94Info.html).]Google Scholar
  34. Mayer-Kress, G., Choi, I., Bargar, R. (1993): Sound Synthesis and Music Composition using Chua’s Oscillator. Proc. NOLTA93, Hawaii.Google Scholar
  35. Mayer-Kress, G., Choi, I., Weber, N., Bargar, R., Hübler, A. (1993): Musical Signals from Chua’s Circuit. IEEE Transactions on Circuits and Systems 40, special issue on Chaos in Nonlinear Electric Circuits, 688–695.Google Scholar
  36. Mayer-Kress, C., Bargar, R., Choi, I. (1992): Musical Structures in Data From Chaotic Attractors. Technical Report CCSR-92-14. Proceedings of the International Symposium on the Auditory Display (ICAD92). Santa Fe, NM. Proceedings Volume XVIII Santa Fe Institute Series in the Sciences of Complexity, Addison Wesley, Reading, 1994.Google Scholar
  37. Mayer-Kress, G. (1994a): Chua’s Oscillator: Applications of Chaos to Sound and Music. URL: http://www.ccsr.uiuc.edu/People/gmk/Projects/ChuaSoundMusic.Google Scholar
  38. Mayer-Kress, G. (1994b): “Non-Equilibrium Phase Transitions of Information Flow on the Internet?”. URL: http://www.ccsr.uiuc.edu/People/gmk/Projects/Web-Stats/webstats.html Google Scholar
  39. Nicolis, J., Mayer-Kress, G., Haubs, G. (1983): Non-Uniform Chaotic Dynamics with Implications to Information Processing. Z. Naturforsch. 38a, 1157–1169.MathSciNetGoogle Scholar
  40. Ott, E., Grebogi, C., Yorke, J. (1990): Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199.CrossRefMATHADSMathSciNetGoogle Scholar
  41. Richardson, L.F. (1960): Arms and insecurity. Boxwood, Pittsburgh.Google Scholar
  42. Russell, P. (1983): The Global Brain: speculations on the evolutionary leap to planetary consciousness. Houghton Mifflin, Boston, MA.Google Scholar
  43. Saperstein, A., Mayer-Kress, G. (1988): A nonlinear dynamical model of the impact of SDI on the arms race. J. Conflict Resolution 32, 636–670.CrossRefGoogle Scholar
  44. Schatz, B., Hardin, J. (1994): NCSA Mosaic and the World Wide Web: Global Hypermedia Protocols for the Internet. Science 265, 895–901.CrossRefADSGoogle Scholar
  45. Scarpuzzi, M., Al Garver (1994): Private discussions, SeaWorld, San Diego.Google Scholar
  46. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J. (1990): Using Chaos to Direct Trajectories to Targets. Phys. Rev. Let. 65(26), 3215–3218.CrossRefADSGoogle Scholar
  47. Smarr, L. (1994): Private communication, Urbana.Google Scholar
  48. Waltz, K. (1979): Theory of International Politics. Addison-Wesley, Reading, MA.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • Gottfried Mayer-Kress

There are no affiliations available

Personalised recommendations