Skip to main content

Airflow Obstruction in Asthma: There is More than Smooth Muscle

  • Chapter
Intensive Care in Childhood

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 25))

Abstract

Airways can obstruct in many different ways. Basically, airflow obstruction can be the result of increased smooth muscle force generation, airway wall thickening, loss of lung elastic recoil, increased compliance of the airway wall, and secretions in the airway. In severe asthma most of these factors can be responsible for the airflow obstruction. Knowledge of these factors is required to optimize treatment for these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. James AL, Paré PD, Hogg JC (1989) The mechanics of airway narrowing in asthma. Am Rev Respir Dis 139(l):242–246.

    Article  PubMed  CAS  Google Scholar 

  2. Bai TR (1990) Abnormalities in airway smooth muscle in fatal asthma. Am Rev Respir Dis 141:552–557.

    Article  PubMed  CAS  Google Scholar 

  3. Carroll N, Elliot J, Morton A, James A (1993) The structure of large and small airways in nonfatal and fatal asthma. Am Rev Respir Dis 147:405–410.

    PubMed  CAS  Google Scholar 

  4. Bramley AM, Thomson RJ, Roberts CR, Schellenberg RR (1994) Hypothesis: excessive bronchoconstriction in asthma is due to decreased airway elastance. Eur Respir J 7(2):337–341.

    Article  PubMed  CAS  Google Scholar 

  5. Tiddens HA WM, Paré PD, Hogg JC, et al (1995) Cartilaginous airway dimensions and airflow obstruction in human lungs. Am J Respir Crit Care Med 152:260–266.

    PubMed  CAS  Google Scholar 

  6. Brewster CE, Howarth PH, Djukanovic R, et al (1990) Myofibroblasts and subepithelial fibrosis in bronchial asthma. Am J Respir Cell Mol Biol 3(5):507–511.

    PubMed  CAS  Google Scholar 

  7. Wilson JM, Li X (1994) The measurement of airway collagen in asthmatic airways. Am J Respir Crit Care Med 149(4): A959.

    Google Scholar 

  8. Roberts CR (1995) Is asthma a fibrotic disease. Chest 107 (suppl):111s-117s.

    Article  PubMed  CAS  Google Scholar 

  9. Roche WR, Beasley R, Williams JH, Holgate ST (1989) Subepithelial fibrosis in the bronchi of asthmatics. Lancet l(8637):520–524.

    Article  PubMed  CAS  Google Scholar 

  10. Saetta M, Thiene G, Crescioli S, Fabbri LM (1989) Fatal asthma in a young patient with severe bronchial hyperresponsiveness but stable peak flow records. Eur Respir J 2:1008–1012.

    PubMed  CAS  Google Scholar 

  11. Tandon MK, Cambell AH (1969) Bronchial cartilage in chronic bronchitis. Thorax 24:607–612.

    Article  PubMed  CAS  Google Scholar 

  12. Thurlbeck WM, Pun R, Toth J, Frazer RG (1974) Bronchial cartilage in chronic obstructive lung disease. Am Rev Respir Dis 109:73–80.

    PubMed  CAS  Google Scholar 

  13. Nagai A, West WW, Paul JL, Thurlbeck WM (1985) The national institutes of health intermittent positive pressure breathing trial: pathology studies. Am Rev Resp Dis 132:937–945.

    PubMed  CAS  Google Scholar 

  14. Nagai A, Thurlbeck WM, Konno K (1995) Responsiveness and variability of airflow obstruction in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 151:635–639.

    PubMed  CAS  Google Scholar 

  15. Dunhill MS, Massarella GR, Anderson JA (1969) A comparison of the quantitative anatomy of the bronchi in normal subjects, in status asthmaticus, in chronic bronchitis, and in emphysema. Thorax 24:176–179.

    Article  Google Scholar 

  16. Mullen JB, Wright JL, Wiggs BR, Paré PD, Hogg JC (1985) Reassessment of inflammation of airways in chronic bronchitis. Br Med J (Clin Res Ed) 291 (6504):1235–1239.

    Article  CAS  Google Scholar 

  17. Tiddens HAWM, Boogaard JM, Jongste JC, et al (1996) Physiologic and morphologic determinants of maximal expiratory flow in chronic obstructive lung disease. Submitted.

    Google Scholar 

  18. Moreno RH, Mormack GS, Brendan J, et al (1986) Effect of intravenous papain on tracheal pressure-volume curves in rabbits. J Appl Physiol 60(l):247–52.

    PubMed  CAS  Google Scholar 

  19. Munakata M, Huang I, Mitzner W, Menkes H. (1989) Protective role of epithelium in the guinea pig airway. J Appl Physiol 66(4): 1547–1552.

    PubMed  CAS  Google Scholar 

  20. Hulsmann AR, Raatgeep HR, Den Hollander JC, Bakker WH, Saxena PR (1996) Permeability of human isolated airways increases after hydogen peroxide and poly-L-arginine. Am J Respir Crit Care Med: in press

    Google Scholar 

  21. Jeffery PK, Wardlaw AJ, Nelson FC, Collins JV, Kay AB (1989) Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis 140(6):1745–1753.

    Article  PubMed  CAS  Google Scholar 

  22. Laitinen LA, Heino M, Laitinen A, Kava T, Haahtela T (1985) Damage of the airway epithelium and bronchial reactivity in patients with asthma. Am Rev Respir Dis 131:505–606.

    Google Scholar 

  23. Hulsmann AR, Raatgeep HR, Den Hollander JC, et al (1994) Oxidative epithelial damage produces hyperresponsiveness of human peripheral airways. Am J Respir Crit Care Med 149:519–525.

    PubMed  CAS  Google Scholar 

  24. Widdicombe J (1993) Why are the airways so vascular. Thorax 48:290–295.

    Article  PubMed  CAS  Google Scholar 

  25. Strek P, Nowogrodzka-Zagorska M, Litwin JA, Miodonski AJ (1994) The lung in closeview: A corrosion casting study on the vascular system of human foetal trachea. Eur Respir J 7:1669–1672.

    Article  PubMed  CAS  Google Scholar 

  26. Persson CG A (1994) Airway epithelium and microcirculation. Eur Respir Rev 4(23):352–362.

    Google Scholar 

  27. Wasserfallen J-B, Schaller M-D, Feihl F, Perret CH (1990) Sudden aspyxic asthma: a distinct entity. Am Rev Respir Dis 142:108–111.

    PubMed  CAS  Google Scholar 

  28. Sur S, Crotty TB, Kephart GM, et al (1993) A distinct entity with few eosinophils and relatively more neutrophils in the airway mucosa? Am Rev Respir Dis 148:713–719.

    Article  PubMed  CAS  Google Scholar 

  29. Yager D, Butler JP, Bastacky J, et al (1989) Amplification of airway constriction due to liquid filling of airway interstices. J Appl Physiol 66(6):2873–2884.

    PubMed  CAS  Google Scholar 

  30. Macklem PT, Proctor DF, Hogg JC (1970) The stability of peripheral airways. Respir Physiol 8:191–203.

    Article  PubMed  CAS  Google Scholar 

  31. Wiggs BR, Bosken C, Paré PD, James A, Hogg JC (1992) A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 145:1251–1258.

    PubMed  CAS  Google Scholar 

  32. Moreno R, Taylor R, Muller N, et al (1986) In vivo human tracheal pressure-area curves using computerized tomographic scans. Correlation with maximal expiratory flow rates. Am Rev Respir Dis 134(3):585–589.

    PubMed  CAS  Google Scholar 

  33. De Jongste JC, Möns H, Bonta IL, Kerrebijn KF (1987) Human asthmatic airways responses in vitro. Eur J Respir Dis 71:23–29.

    PubMed  Google Scholar 

  34. Bousquet J, Chanez P, Lacoste J Y, et al (1992) Asthma: a disease remodeling the airways. Allergy 47:3–11.

    Article  PubMed  CAS  Google Scholar 

  35. Wilson JW, Li X, Pain MCF (1994) Airway collagen and airway distensibility in asthmatic airways. Am J Respir Crit Care Med 149(4):A959.

    Google Scholar 

  36. Ishida K, Paré PD, Hards J, Schellenberg RB (1992) Mechanical properties of human bronchial smooth muscle in vitro. J Appl Physiol 73:1481–1485.

    PubMed  CAS  Google Scholar 

  37. Papo MC, Frank J, Thompson AE (1993) A prospective, randomized study of continuous versus intermittent nebulized albutarol for severe status asthmaticus in children. Critical Care Medicine 21:1479–1486.

    Article  PubMed  CAS  Google Scholar 

  38. Schuh S, Johnson DW, Callahan S, Canny G, Levison H (1995) Efficacy of frequent nebulized ipratropium bromide added to frequent high-dose albuterol therapy in severe childhood asthma. J Pediatrics 126:639–645.

    Article  CAS  Google Scholar 

  39. O’Riordan TG, Walser L, Smaldone GC (1993) Changing patterns of aerosol deposition during metacholine bronchoprovocation. Chest 103:1385–1389.

    Article  PubMed  Google Scholar 

  40. Henke CA, Hertz M, Gustafson P (1994) Combined bronchoscopy and mucolytic therapy for patients with severe refractory status asthmaticus on mechanical ventilation: A Case report and review of the literature. Crit Care Med 22(11):1880–1883.

    PubMed  CAS  Google Scholar 

  41. Barnes NC (1992) Effects of corticosteroids in acute severe asthma. Thorax 47:582–583

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tiddens, H.A.W.M., de Jongste, J.C. (1996). Airflow Obstruction in Asthma: There is More than Smooth Muscle. In: Tibboel, D., van der Voort, E. (eds) Intensive Care in Childhood. Update in Intensive Care and Emergency Medicine, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80227-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80227-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80229-4

  • Online ISBN: 978-3-642-80227-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics